
R&D-Project Scheduling when Activities May Fail

Bert De Reyck1 • Roel Leus2

1London Business School, Regent’s Park, London NW1 4SA, United Kingdom
2Department of Decision Sciences and Information Management,

Faculty of Economics and Management, KULeuven, Leuven, Belgium
bdereyck@london.edu • Roel.Leus@econ.kuleuven.be

An R&D project typically consists of several stages. Due to technological risks, the project
may have to be terminated before completion, each stage having a specific likelihood of success.
In the project-planning and -scheduling literature, this technological uncertainty has typically
been ignored and project plans are developed only for scenarios in which the project succeeds.
In this paper we examine how to schedule projects in order to maximize their expected net
present value when the project activities have a probability of failure and when an activity’s
failure leads to overall project termination. We formulate the problem, show that it is NP-hard,
develop a branch-and-bound algorithm that allows to obtain optimal solutions and provide
extensive computational results. In the process, we establish a complexity result for an open
problem in single-machine scheduling, namely for the discounted weighted-completion-time
objective with general precedence constraints.

Keywords: project management; scheduling; risk; research and development; analysis of
algorithms; computational complexity

Area of Review: Scheduling and Logistics

1. Introduction

An important feature of Research-and-Development (R&D) projects is that, apart from

the commercial and market risks common to all projects, their constituent activities also

carry the risk of technical failure. Therefore, besides projects overrunning their budgets

or deadlines and the commercial returns not meeting their targets, R&D projects also

carry the risk of failing altogether, resulting in time and resources spent without any

tangible return. In this paper, we tackle the problem of scheduling the activities of an

R&D project that is subject to technological uncertainty, i.e. in which the individual

activities carry a risk of failure, and where an activity’s failure results in the project’s

overall failure. The goal is to schedule the activities in such a way as to maximize the

expected net present value of the project, taking into account the activity costs, the

cash flows generated by a successful project, the activity durations and the probability

of failure of each of the activities.

The algorithms developed in this paper are useful for any R&D setting where activities

carry a risk of failure, and are of particular interest to drug-development projects in the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pharmaceutical industry, in which stringent scientific procedures have to be followed to

ensure patient safety in distinct stages before a medicine can be approved for production.

The project may need to be terminated in any of these stages, either because the product

is revealed not to have the desired properties or because of harmful side effects. The

failure of one of the stages results in overall project termination. As stated by Gassmann

et al. (2004), “If a drug candidate fails during the development phase it is withdrawn

entirely from further testing. Unlike in the automobile industry, drugs are not modular

products where a faulty stick shift can be replaced without throwing the entire car design

away. In pharmaceutical R&D, drug design cannot be changed.”

The contributions of this paper are the following. We introduce and formulate a

generic model for optimally scheduling R&D-project activities with non-zero failure prob-

ability subject to precedence constraints, referred to as the R&D-Project Scheduling Prob-

lem (RDPSP). We show that the RDPSP is NP-hard and develop a branch-and-bound

algorithm that is capable of solving the RDPSP to optimality. We present computational

tests demonstrating the capabilities of the algorithm and we discuss how the model and

algorithms can be extended to take into account the risk preferences of the decision

maker. The complexity status of the single-machine scheduling problem with discounted

weighted-completion-time objective is established as an intermediate result.

In our model we make a number of simplifying assumptions, including unlimited re-

sources and no explicit consideration of the uncertainty in activity durations or project

cash flows. These restrictions allow us to focus on the effect of possible technological

failure on the development of optimal R&D-project schedules. We will show how to iden-

tify a project schedule that maximizes the project’s expected net present value (expected

NPV, eNPV), whereas a more simplified approach can result in a lower – and possibly

negative – eNPV. In other words, we may find projects to be worthwhile to pursue while

they would be rejected using more simplistic scheduling. These benefits of advanced

scheduling procedures are significant especially for medium- to high-risk projects. Other

insights include the fact that CPM-based schedules are good when the probability of

failure is small and when the decision-maker is risk-seeking; longer schedules (with less

parallel activities) tend to be better when the probabilities of failure are significant and

when the decision-makers are risk-averse.

The remainder of this article is organized as follows. Related work is discussed in

Section 2. Section 3 presents an introductory problem description by means of a real-life

example from the pharmaceutical sector. A detailed problem formulation of the R&D-

2

Project Scheduling Problem (RDPSP) and an examination of its properties are given in

Section 4. In Section 5, we provide an overview of a branch-and-bound algorithm for

solving the RDPSP to optimality. We explain our upper-bounding procedure in Section

6 and provide details on branching and fathoming in Section 7. Section 8 investigates how

risk preferences of the decision maker can be incorporated. In Section 9, we discuss com-

putational tests that demonstrate the capabilities of our procedure. Section 10 presents

a number of insights based on further numerical experiments. Finally, a summary and

outlook on further research are given in Section 11.

2. Related work

The issue of parallel versus sequential scheduling of project activities, which lies at the

core of the problem discussed in this paper, has been addressed, among others, by Da-

han (1998), Eppinger et al. (1994) and Krishnan et al. (1997). This topic is also closely

related to concurrent engineering, a systematic approach to the integrated, concurrent

design of products and their related processes (Hill, 2002). Hoedemaker et al. (1999) pro-

vide some theoretical evidence as to why there are limits to the benefits of parallelization.

Parallel (redundant) development of alternative technologies is studied in Abernathy and

Rosenbloom (1969), Bard (1985) and Krishnan and Bhattacharya (2002), and a generic

representation of multi-stage R&D problems is provided in Lockett and Gear (1973).

Zemel et al. (2001) focus on the optimal timing of support activities for R&D tasks

of variable length. Ding and Eliashberg (2002) examine the so-called ‘pipeline prob-

lem’: since New Product Development (NPD) projects may fail in each stage, multiple

projects are started simultaneously in order to increase the likelihood of having at least

one successful product. In our model, we lift the limiting assumption encountered in the

aforementioned studies that R&D projects are limited to a single uncertain activity or

sequential R&D stages only and allow the precedence relations between the individual

activities to take the form of an arbitrary acyclic graph.

The literature on deterministic project scheduling is vast and contains numerous meth-

ods and algorithms for producing project schedules. For recent overviews of scheduling

with NPV objective we refer to Herroelen et al. (1997) and Padman et al. (1997). The

incorporation of uncertainty into project planning and scheduling has also resulted in nu-

merous research efforts, particularly focusing on uncertainty in the activities’ duration or

cost; for a recent survey, see Herroelen and Leus (2005). None of these models, however,

3

incorporates technological uncertainty in the form of stochastic-success activities.

Closely related to our model is that of Weitzmann (1979), who describes an optimal

search procedure for obtaining maximum reward from a number of independent testing

efforts; only sequential testing is considered. Granot and Zuckerman (1991) also examine

sequencing for R&D projects with success or failure in individual activities but only con-

sider sequential stages. Denardo et al. (2004) consider R&D projects that are successful

if a successful path of edges from stem to leaf in a forest is found. Most similar to our

setting are the works by Boros and Ünlüyurt (1999) and Ünlüyurt (2004) on sequential

testing, and by Schmidt and Grossmann (1996) on scheduling NPD testing tasks, where

also non-sequential testing is admitted; differences between these sources and this article

are outlined in Section 4.1.

Schmidt and Grossmann (1996) point out that in many industries, including the

chemical and pharmaceutical sectors, a number of the tasks involved in producing a new

product are regulatory requirements such as environmental and safety tests. The failure

of a single required test may prevent a potential product from reaching the marketplace.

An informal overview of the importance of including the possibility of technical failure

into planning is given in Blau et al. (2000), who focus especially on the pharmaceutical

industry. DiMasi (2001) also refers to economic, efficacy, safety and ‘other’ reasons for

cutting projects. In this paper, we will mainly refer to ‘technical’ success of products.

More information on success probabilities in the pharma sector can be found in Zipfel

(2003); a broader overview of key issues and strategies for optimization in pharmaceutical

supply chains is provided by Shah (2004).

3. An example

In the US, the pharmaceutical drug-development process is monitored by the Food and

Drug Administration (FDA), and typically follows four main stages: basic research, pre-

clinical, clinical and FDA review, with the clinical stage subdivided in Phase I, II and

III. Each clinical substage contains a number of tasks that are repeated several times,

each time increasing in duration. Similar processes are followed in Europe and the rest

of the world.

We present an example of a pharmaceutical project initiated by a biotech company

based in Cambridge, England. The project was started in 2001 with an expected US

market launch in 2008, assuming that the product makes it successfully through all the

4

Figure 1: Precedence network for the example project.

stages. At the time of this writing, all activities prior to the clinical stage have been

successfully performed, and the company is developing a project plan for the clinical

development and launch of the product. The total remaining duration of the project

is approximately five years, for a total cost of approximately £15 million (all data are

disguised). For the purpose of this paper, we have simplified the project plan, which

contains more than 300 activities, by identifying natural task groupings, yielding the

aggregate project network structure in Figure 1. More details can be found in Crama et

al. (2006). Phase III in this project is subdivided in three runs of toxicological studies on

animals, referred to as ‘Tox’, and medical studies on humans, referred to as ‘Med’. The

remaining activities in Phase III have been grouped into two tasks named ‘Other’, which

include manufacturing of the product, chemical product analysis and pharmacological

studies. The project also includes the ancillary agronomical task (‘Agro’). Each medical

study has to be preceded by its corresponding toxicology study. The toxicology studies,

however, do not require the results from the previous medical study. Some toxicology and

medical studies are dependent on the ‘Other’ activities in the network. The agronomical

activity can be scheduled freely.

Table 1 gives for each activity group the total development cost, the duration and

the probability of technical success (PTS). The project has an estimated overall PTS of

16.2%. If successful, the NPV of net sales equals £300 million. For this example, we use

a discount rate of 1% per month.

While developing a schedule for this project, several considerations are in order. If

all activities are carried out as soon as possible, the revenues of the project, if success-

ful, are received as soon as possible, resulting in a high present value. On the other

hand, development costs are also incurred early on. A better option is to execute the

project according to the late-start schedule as determined by the Critical Path Method

5

task cash flow duration PTS
(£) (months)

Agro −12,000,000 60 100%
Tox I −300,000 6 75%
Other I −1,000,000 8 100%
Med I −200,000 8 80%
Other II −300,000 8 100%
Tox II −100,000 6 75%
Med II −200,000 10 80%
Tox III −700,000 9 75%
Med III −400,000 20 60%
Launch 300,000,000 - -

Table 1: Project data (disguised).

(CPM). This corresponds with the first schedule of Figure 2 and results in an eNPV of

approximately £13 million.

Alternatively, we can schedule the activities carrying technical risk in series, thereby

avoiding unnecessary expenditures when one of the activities fails. One such schedule

is depicted in Figure 2(b), with an eNPV of approximately £10 million. Note that the

arrows in Figure 2 do not represent the technological precedence relations but extra ‘in-

formation flows’: knowledge of the outcome of an uncertain activity constitutes useful

information since a failure allows to abandon the project without investing in the remain-

ing tasks. Information flows implied by the precedence relations are not shown.

(a) CPM late-start schedule

(b) Serial schedule

(c) Optimal schedule

Figure 2: Three possible schedules for the R&D project.

6

Figure 3: Cumulative distribution function of NPV for the three schedules.

Finally, a schedule allowing for a partial overlap of R&D activities is shown in Figure

2(c), yielding an eNPV of approximately £16 million, which can be shown to be the

highest value achievable. This schedule exhibits the optimal trade-off between overlapping

activities ‘at risk’ and the cost of delaying project completion and market launch. Finding

such a schedule is the objective of the algorithms that will be presented in this paper.

The probability distributions of the project’s NPV for each of the three schedules are

depicted in Figure 3. Clearly, the different schedules exhibit very different risk profiles.

The series schedule is conservative and minimizes the downside risk, but the total project

execution time is maximal. On the other extreme, a CPM schedule results in a large

downside risk, compensated for by an earlier launch date, yielding a higher upside poten-

tial. In between these two extremes we find the optimal schedule, which strikes a balance

between timeliness of project launch and limiting at-risk investments and the associated

costs.

4. Problem formulation and properties

4.1 Problem formulation and notation

The objective of the RDPSP is to maximize the eNPV of the project by constructing a

project schedule specifying when to execute each activity. The final project payoff is only

achieved when all activities are successful, and the project is terminated as soon as an

activity fails. We focus on the case where all activity cash flows during the development

phase are negative, which is typical for R&D projects. Activity success or failure is

7

N = {0, 1, . . . , n}, the set of project activities;
Ni = N\{i} (i ∈ N) and N0n = N\{0, n}

ci cash flow of activity i ∈ Nn, non-positive integer; incurred at the start
of the activity

C integer end-of-project payoff, ≥ 0; received at the start of activity n

di duration of activity i ∈ Nn, non-negative integer (positive for i ∈ N0n)

pi probability of technical success (PTS) of activity i ∈ Nn

r continuous discount rate

A (strict) partial order on N , i.e. an irreflexive and transitive relation, rep-
resenting technological precedence constraints

si starting time of activity i ∈ N , ≥ 0; starting-time vector s is a schedule

δ project deadline

Table 2: Definitions.

revealed at the end of each activity. Consequently, each activity will only be started if

all the activities scheduled to finish earlier have a positive outcome. Therefore, in the

objective function, the activity cash flows are weighted by the probability of joint success

of all its scheduled predecessors. We do not consider resource constraints and duration

uncertainty, and consider the PTS of the different tasks as independent. The parameters

that are used throughout the paper are defined in Table 2.

Without loss of generality, we assume activity 0 to be a dummy representing project

initiation, with c0 = d0 = 0 and p0 = 1, and (0, i) ∈ A for all i ∈ N0. Activity n

represents project completion and is a successor of all other activities. Activities N0n are

referred to as intermediate activities; we assume that di > 0 for i ∈ N0n. A deadline δ is

imposed on project completion: we require that sn ≤ δ. This deadline is needed because

optimization will try to push activity start times to infinity if the optimal eNPV of a

particular problem instance is negative. A second reason for using a deadline is that it

allows to examine the impact of schedule length on the quality of the schedule.

Relation A imposes the following constraints on s:

si + di ≤ sj ∀(i, j) ∈ A

For an arbitrary relation E on N , define S(E) = {s ∈ Rn+1
≥ : si + di ≤ sj,∀(i, j) ∈ E},

which is a convex polyhedron (R≥ denotes the set of positive real numbers). S(E) is

non-empty if and only if the corresponding precedence graph G(N, E) is acyclic. The

8

set of feasible schedules for RDPSP is {s ∈ S(A) : sn ≤ δ}. Clearly, if A ⊆ E then

S(E) ⊆ S(A). If A ⊆ E and G(N, E) is acyclic, we say that E is a feasible extension of

A. For a given schedule s, we define the schedule-induced strict order R(s) = {(i, j) ∈
N ×N |i 6= j ∧ si + di ≤ sj}, which corresponds to the precedence constraints implied by

s (see e.g. Bartusch et al., 1988; Neumann et al., 2003).

This paper investigates the determination of an optimal schedule for RDPSP. For

i ∈ N0, we define

qi(E) =
∏

(k,i)∈E

pk, with E any order relation on N

As explained in Section 3, for schedule s ∈ S(A), the activity pairs in R(s) can be

considered as representing ‘information flows’: the probability that activity i is initiated

and hence induces expenditures is equal to the probability that all activities scheduled to

finish no later than si succeed, which equals qi(R(s)). Remark that qn(R(s)) is a constant,

independent of the schedule; we write qn ≡ qn(R(s)). RDPSP can now be formulated as

follows:

max g(s, E) = qnCe−rsn +
n−1∑
i=1

qi(E)cie
−rsi

subject to

s ∈ S(A)

E = R(s)

sn ≤ δ

In the objective function g(), each activity cash flow ci is weighted with two factors,

namely with qi(E), the probability of joint success of all predecessors in time, and with

a discount factor e−rsi , dependent on the starting time si of activity i.

Schmidt and Grossmann (1996) propose a generalized version of the foregoing model,

in which multiple scenarios are allowed for the activity data (ci, di, pi); project payoff

is a piecewise-linear decreasing function of time but is not discounted. They do not,

however, obtain exact results: they approximate the non-linear objective function with

a piecewise-linear function and, for larger instances, impose further simplifications such

as a project deadline equal to the longest path length in G(N, A), r = 0, and a linear

approximation of the objective.

A significant body of literature exists on the problem of diagnosing a complex system

by means of a sequence of tests of its components, we refer to Boros and Ünlüyurt (1999)

and Ünlüyurt (2004) for reviews. Their setting is rather similar to ours, apart from

9

the fact that (1) R(s) needs to be a complete order on N (a full sequence), and (2) no

discounting is considered (r = 0). It will become evident from Section 4.3 that these two

properties go hand in hand.

4.2 Sketch of the solution approach

In the next paragraphs, we draw a sketch of the solution approach. A detailed description

of our solution algorithm is provided in Section 5.

RDPSP is solved in two phases. In the first phase, we produce a feasible extension E

of A, which yields values q(E). We then optimize g(s, E) in s subject to s ∈ S(E) and

the deadline constraint, which constitutes the second phase. If we implicitly or explicitly

enumerate all feasible extensions of A, we are guaranteed to find an optimal schedule for

RDPSP, since for each feasible schedule s ∈ S(A) it holds that s ∈ S(R(s)), and R(s)

extends A; a corresponding relation E is called an optimal feasible extension.

The second phase (optimization for given coefficients q) amounts to project scheduling

with NPV objective without resource constraints (see Herroelen et al., 1997). In this

case, the scheduling problem is easily solved because all intermediate cash flows are non-

positive: each activity can be scheduled to end at the earliest of the starting times of its

successors in E. Depending on whether the corresponding eNPV is positive or negative,

we set s0 = 0 or sn = δ, respectively. The resulting schedule is referred to as φ(E).

Note that Schmidt and Grossmann (1996) opt for an early-start schedule rather than

this late-start approach.

4.3 Properties

The following theorem allows us to establish ties with the literature on sequential testing.

Theorem 1. If r = 0 and δ ≥ ∑
i∈Nn

di then an optimal feasible extension of A exists

that is a complete order on N .

The proofs of the theorems appear in the appendix. Intuitively, the theorem says that

when money has no time value, it is a dominant choice to perform all tasks sequentially.

We define problem LCT as problem RDPSP whose solution space is restricted to

schedules that impose a complete order on N ; Monma and Sidney (1979) refer to this

setting as the ‘least-cost fault-detection problem’. Remark that LCT is not a sub-problem

of RDPSP since we restrict the set of solutions and not the input parameters.

10

Without dummy start and end (and so without final project payoff), a number of

special cases of LCT with r = 0 can be solved in polynomial time. If A = ∅ then each

optimal complete order relation E sequences the activities in non-increasing order of

ci/(1− pi), and each complete order that sequences the activities in non-increasing order

of ci/(1− pi) is optimal. One of the earliest references for this result seems to be Mitten

(1960), obtained in the context of ‘least-cost testing’; another source is Butterworth

(1972). A polynomial-time algorithm for LCT also exists when G(N, A) consists of a

number of parallel chains (see Chiu et al., 1999). Based on Monma and Sidney (1979)

it can be shown that the problem is also solvable in polynomial time when G(N, A) is

series-parallel.

The foregoing results carry over to RDPSP when δ ≥ ∑
i∈Nn

di and r = 0. However,

the incorporation of precedence constraints taking the form of an arbitrary acyclic digraph

G(N,A) results in an NP-hard problem:

Theorem 2. RDPSP is NP-hard in the ordinary sense, even if r = 0, C = 0, ∀i ∈ N0n :

di = 1, and δ ≥ ∑
i∈Nn

di.

Corollary 1. LCT is ordinarily NP-hard under the same conditions.

This corollary settles what is said to be an open problem in Monma and Sidney (1979)

and in Ünlüyurt (2004). In order to further examine the complexity status of LCT, we

start with problem 1|prec|Σwj(1 − e−rCj), the single-machine scheduling problem with

discounted weighted-completion-time objective and general precedence constraints, with

objective function to be minimized (see for instance Pinedo, 2002). The complexity status

of this scheduling problem was considered to be open in Monma and Sidney (1979) (with

max-objective, but this does not change the result), and has to the best of our knowledge

since then not been treated in the scheduling literature.

Lemma 1. Problem 1|prec|Σwj(1−e−rCj) is strongly NP-hard, even with unit durations.

Based on this lemma we derive the following theorem.

Theorem 3. LCT is NP-hard in the strong sense even if C = 0 and ∀i ∈ N0n : pi =

di = 1.

In the remaining sections of this text we deal only with problem RDPSP, not with LCT.

11

5. A branch-and-bound algorithm

In light of the NP-hardness of the RDPSP, an exact algorithm with better than exponen-

tial time complexity is unlikely to exist, and we will devise a branch-and-bound (B&B)

algorithm to implicitly enumerate the solution space. The algorithm follows the intuitive

approach described in Section 4.2, although the distinction between the two phases is less

explicit.

We use the concept of a ‘distance matrix’ as described by Bartusch et al. (1988) to

collect information about minimal differences between the starting times of all pairs of

activities. Lower bounds lij are imposed on the differences between the starting times of

activities:

lij ≤ sj − si ∀i, j ∈ N

At the root of the search tree, we initialize

ln0 = −δ, and for (i, j) 6= (n, 0) : lij =

0 if i = j
di if (i, j) ∈ A
−∞ otherwise

The (n + 1) × (n + 1)-matrix D tightens the foregoing individual minimal distances:

distance-matrix entry Dij is the length of a longest path from i to j in the complete

graph with node set N and distances lij. For a set of values lij, the distance matrix can

be found in O(n3) time, for instance by means of the Floyd-Warshall algorithm (Lawler,

1976).

It can be shown (Bartusch et al., 1988) that a feasible schedule exists iff all Dii = 0.

If Dii > 0 for some i, the corresponding graph contains a directed cycle with positive

length. We observe that, when Dij ≥ di for an arbitrary activity pair (i, j), then activity

j will always start after activity i has finished, and so Dij ≥ di implies the possibility

of information flow from i to j, denoted as “i → j”. The conditions si + di > sj and

sj +dj > si jointly imply that i will be executed in parallel with j (“i||j”). Since we work

with discrete durations and hence discrete starting times, these conditions are equivalent

with Dij ≥ −dj + 1 and Dji ≥ −di + 1.

In node h of the search tree, minimal distances are l(h) and the distance matrix is

D(h). For each node h we distinguish set πh, the set of (unordered) activity pairs {i, j}
for which i||j holds according to D(h) (the activity pairs that need to overlap). Implied

information flows i → j are gathered in order relation Eh. Finally, we also maintain

set νh, the set of activity pairs that are not in πh nor in Eh. Branching continues while

12

νh 6= ∅; a branching decision consists of the selection of a set {i, j} ∈ νh and generates

three branches: (1) i → j; (2) j → i; and (3) i||j. These branching options are mutually

exclusive and jointly exhaustive.

Exploring a branch means that we update the distance matrix to incorporate the

additional constraints that are imposed via l(h). Each update can be performed in O(n2)

time (cfr. Bartusch et al., 1988). The recognition of additional implied parallel and serial

relations (in πh and Eh, respectively) is embedded in the distance updates and does not

add to the O(n2) time complexity of these updates. Search nodes that no longer allow a

feasible solution are immediately recognized when the distance updates trigger a change

in D
(h)
ii for some i ∈ N .

6. Upper bounds

Define g(h) to be the best objective value reachable from node h of the search tree. In

other words,

g(h) = max s,E

{
qnCe−rsn +

n−1∑
i=1

qi(E)cie
−rsi

}
(1)

subject to

s ∈ S(E)

E is a feasible extension of Eh

sn ≤ δ

s satisfies D(h)

(2)

In (2), ‘s satisfies D(h)’ is shorthand for ‘s satisfies the lower bounds on starting-time

differences represented by D(h)’. In the computation of upper bounds on g(h), we separate

the determination of the values q and the discount factors.

In a first approach, we start by underestimating the execution probabilities qi(E),

i ∈ N0n: lower bounds for these values are θ
(h)
i =

∏
j∈N :D

(h)
ij ≤−dj

pj. We substitute these

values into (1) and relax constraint set (2) to

sn ≤ δ

s satisfies D(h)
(3)

Note that if s satisfies D(h), it automatically holds that s ∈ S(Eh). The problem has

been reduced to scheduling the activities with NPV objective subject to the constraints

(3) on s. If D
(h)
0n ≤ δ, the solution can be seen to satisfy

si = sn −D
(h)
in ∀i ∈ Nn (4)

13

for a given value of sn. In an optimal schedule either s0 = 0 or sn = δ, depending on the

sign of the resulting NPV. The optimal objective function of this relaxation is referred to

as UB(h). When D
(h)
0n > δ, no feasible schedule exists corresponding with all branching

decisions that were made to reach search node h; this situation will be recognized during

the distance-matrix updates. In non-dominated leaf nodes h, UB(h) equals the exact

objective-function value corresponding with extension E(h) of A (the dominance rule is

discussed in the Section 7).

For the determination of UB(h), we replaced the values q first. Alternatively, discount

factors e−rsi could be fixed first by substituting for si as given by Eq. (4), after which

remains the determination of sn and values qi(E). This leads to a new RDPSP instance

with zero discount rate and cash flows cie
rD

(h)
in for intermediate activities i. This new

problem is subjected to the general precedence constraints contained in Eh. An efficient

upper bound on its objective function can be computed by (e.g. greedily) extracting

sets of chains from Eh and imposing only those constraints on the auxiliary problem.

Unfortunately, the resulting bound on g(h) turns out to be rather weak and is not retained

in the final version of our algorithm.

7. Algorithmic structure and details

Overall structure of the algorithm. A general overview of the structure of the B&B

algorithm is given in Figure 4. Further details on some of its aspects are provided

below.

Branching choice. We explore different rules for the selection of an activity pair {i, j} ∈
νh to branch on. As a first possibility, rule 1 selects the first encountered activ-

ity pair {i, j} in νh based on lexicographic ordering of the alternatives. From our

experiments we have observed that the ‘low-impact’ choices typically concern ac-

tivities with a lot of slack in their starting times. Therefore, we have implemented

rule 1 with activity ordering based on (1) the activity index and (2) float val-

ues (increasing CPM-based total float in G(N,A)). The goal of this second op-

tion is to make decisions that strongly affect the bounds on lower-indexed levels

in the search tree. We also examine a decreasing order. Alternatively, we or-

der the candidate activity pairs in decreasing order of a ‘pseudo-cost’ of insertion,

which is an estimate of their true impact. The role of this pseudo-cost is in guid-

ing heuristic decisions in the algorithm, not in generating incumbent solutions or

14

Figure 4: Flow chart of the algorithm.

in proving fathomability (Parker and Rardin, 1988). Rule 2 selects {i, j} ∈ νh

with highest ratio ci/pj + cj/pi, in an attempt to make the most important de-

cisions first. Rule 3 also tries to select the most influential activity pair {i, j}
first, by maximizing the difference between the latest ending time of the earli-

est starting activity (latest start times are given by D
(h)
0n − D

(h)
in) and the latest

start of the other activity. Finally, rule 4 is a criterion that (approximately) min-

imizes the number of nodes in the search tree: we choose the activity pair that

allows removing the most elements from νh, summed over its three emanating

branches. An estimate of the number of elements removed by alternative i → j

is #{k ∈ N : ((j, k) ∈ Eh∧ (i, k) /∈ Eh)∨ ((k, i) ∈ Eh∧ (k, j) /∈ Eh)}; an estimate of

the effect of i||j is #{k ∈ N : ({j, k} ∈ πh∧{i, k} /∈ πh)∨({k, i} ∈ πh∧{k, j} /∈ πh)}.

Branching order. We examine two different approaches with respect to the branching

order, i.e. the order in which the three branches i → j, j → i and i||j are explored

once a branching choice {i, j} has been made. One possibility is to adhere to a

15

fixed branching order; the actual order in this case turns out not to be decisive for

algorithmic performance, we implement (1) i → j, (2) j → i and (3) i||j. The

second option is to use a variable order, in which we first select the branch that is

compatible with the currently best known solution: if si + di ≤ sj in this schedule,

we first explore i → j, then i||j and finally j → i. If i and j overlap in the

incumbent, we first explore i||j; the second alternative is i → j if si ≤ sj.

Dominance rule. Consider the following lemma. A search node indexed h of the search

tree is called a ‘leaf node’ if νh = ∅.

Lemma 2. A feasible solution in a leaf node h of the search tree can be discarded

without loss of all optimal solutions if the following holds:

∃i ∈ N0n : ∀(i, k) ∈ Eh : D
(h)
ik > di.

The proof of the lemma can be found in the appendix. The basic idea is that

if parallelity constraints (constraints of the type i||j) are binding for a feasible

solution, in the sense that at least one activity could be shifted later in time if

such an (artificial) constraint were removed, then the solution is dominated. We

underline that such parallelity constraints do remain useful for partitioning the

search space. The lemma builds on the insight that distance-matrix entries can

only increase, never decrease, when descending the search tree.

Based on Lemma 2 we have implemented a dominance rule. We dynamically main-

tain the cardinality of sets S1
i = {k ∈ N : {i, k} ∈ νh}, S2

i = {k ∈ N : (i, k) ∈ Eh}
and S3

i = {k ∈ N : D
(h)
ik > di} for each activity i, and we fathom a search node

when ∃i ∈ N0n : |S1
i | = 0 and |S2

i | = |S3
i |.

A heuristic stand-alone procedure. We propose a heuristic that examines a set of

order relations E, starting with E = A. We gradually append activity pairs to

E until a full order is obtained; each solution φ(E) is evaluated and the best one

retained. The procedure is described in pseudo-code as Algorithm 1. The output of

this heuristic is used at the initialization phase of the B&B algorithm to produce a

good lower bound LB. The procedure is interrupted when sn(φ(E))−s0(φ(E)) > δ,

where si(φ(E)) represents the (1 + i)-th component of φ(E). Here and later, we

write g(s, R(s)) as g(s).

16

Algorithm 1 A heuristic procedure

sbest := φ(A); E := A
construct full order F extending A, sequencing incomparable activities in non-
increasing order of ci/(1− pi)
for d = (n− 2) downto 1 do

S is the set of ordered activity pairs (i, j) for which the difference between the rank
order of i and j in F equals d and j comes after i in F
order the elements (i, j) ∈ S in decreasing −cj/pi

for ordered (i, j) ∈ S do
E := E ∪ {(i, j)}
if g(φ(E)) > g(sbest) then

sbest := φ(E)
end if

end for
end for
return sbest

8. Incorporating risk preferences

The objective of RDPSP is to maximize the expected NPV, but this does not preclude

actual project realizations from resulting in higher or lower NPV values. In order to

evaluate the entire risk profile associated with a schedule, a representation of all possible

NPV realizations together with the probability of each realization would be desirable

(which was illustrated at the end of Section 3 for the example project). In the literature

on project networks with stochastic activity durations, it is shown (Hagstrom, 1988;

Möhring, 2001) that even with independent processing times, the determination of a

single point of the cumulative distribution function of project completion time is #P-

complete, and thus in particular NP-hard. As noted by Adlakha and Kulkarni (1989),

the difficulty arises from two sources: (1) the number of paths grows exponentially in the

number of activities, and (2) even when the activity durations are independent, the path

lengths are generally dependent, as several paths have one or more activities in common.

Fortunately, our setting of stochastic-success activities does not suffer the same dif-

ficulties. In spite of the fact that O(2n) different realizations are possible of success or

failure of the individual activities, the knowledge that activity failure leads to immediate

project termination permits an efficient determination of the pmf (probability-mass func-

tion) of the NPV of an arbitrary schedule. With each schedule s we associate a set τ(s)

of decision points corresponding with the (intermediate) activity start and finish times:

t ∈ τ(s) ⇔ ∃i ∈ N0n : (t = si) ∨ (t = si + di).

17

Algorithm 2 Computation of expectation and pmf of NPV for a schedule s

prob = 1; cost = 0
fs(·) = 0; g(s) = 0
for increasing t in τ(s) do

if ∃i ∈ N : t = si + di then
successpr =

∏
i∈N |t=si+di

pi

if successpr < 1 then
fs(cost) := fs(cost) + prob ∗ (1− successpr)
g(s) := g(s) + cost ∗ prob ∗ (1− successpr)
prob := prob ∗ succespr

end if
end if
for all i ∈ N |si = t do

cost := cost + cie
−rt

end for
end for
cost := cost + Ce−rsn

fs(cost) := fs(cost) + prob
g(s) := g(s) + cost ∗ prob

The procedure named Algorithm 2 determines the NPV-pmf of s, denoted fs(·), and

its expected NPV g(s); it can be implemented in O(n log n) time. In the code, prob

and cost respectively monitor the probability of reaching the different t ∈ τ(s) and the

cost incurred up until that time. successpr represents the probability that all activities

ending at the considered time instance succeed. For easy access τ(s) can be conceived

as a multi-set (which is not explicitly taken into account in the code description). A

bifurcation of probability mass occurs each time when fallible activities (pi < 1) end.

The NPV-pmf can be used by the decision maker to evaluate the downside risk, e.g.

the probability that the NPV is lower than a threshold value, or the upside potential, e.g.

the probability that NPV is larger than or equal to a threshold. This gives the decision

maker a number of additional options: (1) it allows for the specification of a constraint

on downside risk and/or upside potential, which could be imposed during the search for

schedules with maximum eNPV, and (2) the approach permits to generate the efficient

frontier showing the trade-off between return and risk.

9. Computational performance

We have performed a series of computational experiments using randomly generated test

problems in order to examine and enhance the performance of the B&B algorithm.

18

9.1 Experimental setup

Random test sets have been generated for various values of n using the random network

generator RanGen (Demeulemeester et al., 2003). Each dataset contains 20 instances for

each of the values 0.25, 0.50 and 0.75 of the network-shape parameter order strength1 OS,

resulting in 60 instances per set. Unless mentioned otherwise, we set r = 0.05. Cash flows

for each activity in N0n are generated as independent realizations of a discrete uniform

random variable on [−50; 0], durations for these activities are discrete values in [1; 15],

and success probabilities are, unless stated otherwise, chosen randomly from [80%; 100%].

Deadline δ is set at the non-restrictive value
∑

i∈Nn
di.

The end-of-project payoff value C is an integer randomly selected from the interval

[0.5a; 2a] with

a = −(1/qn)
n−1∑
i=1

ciq
(0)
i exp(0.05D

(0)
in),

with distance matrix D(0) based on the initial order relation A and probabilities q
(0)
i

based on starting times (D
(0)
0n − D

(0)
in). Note that when C ≥ a the optimal project’s

eNPV is guaranteed to be non-negative. The algorithm can easily be adapted to exclude

negative-eNPV schedules by exploring only search nodes with positive upper bounds.

This would speed up the algorithm’s running time for some of the test instances. We

have not implemented this enhancement, since the value C is generated arbitrarily and

its selection would allow for manipulation of the computational efficiency.

In order to compare the quality of schedules, we define the function

I(s1, s2) = (g(s2)− g(s1))/|g(s1)|,

which measures the improvement in the objective function g() of a schedule s2 compared

with a schedule s1. In the (rare) cases when g(s1) = 0, the instance is skipped when

computing averages for a dataset.

The algorithms were coded in C using Microsoft Visual C++ 6.0. The experiments

were run on a Dell OptiPlex GX620 PC with an Intel Pentium-4 2.80-GHz processor and

1 GB RAM, equipped with Windows XP Professional. Unless stated otherwise, a time

limit of two minutes is imposed on the running time of the algorithms.

1The order strength is the number of comparable intermediate activity pairs divided by the maximum
number n(n− 1)/2 of such pairs, and is a measure for the closeness to a linear order of the technological
precedence constraints in A (cfr. Mastor, 1970).

19

9.2 Parameter settings

For the dataset with n = 20, Table 3 shows the improvements in the performance of the

B&B algorithm starting from the base case (1), which relates to the following settings:

lexicographic branching choice (rule 1) using index order, fixed order branching, no dom-

inance rule, no initial solution and upper bound UB. Settings (2) and (3) illustrate the

successive improvements by using the schedule produced by the heuristic described in

Section 7 as initial incumbent, and by resorting to a variable branching order. The table

shows the number of instances solved to guaranteed optimality within the time limit, two

efficiency measures (the average running time and the average number of nodes in the

search tree) expressed as percentage of the best setting (3), and two efficacy measures

(improvement from the initial solution to the output of setting (i), and improvement

upon setting (i) by setting (3)). s(i) is the output of the procedure run in setting (i); s(0)

refers to the schedule produced by Algorithm 1. The efficiency measures are computed

only for the instances that are solved to guaranteed optimality by setting (3). Efficacy

measure I(s(i), s(3)) is computed only for the instances that are not solved to optimality

by the setting (i).

The performance of the B&B algorithm without an initial solution (setting (1)) is

rather poor. The incorporation of a variable branching order (from (2) to (3)) allows to

solve more instances to optimality (from 45 to 52 out 60) and yields a 53% gain in CPU

time for these 52 instances. Efficacy-wise, for the 15 instances not solved to optimality in

opt efficiency efficacy
(/60) nodes CPU time I(s(0), s(i)) I(s(i), s(3))

(1) base 40 1362% 1282% +3.84% +3627.16%
(2) = (1) + initial LB 45 146% 153% +23.64% +26.43%
(3) = (2) + var. br. order 52 100% 100% +26.10% 0.00%

(4) = (3) with rule 2, index 24 269% 258% +20.01% +15.70%
(5) = (3) with rule 3, index 19 33939% 30191% +19.51% +32.36%
(6) = (3) with rule 4, index 50 163% 172% +25.67% +2.44%
(7) = (3) with rule 1, incr. float 48 1651% 1555% +12.15% +41.86%
(8) = (3) with rule 1, decr. float 23 39656% 34801% +23.14% +7.93%

Table 3: Computational results for different versions of the B&B algorithm. Efficiency
measures are averaged only over the 52 instances solved by (3). Efficacy measure
I(s(i), s(3)) for setting (i) is averaged only over the instances not solved to guaranteed
optimality by (i). I(s(0), s(i)) is averaged over the entire dataset.

20

n = 10 15 20 25 30 35 40

opt (/60) ND 60 60 52 36 25 20 14

opt (/60) D 60 60 52 36 25 20 14

CPU time ND ∗ 110% 106% 99% 106% 107% 114% 113%

I(sND, sD) ∗∗ - - +3.33% +1.46% +1.68% +3.02% +2.99%

Table 4: The impact of incorporating the dominance rule for different values of n.
∗ averaged only over the instances solved to optimality by D, and expressed as a
percentage of the result for D.
∗∗ averaged only for the instances not solved to optimality by ND.

setting (2), the variable branching order achieves an average improvement in the objective

function of some 26%.

As for the branching choice, we find that the simplest option possible is also the

best: lexicographic branching choice (rule 1) using index order significantly outperforms

all other branching rules ((4)–(8)). Various other rules have also been tried and found

not to improve upon setting (3), including some more accurate (but considerably more

time-intensive) estimates of the change in UB(h) for each alternative. We conjecture that

this simple branching rule fits best into our overall search approach because it allows

to examine each search node in the most efficient manner: the computational effort for

processing each node is very low. We should point out that activity ordering in increasing

or decreasing float values for (7) and (8) takes place only once at the beginning of the

B&B algorithm, so that the time spent on sorting is negligible.

Table 4 examines the influence of the dominance rule. ‘ND’ refers to setting (3) in

Table 3, ‘D’ adds the dominance rule to this setting. We observe that both for efficiency

and for efficacy, the dominance rule improves the performance of the algorithm (except

for a small dip for CPU time for n = 20). For the instances not solved to optimality, an

average improvement in the objective function of between 1.5% and 3% is achieved. In

the remainder of this text, when reference is made to ‘the B&B algorithm’, we always

mean the algorithm corresponding with setting (3) and with the dominance rule.

9.3 Time limit

Since the problem at hand is NP-hard, no optimal polynomial-time algorithms are likely

to exist so that we have to impose a time limit on our (exponential-time) B&B algorithm

because it may otherwise take an inordinately long amount of time before terminating,

21

time limit opt (/60) nodes I(s(0), s(i)) I(s(i), s(1000))

0 0 0 0.00% +31.59%
1 20 62,240 +21.67% +30.50%
5 23 274,900 +23.61% +28.42%

20 28 996,001 +25.33% +25.39%
100 35 4,045,108 +27.70% +19.06%
250 38 8,958,914 +28.60% +17.83%

1000 41 31,498,214 +31.59% 0.00%

Table 5: Performance of the B&B algorithm with varying time limits (in seconds),
for n = 25. I(s(0), s(i)) is computed for the entire dataset, I(s(i), s(1000)) only for the
instances not solved to guaranteed optimality by setting (i).

especially for large scheduling instances.

Table 5 examines the performance of the B&B procedure for various time limits with

n = 25; s(i) is the output of the procedure run with time limit i. A time limit of zero

means that the actual branching procedure is never entered so that s(0) is the output

of Algorithm 1. When a time limit of 1000 seconds is imposed, 41 instances are solved

to guaranteed optimality; this number gradually increases with the time limit from zero

onwards. A running time of 1000 seconds allows to considerably improve the objective

function of a number of instances, even when compared with 100 and 250 seconds. This

result is a very strong indication that ‘sophisticated’ scheduling methods, such as our

B&B algorithm, are valuable.

10. Insights

In this section we run a number of experiments in order to derive managerial insights. We

find (Section 10.1) that adopting a simplistic schedule (e.g., doing all activities in series)

may result in negative eNPV at time 0 and abandonment of a project, while using a more

sophisticated scheduling approach such as our (truncated) B&B may result in a positive

eNPV and the project being pursued. The benefits of advanced scheduling procedures

will be significant especially for medium- to high-risk projects. Another valuable insight

(discussed in Sections 10.1 and 10.4) is the fact that CPM-based schedules are good

when the probability of failure is small and when the decision-maker is risk-seeking;

longer schedules (with less parallel activities) tend to be better when the probabilities of

failure are significant or when the decision-makers are risk-averse. These limits to the

benefits of parallelization are also considered in Section 10.2. The non-intuitive behavior

22

of the optimal schedule length as a function of the discount rate is treated in Section

10.3.

10.1 Benefits of advanced scheduling procedures

Table 6 presents results of the B&B algorithm for the dataset n = 25 (again with a

two-minute time limit). The table contains a column ‘uncertainty’, in which we account

for different levels of technical risk: ‘medium’ uncertainty refers to the situation where

each activity’s PTS is in interval [80%; 100%], which was the case in Section 9. ‘high’

and ‘low’ uncertainty relates to success probabilities within [60%; 100%] and [95%; 100%],

respectively. The length λ(s) of a schedule s is defined to be sn − s0; the ‘length ratio’

in Table 6 is zero if the length of the best-found schedule equals the critical-path length

(remember that φ(A) is the CPM-based late-start schedule). EC is the complete order

on N that is obtained at the end of Algorithm 1.

We observe that, when the risk level of the project is relatively low, the CPM schedule

performs quite well. Therefore, for low-risk projects the use of a simple CPM scheduling

scheme seems to be warranted. One might intuitively expect a similar good performance

for a serial schedule when project risks are high, but our results show that this is not

the case: although for high-risk projects a serial schedule typically performs better than

CPM, a further substantial improvement can be obtained by using the exact algorithm;

B&B also does significantly better than our ‘greedy’ heuristic (see the final column of

uncertainty opt length I(φ(A), sBB) I(φ(EC), sBB) I(s(0), sBB)
(/20) ratio

low 3 0.00% 0.17% 2318.00% 0.09%
OS = 0.25 medium 0 24.21% 69.00% 330.39% 30.35%

high 0 122.07% 99.89% 99.24% 97.23%

low 19 0.00% 0.09% 1662.17% 0.08%
OS = 0.50 medium 16 13.31% 57.56% 200.86% 38.99%

high 16 25.99% 99.90% 99.65% 99.51%

low 20 0.00% 0.02% 1552.52% 0.02%
OS = 0.75 medium 20 3.30% 48.34% 180.85% 15.80%

high 20 7.42% 99.38% 98.65% 98.04%

Table 6: Investigation of the influence of OS and the degree of uncertainty for n = 25.
‘length ratio’ refers to the average of ratio (λ(sBB)− λ(φ(A)))/λ(φ(A)), with sBB the
schedule produced by our B&B algorithm after two minutes of running time; s(0) is the
schedule used to produce the initial lower bound.

23

Table 6). We conclude that optimally scheduling R&D projects, i.e. obtaining an optimal

degree of parallelization, can result in a significantly higher project eNPV when compared

to the CPM or serial schedule, and these benefits of advanced scheduling procedures will

be significant especially for medium- to high-risk projects.

Even more important, perhaps, is the fact that the B&B algorithm is sometimes

able to produce a positive-eNPV schedule for a project where both the CPM and serial

approaches fail to do so. This would result in the project being cut from the portfolio

using simple scheduling, whereas it would be able to add value given an optimal schedule

to carry out the project. Dependent on the parameter settings (in particular on the risk

level and on the value of r), this was the case for up to five out of the 60 instances in

each dataset. Although the complexity of a project’s structure, as measured by OS, also

has an impact on the benefit of optimal scheduling, this effect is not as pronounced. Our

results suggest that these benefits are higher when OS is relatively low, i.e. when there

is more freedom in scheduling the activities: the number of ‘undecided’ activity pairs in

ν0 is higher for lower OS values. On a separate note, we observe (from the number of

guaranteed optimal solutions) that problem difficulty is inversely related to OS; this goes

hand in hand with the previous observation.

10.2 Limits to the benefits of parallelization

From Table 6 we can also observe that the schedule length λ(sBB) is often higher than

the critical-path length λ(φ(A)); the dependence on OS is important in this case. Al-

though the present value of the project payoff decreases with increasing λ(s) (at least for

positive eNPV), performing certain activities in series rather than in parallel will some-

times allow to decrease the expected development cost of a project, resulting in an overall

improvement in the project’s eNPV. An optimal project schedule will need to balance

information flows between activities against delays in final project payoff.

In line with the findings of Hoedemaker et al. (1999) but from a different perspective,

we find that there are limits to the benefits of parallelization in R&D projects. This is

especially so for highly uncertain environments: as randomness increases, good schedules

become increasingly longer. This observation should be contrasted with projects without

technical uncertainty (equivalent with the limit case where all pi = 1), for which the CPM

late-start schedule is optimal. Again we conclude that the use of ‘simple’ heuristics such

as CPM is recommendable only when the degree of variability in the environment is very

low: only in such cases, the added benefit of advanced scheduling procedures is marginal.

24

10.3 The influence of the discount rate

Intuitively, one would expect the incentive for parallelization to increase with increasing

cost associated with project delay. We examine this behavior by means of varying the

interest rate, representing the time value of money, for a constant project payoff.

Figure 5(a) contains the results for the example problem of Section 3: the graph

shows the optimal schedule length as a function of the interest rate. With zero discount

rate, the value of the project payoff is constant over time and the project schedule can

take full advantage of information flows: no activity with PTS < 1 will be in parallel

with other activities, which leads to maximum total length (this insight led to Theorem

(a) Schedule length versus interest rate for the example problem.
The schedules corresponding with r-values beyond the dot have neg-
ative eNPV.

(b) Schedule length versus interest rate for three more instances.

Figure 5: The influence of the discount rate on schedule length.

25

1). As the interest rate goes up, we observe a reduction in the optimal schedule length:

some activities are overlapped, forfeiting information flows for the sake of earlier project

completion (with positive eNPV). Interestingly, however, from a certain point onwards a

further increase in the interest rate induces an increase in the optimal project schedule

length. The reason for this phenomenon is that the magnitude of the present-value change

due to an incremental delay in a cash flow decreases as the interest rate becomes larger,

and this effect is more marked for cash flows that occur later in time. As a consequence,

cost savings early on in the project due to higher project duration may more than offset

the associated decrease in the present value of the project payoff. Subsequently, once

the objective function becomes negative (when r = 0.03195, indicated with a dot in the

graph), all activities are scheduled against the deadline and the benefits of information

exchange are again dominated by the discounting effect: schedule length decreases again.

Our observations are also illustrated by Figure 5(b), which shows the optimal schedule

length for different values of the interest rate for three arbitrary instances of the dataset

with n = 15: problems p15 1, p15 21 and p15 41 have OS = 0.25, 0.5 and 0.75, respec-

tively. The pattern observed above is more markedly present for lower OS, presumably

because this corresponds with the existence of more feasible solutions. As a comparison,

the order strength of the example project of Section 3 also equals 0.5 – but graph 5(a) is

based on a finer discretization of the values of r. The objective function becomes negative

for a value of r in [0.06; 0.065] for p15 1 and p15 21, and in [0.04; 0.045] for p15 41.

10.4 Impact of risk preferences

In order to examine the impact of risk preferences, we have performed a detailed analysis

of the example problem that was presented in Section 3: we have opted for an illustration

of risk preferences on one example project rather than on an entire dataset because, in

our approach to dealing with risk preferences, appropriate thresholds are set manually.

If Z(s) denotes the random variable representing the NPV of schedule s, then the pmf

of Z(s) is fs(z). We model downside-risk preferences in the following way: for a given

probability plim and a threshold T , the constraint is imposed that the probability that Z

is lower than T should not be higher than plim. In other words, a candidate schedule s is

acceptable only if ∫ T−ε

−∞
fs(z)dz ≤ plim,

for any ε > 0. In a similar way, we might implement a constraint on upside potential of

26

(a) Downside risk versus eNPV. The three curves associated with the first
ordinate ‘eNPV’ represent g(sD(plim, T)) for three probability limits plim

(which is written as ‘plim’); the threshold T is on the abscissa. The
second ordinate represents the length λ(sD(0, T)) of the optimal schedule
for plim = 0% and applies to the only increasing curve.

(b) Upside potential versus eNPV. The two curves represent g(sU (T)) and
λ(sU (T)), each with its own ordinate. The threshold T is on the abscissa.

Figure 6: Trade-off curves for downside risk and upside potential versus eNPV.

27

the form ∫ +∞

T

fs(z)dz ≥ plim,

but it can be seen that
∫ +∞

T

fs(z)dz =

{
qn if T ≤ z∗(s)
0 otherwise

with z∗(s) representing the NPV of s in case of project success (the only positive real-

ization of Z(s)), so that a value plim is not really useful in this case. We call sD(plim, T)

the schedule that optimizes g(s) subject to the downside-risk constraint represented by

plim and T , and similarly sU(T) the schedule with highest value g(s) subject to the

upside-potential requirement with parameter T that z∗(s) ≥ T .

Figure 6(a) illustrates the trade-off between downside-risk preferences and expected

return (the optimal eNPV without a risk constraint is £16.244 million). We observe

decreasing eNPV-values with tighter value-at-risk constraints. As explained, in the par-

ticular setting of RDPSP, constraints on upside potential offer less freedom to the decision

maker than down-risk preferences: positive cash flows are always obtained with proba-

bility qn. Figure 6(b) describes the trade-off between minimum NPV in case of project

success on the one hand, and expected NPV on the other hand.

Both graphs in Figure 6 were produced by invoking Algorithm 2 each time the B&B

procedure found a new incumbent, and by accepting only those schedules that comply

with the risk-preference constraint under consideration; the initial lower bound is not

used. In both graphs, when the threshold is set too high, no feasible schedule can be found

that meets the demands (which is where the curves end). Both graphs also depict the

evolution of the optimal schedule length as a function of the risk preferences. We observe

that a longer schedule (more activities in series) tends to be better if the decision maker

is more risk averse, and that scheduling more activities in parallel becomes preferable

when the decision maker is more risk seeking.

11. Summary and outlook on further research

In this article we have presented a model and algorithms for scheduling R&D projects

to maximize the expected net present value of a project when the activities have an in-

herent possibility of failure and when individual activity default causes overall project

failure. We have shown that this problem, referred to as the R&D-Project Schedul-

ing Problem or RDPSP, is NP-hard and have developed a branch-and-bound algorithm

28

that is able to produce optimal project schedules. As a side result, we have established

a complexity result for an open problem in single-machine scheduling (the discounted

weighted-completion-time objective with general precedence constraints).

We have observed that R&D project scheduling requires balancing early project com-

pletion with minimizing expected expenditures, and this balance is influenced by the

degree of randomness in the planning environment. The benefits of advanced scheduling

procedures turn out to be significant especially for medium- to high-risk projects. Other

insights include the fact that CPM-based schedules are good when the probability of

failure is small and when the decision-maker is risk-seeking; longer schedules (with less

parallel activities) tend to be better when the probabilities of failure are significant and

when the decision-makers are risk-averse.

The model we have presented and analyzed is rather stylized, and will not always be of

immediate use for decision support. Decision makers faced with planning R&D projects

in industry will often be confronted with resource constraints and duration uncertainty,

an observation that was also made by Schmidt and Grossmann (1996) and Jain and

Grossmann (1999). Further research is needed if optimal scheduling solutions are to be

developed for realistically-sized scheduling problems with such additional complications.

However, we are convinced that the insights and results provided in this paper can serve

as guidelines in this process.

Another practically-relevant generalization of RDPSP is to make project payoff a

function of the project completion time. The choice for a non-increasing function would be

appropriate for most innovative projects: the earlier a new product enters the market, the

longer it can benefit from a monopoly position and first-mover advantages, or the longer

it can exploit a patent. A further open option for model extension is correlated activity

success, an inherent characteristic of many R&D projects. Quantifying correlations may

be difficult, however. The model can also be altered to include alternative sets of activities

for which success is required for only one set, allowing to model the pursuit of alternative

technologies. Finally, decision makers may also desire to take into account that some

R&D activities can be performed in different ways, e.g. by allocating more or less money,

resulting in different success probabilities associated with these multiple activity execution

modes.

29

Appendix: proofs

Proof (Theorem 1): When r = 0, the objective function corresponding with feasible

extension E is qnC+
∑n−1

i=1 qi(E)ci, with qn independent of the information-flow decisions;

we also omit the argument to qi in this proof. Each optimal feasible extension minimizes
∑n−1

i=1 qi|ci|. Consider an optimal feasible extension E(0) that is not a complete order. If no

such relation exists, the theorem holds, otherwise, take an arbitrary activity k ∈ N that

is incomparable with at least one other element in N according to E(0). The expression

to be minimized can now be written as follows, in which Ē(0) is the set of unordered

activity pairs that are incomparable according to E(0):

n−1∑
i=1

qi|ci| = qk|ck|+
∑

(i,k)∈E(0)

qi|ci|+
∑

{i,k}∈Ē(0)

qi|ci|+
∑

(k,i)∈E(0)

qi|ci|.

If we extend E(0) to E(1) = E(0) ∪ {(k, i) : {k, i} ∈ Ē(0)}, the only term changing in

the right-hand side of the foregoing equation is the third (it is multiplied by pk). We

conclude that the objective-function value associated with E(1) is at least as good as the

value for E(0). Continuing in this way, we obtain a complete order E∗ after at most

(n− 2) iterations, whose objective-function value is at least as high as that of E(0). ¤

Proof (Theorem 2): We consider the following problem:

Problem Π

Instance: directed precedence graph G(V, F), non-negative integer job durations d′i and

non-negative integer weights wi for each i ∈ V .

Goal : find a single-machine schedule that is contiguous from time 0 for the jobs in V

such that the precedence constraints are respected and ΣjwjCj is maximized, with Cj

the completion time of job j.

Lenstra and Rinnooy Kan (1978) show that problem 1|prec|ΣwjCj (the single-machine

scheduling problem with general precedence constraints and weighted-completion-time

objective) is strongly NP-hard by means of a reduction from OPTIMAL LINEAR AR-

RANGEMENT. From this result, NP-hardness of the maximization of the weighted sum

of completion times ΣjwjCj, i.e. of problem Π, is immediate, as can be seen by reversing

the precedence constraints.

30

For an arbitrary instance of Π, we construct an instance of RDPSP, as follows. The

set of activities N = V ∪ {0, n}, with n = |V | + 1. We have non-positive activity cash

flows ci = −wi and durations di = 1, ∀i ∈ V . C = 0 and (i, n) ∈ A,∀i ∈ Nn; c0 = d0 = 0,

p0 = 1 and (0, i) ∈ A,∀i ∈ N0. For each activity i ∈ V , we set probability pi = (1−d′i/M)

with non-negative integer M ≥ d′max = maxi∈V {d′i} (further specification of M follows).

Let δ = |V | and r = 0, so that an optimal solution to RDPSP that does not correspond

with a complete order on N can be re-arranged in polynomial time into a complete order

with equal objective function (as outlined in the proof of Theorem 1). Consider such an

optimal complete order and let [i] represent the job from V in the i-th position. Since

s[1] = 0, the objective-function value of the thus-built RDPSP-instance equals

c[1] +
n−1∑
j=2

c[j]

j−1∏
i=1

p[i] = c[1] +
n−1∑
j=2

c[j]

j−1∏
i=1

(
1−

d′[i]
M

)
, (A1)

with
j−1∏
i=1

(
1−

d′[i]
M

)
= 1− 1

M

j−1∑

k=1

d′[k] +
1

M2

j−2∑

k=1

j−1∑

l=k+1

d′[k]d
′
[l] − . . .

so that the objective function (A1) becomes

n−1∑
j=1

cj − 1

M

n−1∑
j=2

c[j]

j−1∑

k=1

d′[k] +
n−1∑
j=2

c[j]

j−1∑
i=2

(−1

M

)i ∑

all sets K:|K|=i,
K⊆{1,2,...,j−1}

∏

k∈K

d′[k].

The first term in this expression is a constant. We want the impact of a change of a

single unit in quantity
∑|V |

j=2 c[j]

∑j−1
k=1 d′[k] (the weighted sum of the starting times in Π)

to be larger than the largest possible change in all remaining terms, so that any optimal

solution to the RDPSP-instance automatically optimizes this weighted sum. We impose

1

M
>

n−1∑
j=2

cmax

j−1∑
i=2

1

M i

∑

all sets K:|K|=i,
K⊆{1,2,...,j−1}

∏

k∈K

d′max, (A2)

with cmax = maxi∈V {|ci|}. The right-hand side of Eq. (A2) is smaller than or equal to

n−1∑
j=2

cmax

j−1∑
i=2

(
d′max

M

)i (
j − 1

i

)

and this expression in turn is strictly smaller than

cmax

(
d′max

M

)2

2n−1

31

since d′max ≤ M ,
∑j−1

i=2

(
j−1

i

)
< 2j−1 and

∑n−1
j=2 2j−1 < 2n−1. This leads us to the conclusion

that Eq. (A2) holds when

M = cmaxd
′2
max2

n−1.

For this M -value, we have shown that any job sequence maximizing Eq. (A1) also max-

imizes the weighted sum of completion times in Π minus constant
∑

i∈V wid
′
i. This

description establishes a polynomial-time transformation from Π to RDPSP. Since this

proof of intractability of RDPSP clearly depends on the fact that large (exponential)

input numbers are allowed, we can only conclude NP-hardness in the ordinary sense. ¤

Proof (Lemma 1): We use Γ to refer to the problem under study; Cj again represents

the completion time of job j. Consider an instance of Γ for set of activities V to be

scheduled with weights wi and durations d′i, i ∈ V . Knowing that

e−rCj = 1− rCj + (rCj)
2/2− (rCj)

3/3! + (rCj)
4/4!− . . . ,

we see that

∑
j∈V

wj(1− e−rCj) = r
∑
j∈V

wjCj +
∑
j∈V

wj

(
−(rCj)

2

2
+

(rCj)
3

3!
− . . .

)
. (A3)

We examine under which conditions the effect of the change of a single unit in the weighted

sum of completion times (the first term in the right-hand side of (A3)) is larger than the

largest possible joint effect of all remaining terms. This is true when

r > wmax

∑
j∈V

(
+

(
rCj

2

)2

+

(
rCj

3!

)3

+ . . .

)

with wmax = maxj∈V {wj}, which is certainly true under the stronger condition

r > wmax|V |
(
(rT)2 + (rT)3 + . . .

)
,

where T =
∑

j∈V d′j. If we impose rT < 1, this is equivalent with

r > wmax|V |
(
(rT)2 / (1− rT)

)

or (if r > 0)

r <
(
wmax|V |T 2 + T

)−1
.

The foregoing provides all the necessary elements for the construction of a polynomial-

time reduction from the strongly NP-hard problem 1|prec|ΣwjCj to Γ, and the maximum

32

number in the resulting instance of Γ is polynomially bounded such that strong NP-

hardness of Γ is established. 1|prec|ΣwjCj remains strongly NP-hard in case of unit

durations (Lenstra and Rinnooy Kan, 1978), which concludes the proof of the lemma. ¤

Proof (Theorem 3): The proof of Lemma 1 is easily adapted to show that single-

machine scheduling with general precedence constraints and discounted weighted-starting-

time objective (1|prec|Σwj(1− e−rsj) in the standard three-field notation), with the ob-

jective to be maximized, is also strongly NP-hard. The result is then straightforward. ¤

Proof (Lemma 2): All intermediate activities are started as late as possible. The only

reason why an activity would not end exactly at the start of its earliest starting successor

in Eh, is because it needs to be in parallel with some other activity. If we iteratively

remove all parallelity constraints for this activity and shift it later in time until it ends

exactly at its earliest successor starting time, there is no effect on the contribution to

the objective function of any of the other activities. On the other hand, the (negative)

contribution of the activity itself to the objective function goes down, first of all because

of the discounting effect, and second also because additional activities may now end before

or at the starting time of the activity itself, which would allow a further reduction of its

expected NPV via extra information flows. ¤

References

Abernathy, W.J., R.S. Rosenbloom. 1969. Parallel strategies in development projects.

Management Science 15 B486–B505.

Adlakha, V.G., V.G. Kulkarni. 1989. A classified bibliography of research on stochastic

PERT networks: 1966-1987. INFOR 27(3) 272–296.

Bard, J.F. 1985. Parallel funding of R&D tasks with probabilistic outcomes. Manage-

ment Science 31(7) 814–828.

Bartusch, M., R.H. Möhring, F.J. Radermacher. 1988. Scheduling project networks with

resource constraints and time windows. Annals of Operations Research 16 201–240.

Blau, G., B. Mehta, S. Bose, J. Pekny, G. Sinclair, K. Keunker, P. Bunch. 2000. Risk

management in the development of new products in highly regulated industries. Com-

puters and Chemical Engineering 24 659–664.

33

Boros, E., T. Ünlüyurt. 1999. Diagnosing double regular systems. Annals of Mathematics

and Artificial Intelligence 26 171–191.

Butterworth, R. 1972. Some reliability fault-testing models. Operations Research 20

335–343.

Chiu, S.Y., L.A. Cox Jr., X. Sun. 1999. Optimal sequential inspections of reliability sys-

tems subject to parallel-chain precedence constraints. Discrete Applied Mathematics

96–97 327–336.

Crama, P., B. De Reyck, Z. Degraeve, W. Chong. 2006. R&D project valuation and

licensing negotiations at Phytopharm plc. Interfaces, forthcoming.

Dahan, E. 1998. Reducing technical uncertainty in product and process development

through parallel design of prototypes. Working Paper, Graduate School of Business,

Stanford University.

Demeulemeester, E., M. Vanhoucke, W. Herroelen. 2003. A random generator for

activity-on-the-node networks. Journal of Scheduling 6 13–34.

Denardo, E.V., U.G. Rothblum, L. Van der Heyden. 2004. Index policies for stochastic

search in a forest with an application to R&D project management. Mathematics of

Operations Research 29 162–181.

DiMasi, J.A. 2001. Risks in new drug development: approval success rates for investiga-

tional drugs. Clinical Pharmacology and Therapeutics 69 297–307.

Ding, M., J. Eliashberg. 2002. Structuring the new product development pipeline. Man-

agement Science 48 343–363.

Eppinger, S.D., D.E. Whitney, R.P. Smith, D.A. Gebala. 1994. A model-based method

for organizing tasks in product development. Research in Engineering Design 6 1–13.

Gassmann, O., G. Reepmeyer, M. von Zedtwitz. 2004. Leading Pharmaceutical Innova-

tion. Trends and Drivers for Growth in the Pharmaceutical Industry. Springer-Verlag,

Berlin Heidelberg New York.

Granot, D., D. Zuckerman. 1991. Optimal sequencing and resource allocation in research

and development projects. Management Science 37 140–156.

Hagstrom, J.N. 1988. Computational complexity of PERT problems. Networks 18

139–147.

Herroelen, W.S., P. Van Dommelen, E.L. Demeulemeester. 1997. Project network models

34

with discounted cash flows: a guided tour through recent developments. European

Journal of Operational Research 100 97–121.

Herroelen, W.S., R. Leus. 2005. Project scheduling under uncertainty, survey and re-

search potentials. European Journal of Operational Research 165(2) 289–306.

Hill, A.V. 2002. The Encyclopedia of Operations Management Terms. Available on-line

as: http://www.poms.org/POMSWebsite/EducationResources/omencyclopedia.pdf.

Hoedemaker, G.M., J.D. Blackburn, L.N. Van Wassenhove. 1999. Limits to concurrency.

Decision Sciences 30(1) 1–18.

Jain, V., I.E. Grossmann. 1999. Resource-constrained scheduling of tests in new product

development. Industrial and Engineering Chemistry Research 38 3013–3026.

Krishnan, V., S. Bhattacharya. 2002. Technology selection and commitment in new

product development: the role of uncertainty and design flexibility. Management

Science 48 313–327.

Krishnan, V., S.D. Eppinger, D.E. Whitney. 1997. A model-based framework to overlap

product development activities. Management Science 43(4) 437–451.

Lawler, E.L. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart

and Winston, New York.

Lenstra, J.K., A.H.G. Rinnooy Kan. 1978. Complexity of scheduling under precedence

constraints. Operations Research 26 22–35.

Lockett, A.G., A.E. Gear. 1973. Representation and analysis of multi-stage problems in

R&D. Management Science 19(8) 947–960.

Mastor, A.A. 1970. An experimental and comparative evaluation of production line

balancing techniques. Management Science 16 728–746.

Mitten, L.G. 1960. An analytic solution to the least cost testing sequence problem.

Journal of Industrial Engineering 11 17–17.

Möhring, R.H. 2001. Scheduling under uncertainty: bounding the makespan distribution.

In: Alt, H. (ed.). Computational Discrete Mathematics, Advanced Lectures. Lecture

Notes in Computer Science 2122, Springer.

Monma, C.L., J.B. Sidney. 1979. Sequencing with series-parallel precedence constraints.

Mathematics of Operations Research 4 215–224.

Neumann, K., C. Schwindt, J. Zimmermann. 2003. Project Scheduling with Time Win-

35

dows and Scarce Resources: Temporal and Resource-Constrained Project Scheduling

with Regular and Nonregular Objective Functions. Springer-Verlag, 2nd edition.

Padman, R., D.E. Smith-Daniels, V.L. Smith-Daniels. 1997. Heuristic scheduling of

resource-constrained projects with cash flows. Naval Research Logistics 44(4) 365–

381.

Parker, R., R. Rardin. 1988. Discrete Optimization. Academic Press.

Pinedo, M. 2002. Scheduling. Theory, Algorithms, and Systems. Prentice-Hall, Inc.,

Upper Saddle River, NJ.

Schmidt, C.W., I.E. Grossmann. 1996. Optimization models for the scheduling of testing

tasks in new product development. Industrial and Engineering Chemistry Research

35 3498–3510.

Shah, N. 2004. Pharmaceutical supply chains: key issues and strategies for optimisation.

Computers and Chemical Engineering 28 929–941.

Ünlüyurt, T. 2004. Sequential testing of complex systems: a review. Discrete Applied

Mathematics 142 189–205.

Weitzman, M.L. 1979. Optimal search for the best alternative. Econometrica 47 641–

654.

Zemel, D., I. David, A. Mehrez. 2001. On conducting simultaneous versus sequential en-

gineering activities in risky R&D. International Transactions in Operational Research

8 585–601.

Zipfel, A. 2003. Modeling the probability-cost-profitability architecture of portfolio man-

agement in the pharmaceutical industry. Drug Information Journal 37 185–205.

36

