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Abstract

Two regression coefficients often used in Finance, the Scholes-Williams (1977) quasi-multiperiod
”thin-trading” beta and the Hansen-Hodrick (1980) overlapping-periods regression coefficient,
can both be written as instrumental-variables estimators. Competitors are Dimson’s beta and
the Hansen-Hodrick original OLS beta. We check the performance of all these estimators and
the validity of the t-tests in small and medium samples, in and outside their stated assumptions,
and we report their performances in a hedge-fund style portfolio-management application. In
all experiments as well as in the real-data estimates, less bias comes at the cost of a higher
standard error. Our hedge-portfolio experiment shows that the safest procedure even is to
simply match by size and industry; any estimation just adds noise. There is a clear relation
between portfolio variance and the variance of the beta estimator used in market-neutralizing
the portfolio, dwarfing the beneficial effect of bias.

Keywords: Market Model, thin trading.
JEL-codes: C13, C22, G11.



Thin-Trading Effects in Beta:
Bias v. Estimation Error

Introduction

The ”beta” coefficient of the market model—the slope in the regression of an asset’s return

onto the market return—is crucial in tests or applications of the CAPM or in event studies

since Fama, Fisher, Jensen and Roll (1973). The standard, in much of the literature, is an

OLS beta, which assumes IID idiosyncratic returns. If, in addition, also market returns are IID

and if n-period returns are sums of n one-period returns—a feature that strictly holds only for

log-change returns—the population beta is also independent of the observation interval used in

the returns.1 In the rest of the paper we refer to the model with IID and time-additive returns

as the standard model.

This standard model has also been at the basis of beta variants that were proposed to

handle measurement errors in returns, caused by thin trading, bid-ask bounce, differential

reaction speeds to news, and so on. Its no-autocorrelation assumption echoes the stylized view

of the early efficient-markets literature as popularised by e.g. Fama (1965). True, observed

returns do not fully meet these early efficient-markets assumptions, but the violations are not

massive, and many apparent infractions are potentially explained by thin trading.2 The main

effect of thin trading is that the purely contemporaneous correlation between asset and market

return seems to get smeared out forward and backward when reported returns are used instead

of true returns. The measured return on stock j becomes linked to the past L true market

returns because j’s period-t return may contain its bottled-up true returns over the past L

1Under these assumptions, indeed, also the total stock returns are IID whatever the holding period, and any
correlation between asset return and market return is purely contemporaneous; as a result, the covariance in
the beta’s numerator and the variance in its denominator simply go up by the same multiple, the number of
periods, leaving the ratio unaffected.

2For instance, autocorrelation in market-index returns is exactly what one would expect when not all stocks
get quoted every day: the day t+ 1 reported return for stocks that did not trade on day t contains the stock’s
true day-t return and, therefore, introduces a spurious echo of the day-t market evolution into the reported index
return for the next day. For the same reason, actively traded stocks seem to lead the market return by one day,
and reported returns on thinly traded stock seem to be related to the once-lagged market. The residual for a
thinly traded stock is negatively autocorrelated, when the stock seems to belatedly catch up with the market.
And, lastly, the market-model residuals for actively traded stocks are positively autocorrelated, if only because
the cross-sectional average autocorrelation is positive.
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periods, which are logically linked to the past L true market returns. But also the leading

market returns must be included, because the true market return for a period t can be smeared

out over all periods t, ..., t+ L if the market index contains thinly-traded stocks.

The standard model is adopted by Scholes and Williams (1977), whose beta estimator

accounts for non-trading that lasts at most one period. Fowler and Rorke (1983) generalize

this to longer no-trading intervals. The Scholes-Williams-Fowler-Rorke (SWFR) solution is an

instrumental-variable estimator with, as the instrument, a moving sum of the contemporaneous

market return plus L leading and L lagging market returns, L being the longest period of non-

trading.

The SWFR estimator has been used also in different contexts. Apte, Kane and Sercu (1993)

consider a setting where Purchasing Power Parity holds for traded-goods prices and where CPI

inflation sluggishly reacts to traded-goods prices. They show that a SWFR-like estimator is

needed to extract the full impact of inflation on the exchange rate. In optimal-hedge problems,

the variance-minimizing hedge ratio is likewise found by regressing price changes of the exposed

asset on price changes of the hedge instrument (Johnson, 1960, and Stein, 1961). Sercu and

Wu (2000) obtain good results from the SWFR estimator when some currencies partly follow

others with a lag, as was the case in the Exchange Rate Mechanism.

There are two or three alternative estimators that are not strictly consistent but still reduce

the thin-trading bias and might be useful in reducing other errors-in-data biases too. Dimson

(1979) proposes a multiple regression with leading and lagging market returns as additional

regressors. Dimson’s beta is the sum of all these multiple coefficients. Another alternative

is to measure returns at lower frequencies, using e.g. weekly holding-period returns rather

than daily ones. The advantage of working with returns from longer holding periods is that

while the amount of noise generated by thin trading is not affected, the true returns become

larger, implying a better signal-to-noise ratio (see e.g. Stoll and Whaley, 1990). Similar

possible motivators for lower observation frequencies are data problems like bid-ask bounce,

reporting lags, or differential adjustment speeds due to differences in trading costs or liquidity:

with longer holding periods, the signal-to-noise ratio improves. The cost is that extracting

non-overlapping longer holding periods from a data base substantially reduces the number of

observations. Hansen and Hodrick (1980), discussing a different econometric issue, point out

that the use of overlapping multi-period returns mitigates the problem. They further show

that, in such overlapping-return regressions, GLS is not the way to deal with the induced auto-

correlation in the errors; OLS, in contrast, remains unbiased (in the absence of data problems,
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that is), and an asymptotic standard error for the OLS estimator is provided that takes into

account the serial autocorrelation.

Most of the above literature thus far has focused on bias in the beta, but the issue of

standard error can be important too. Famously, Brown and Warner’s (1980) Monte-Carlo

experiment on event studies shows that using OLS-estimated betas introduces more noise than

the errors caused if all betas are set equal to unity, without any estimation. Thus, more in

general, it is possible that a biased estimator is still more powerful than an unbiased one.

Accordingly, in this note we report Monte-Carlo results on the comparative performance of

(i) one-day OLS, (ii) Scholes-Williams-Fowler-Rorke (SWFR), (iii) Dimson multiple OLS, (iv)

Hansen and Hodrick’s overlapping-return regressions (HH), and (v) an instrumental-variable

variant of the overlapping-return regression. We rate the contending estimators not just on the

basis of bias in the coefficient—there is little news on that front—but also observed estimator

standard deviation and reliability of the theoretical large-sample standard deviation. Besides

the simulation we also set up a real-world performance race. Specifically, we consider the

problem of a portfolio manager who has a target beta—zero, in our application, like for a

hedge fund—and considers using empirical betas to try and keep her portfolio market neutral.

For such a manager, any non-zero true market sensitivity is equally bad, whether it comes from

estimation error or from bias; variability of returns over time induced by estimation errors in

the hedge ratios is as undesirable as otherwise unhedged risk. We check which estimator does

best, and we also let the simple equal-beta model enter the race: while almost surely biased

to some extent, it does have zero estimation error. Lastly, we check to what extent estimation

error is diversifiable, a criterion that is not part of the regular statistician’s toolbox.

From the Monte-Carlo experiments we conclude that smaller bias always comes at the

cost of imprecision. OLS, which is the L = 0 version of all variants, has maximal bias but

unparallelled standard error. Within each family of estimators, widening the window L steadily

reduces bias but always at the cost of precision. The same holds across families. The ordering

in terms of bias, from better to worst, is SWFR, Dimson, HHOLS, HHIV, and standard OLS, but

in terms of standard error the ordering is basically reversed.

The experiments also show that in all cases the theoretical standard error is a reliable guide

to the actual one, on average, even in mid-sized samples and with departures from the standard

model. OLS is quite consistently good at this, in the sense that the standard deviation, across

samples, of the computed standard errors is smallest. SWFR does worst in this respect, and the

Dimson and overlapping-return models’ performance is in-between. In short, noisier estimators
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also have noisier estimated standard errors.

All this bears on Monte-Carlo sampling. The real-world results similarly confirm that,

within and across estimator families, bias disappears only at the cost of precision. This is found

directly in the betas, and confirmed by variances of portfolios that, in hedge-fund style, are

market-neutralized using beta estimates. The overwhelming winner of the portfolio experiment

however is the equal-beta model: just match by industry and size, and assume without any

estimation that matched stocks have identical market sensitivities. There may be bias here,

but the standard error equals an unparalleled zero, and this seems to be the more important

aspect.

1 The contenders

The familiar market-model regression is

Rj,t = α+ βjRm,t + εj,t, (1)

where Rj,t is the simple percentage change, cum dividend, in the j-th stock price over period

t and Rm,t is the return on the market portfolio. The stylized assumptions are that the only

correlation among these variables is the contemporaneous one between Rj,t and Rm,t, without

any auto- or cross-correlation anywhere.

1.1 Scholes-Williams-Fowler-Rorke (SWFR)

As illustrated in e.g. Dimson (1979), thin trading induces bias in the OLS beta because it

leads to errors in both the regressand and in the regressor.3 The interactions of these errors

mean that for active stocks the beta is biased upward, while for thinly traded stocks the bias is

negative, as Scholes and Williams show. Assuming that the duration of inaction never exceeds

one period, they then derive a consistent instrumental-variable estimator for the market-model

beta, where the instrument is a moving sum of the market returns for days t− 1, t, and t+ 1.

3On the regressand side, a stock that is not traded on day t reports a return of zero, apparently without
relation with the market’s movement. Actually, the unobserved true day-t return shows up on day t+1 (as part
of the return reported for that day), but again seemingly without relation with the true day-t market return.
Thus, at least two returns are mis-measured. On the regressor side, thin trading likewise induces two types of
error, each induced by the errors in the regressands. First, as yesterday’s non-traded stocks catch up today,
an echo of yesterday’s market return is added into today’s reported market return; this error is assumed to be
uncorrelated with today’s true return. Second, due to non-trading today, part of today’s true market return
is missing, an error that is negatively correlated with the true market return. It will also be obvious that the
thin-trading error in the regressand is positively correlated with the one in the regressor.
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Fowler and Rorke (1983) generalize this solution to longer no-trading intervals by extending

the moving-sum window. So Scholes and Williams (1977) and Fowler and Rorke (1983) show

that, when reported prices may really date from up to L periods ago, the downward bias is

avoided if beta is estimated as

βSW
j,H =

cov(Rj , ZSW
H )

cov(Rm, ZSW
H )

with ZSW
H,t =

L∑
l=−L

Rm,t+l. (2)

The reason why this IV solution works here is that (i) any auto- and cross-correlations

present in actually observed returns are, by assumption, induced by thin trading, and (ii) the

(2L + 1)-period moving sum of market returns does pick up all correlations induced by thin

trading. Since the mis-timing of the true day-t return does not affect the moving sum of market

returns, the instrument is uncorrelated with the error in the reported market return, the key

requirement for a proper instrument.

The consistency of the SWFR estimator is not the issue, so our Monte-Carlo tests are

intended as checks for small-sample unbiasedness and especially for the validity of the standard

error, whose consistent estimator is:4

asymptotic stdev(βSW
j,H) =

√√√√ σ2
ε (1 + 2

∑L
l=1,L ρl,jρl,Z)∑N−L

1+L (Rm,t −Rm)2R2
RM ,Z

(3)

where σ2
ε is the residual variance, ρl,X the lth-order autocorrelation of the returns from asset

X = {j,m} and R2
RM ,Z the squared correlation between the market return and the instrument.

1.2 The Hansen-Hodrick overlapping-observation regression

Under standard assumptions, in the absence of thin trading the true one- and multi-period

betas are the same. For reasons outlined in the introduction, an overlapping-return regression

may be preferred, (
H−1∑
l=0

Rj,t+l

)
= α+ βHH

j,H

(
H−1∑
l=0

Rm,t+l

)
+ εj,t,H . (4)

The overlapping returns obviously generate autocorrelation in the error terms. Hansen and

Hodrick (1980) reject GLS as biased, in the case of overlapping returns, and propose OLS with

an autocorrelation-consistent standard deviation which is consistently estimated as

Θ = (X ′X)−1X ′Ω−1X(X ′X)−1, (5)

4The autocorrelations are new relative to the textbook IV case. See Scholes and Williams for the derivations
for L = 1. The generalisation to L ≥ 2 follows easily.
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where X is the N × 2 matrix of observations {1, Rm,t} and Ω is a band matrix with the

estimated variances and autocovariances of the regression errors u:

Ω = σ2
ε



1 ρ1 ... ρH−1 0 ... ... ... 0
ρ1 1 ρ1 ... ρH−1 0 ... ... 0
... ρ1 1 ρ1 ... ρH−1 0 ... 0

ρH−1 ... ρ1 1 ρ1 ... ρH−1 0 0
0 0
0 0 ρH−1 ... ρ1 1 ρ1 ... ρH−1

0 ... 0 ρH−1 ... ρ1 1 ρ1 ...
0 ... ... 0 ρH−1 ... ρ1 1 ρ1

0 ... ... ... 0 ρH−1 ... ρ1 1


. (6)

1.3 An Instrumental-Variable Overlapping-Return Estimator

We easily derive a consistent IV estimator of the overlapping-return model. We start from

the explicit objective that we want to estimate the beta over a horizon of H periods, and

accordingly write the H-period price change as the sum of H one-period changes. Next, we

use equalities like cov(X(+1), Y (+3)) = cov(X,Y (+2)); and lastly we regroup and interpret

the estimator as an IV one:

βIV
j,H =

cov(Rj +Rj(+1) + ...+Rj(+H − 1), Rm +Rm(+1) + ...Rm(+H − 1))
var(Rm +Rm(+1) + ...Rm(+H − 1))

=
∑H−1
k=0

∑H−1
l=0 cov(Rj(+k), Rm(+l))∑H−1

k=0

∑H−1
l=0 cov(Rm(+k), Rm(+l))

=
∑H−1
k=−H+1(H − |k|)cov(Rj , Rm(+k))∑H−1
k=−H+1(H − |k|)cov(Rj , Rm(+k))

=
cov(Rj , ZIV

H )
cov(Rm, ZIV

H ))
, (7)

where the instrument is a pyramid-weighted moving sum rather than the SWFR equally weighted

one:

ZIV
H =

H−1∑
k=−H+1

(H − |k|)Rm(+k). (8)

The asymptotic standard error is the same as for SWFR.

In the next section we compare the performance of these contenders as far as bias is

concerned, true standard error, and reliability of the standard error produced by standard

software. This last issue is especially relevant when the method is applied to data where the

standard model does not hold.
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2 Simulation results

2.1 Monte Carlo results for the standard model

Each complete simulation contains 10,000 experiments, and one such experiment consists of

the following steps. First, an IID market factor f is generated with zero mean and constant

volatility equal to 0.01 per diem, i.e. about 0.15 per annum (p.a.). This market factor has a

fat-tailed Student’s distribution with seven df, which produces a realistic level for the kurtosis

and tail coefficient (Bauwens et al., 2006). From this, returns for 2,000 assets are generated,

all with a unit beta and idiosyncratic noise with 1.5 times the market standard deviation,

generating the typical p.a volatility of about 0.30 for an individual stock. There are three

classes of trading thinness: 1000 of the stocks trade every day, 500 trade with a probability of

0.9, and 500 trade with probability 0.75. If a stock is not traded, the recorded return is zero;

simultaneously, its true return is added to a buffer until the stock does trade, at which time

the cumulative return is recorded. Starting from 2000 initial value weights taken from NYSE

in 1992, we then update the value weights. The initial market caps are ranked in descending

order, so that large stocks tend to be active ones, and the smallest firms most prone to missing

prices. The market return is computed as a value-weighted average of asset returns. For the

market-model regressions we generate 250 such “daily” observations for all 2000 stocks, and

pick three stock files out of these, one per thinness class, to run the regressions. We then

start a new experiment, until we have gone through 10,000 of them. For SWFR and Dimson,

L is set at 1, 2, 3, 4 and 19 each side,5 while for the overlapping-observation regressions H

is likewise set at 2, 3, 4, 5 (one week) and 20 (monthly holding periods). For each regression

we compute the slopes and theoretical asymptotic standard error. For each set of 10,000 such

computations (one per type of regression and thinness class) we then produce the mean and

standard deviation. Table 1 summarizes the results.

Predictably, OLS does worst in terms of bias, with beta approximating unity minus the

probability of no trade. There is no evidence of any upward bias for the active stocks. Scholes

and Williams demonstrate the theoretical possibility: since the weighted average beta estimate

tautologically equals unity, downward bias for sleepy stocks must come with upward bias for

active stocks. The fact that our unweighted average beta is below unity, in this table, is still

5The chance that a stock with no-trade probabilty 0.25 would not trade for 3 (4) periods is 0.7520.253 = 0.0088
(0.7520.254 = 0.0022), so L = 3 looks reasonable. We add 19 for comparability with the overlapping-return
techniques, where monthly returns (approximately 20 trading days) are quite popular.
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Table 1: Simulation results: base case

Mean β̂ mean SE (β̂)s stdev across β̂ stdev of SE (β̂)s
prob no trade .00 .10 .25 .00 .10 .25 .00 .10 .25 .00 .10 .25

One-period regression

OLS .99 .89 .74 .10 .10 .10 .09 .11 .12 .008 .008 .009

SWFR ±1 .99 .98 .92 .17 .18 .18 .17 .17 .18 .020 .021 .023
SWFR ±2 .99 .98 .97 .22 .23 .25 .22 .23 .23 .036 .037 .040
SWFR ±3 .99 .99 .98 .27 .28 .30 .27 .28 .28 .055 .058 .062
SWFR ±4 .99 .98 .98 .32 .33 .35 .32 .32 .32 .078 .082 .087

Dimson±1 .99 .98 .92 .14 .14 .15 .14 .14 .15 .012 .012 .013
Dimson±2 .99 .98 .97 .17 .17 .18 .17 .17 .17 .016 .016 .017
Dimson±3 .99 .99 .98 .19 .20 .21 .19 .20 .20 .019 .020 .021
Dimson±4 .98 .99 .98 .22 .23 .24 .22 .22 .22 .023 .024 .026
Dimson±19 .99 .99 .99 .51 .53 .55 .52 .51 .52 .100 .105 .110

H-period overlapping-returns regression

IV 2 .99 .93 .83 .12 .12 .13 .12 .12 .13 .010 .010 .011
IV 3 .99 .95 .87 .14 .15 .15 .14 .15 .15 .012 .013 .014
IV 4 .99 .96 .90 .16 .17 .18 .16 .17 .17 .015 .016 .017
IV 5 .99 .96 .92 .18 .19 .20 .18 .18 .18 .018 .018 .020
IV 20 .99 .98 .96 .41 .42 .44 .39 .40 .41 .074 .077 .084

OLSHH 2 .99 .95 .88 .13 .13 .13 .14 .14 .15 .014 .014 .014
OLSHH 3 .99 .96 .90 .15 .15 .16 .16 .16 .16 .018 .018 .019
OLSHH 4 .99 .96 .92 .17 .17 .17 .18 .18 .18 .023 .023 .023
OLSHH 5 .99 .97 .93 .19 .19 .19 .20 .20 .20 .027 .027 .027
OLSHH 20 .99 .98 .96 .33 .33 .33 .38 .39 .39 .089 .091 .089

Key. 250 ”daily” returns for 2000 stocks are generated by a unit-beta market model with a thick-tailed IID
market factor with stdev 0.01/day plus idiosyncratic noise (R2=0.3). 1000 of the 2000 stocks trade daily, 500
nine days out of ten, and 500 three days out of four. On no-trade days a zero return is reported, and the invisible
price change is cumulated until the first trade. Value-weighted market returns are computed from these 2000
returns, and three individual-stock return series are stored, one for each thinness class. This experiment is
repeated 10,000 times. OLS uses daily data. SWFR uses as the instrument a moving-window sum of market
returns with ±L leads/lags. Dimson uses a multiple regresion with ±L leading/lagging market returns as
additional regressors; the beta is the sum of these 2L + 1 coefficients. The overlapping-return IV regression
uses H − 1 proximity-weighted leading and lagging market returns as the instrument. OLSHH runs OLS with
autocorrelation-adjusted SE’s. The IVSE’s also account for thin-trading-induced autocorrelation in regressand
and regressor.

compatible with a value-weighted average beta equal to unity because of the positive covariance

between weights and estimated beta:

1 =
∑
j

wj β̂j = (
∑
j

wj)β +
∑
j

(wj − w)(β̂j − β) = β +
∑
j

(wj − w)(β̂j − β) > β. (9)

Equally predictably, SWFR does a good job in eliminating even severe thin-trading biases like

p = .25 with modest values like L = 3. But Dimson’s beta does as well in terms of bias. For

both estimators, the reduction in bias upon increasing the window size 2L + 1 comes quite

rapidly: with no-trading probabilities not exceeding 0.25, there seems to be no point in going

beyond L = 4. The overlapping-return regressions, whether OLS or IV, are good at handling
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Table 2: Simulation results: autocorrelation in Rm

Mean β̂ mean SE (β̂)s stdev across β̂ stdev of SE (β̂)s
prob no trade .00 .10 .25 .00 .10 .25 .00 .10 .25 .00 .10 .25

One-period regression

OLS .99 .90 .75 .10 .10 .10 .10 .11 .12 .008 .008 .009

SWFR ±1 .99 .98 .93 .16 .17 .18 .16 .16 .17 .020 .021 .022
SWFR ±2 .99 .99 .98 .20 .21 .22 .20 .20 .21 .032 .033 .035
SWFR ±3 .99 .99 .99 .23 .24 .26 .23 .23 .24 .043 .045 .049
SWFR ±4 .99 .99 .99 .26 .27 .28 .26 .26 .26 .055 .058 .061

Dimson±1 .99 .98 .93 .13 .14 .14 .13 .13 .14 .012 .013 .013
Dimson±2 .99 .99 .97 .16 .17 .17 .16 .16 .17 .016 .017 .018
Dimson±3 .99 .99 .98 .18 .19 .20 .18 .18 .19 .021 .021 .022
Dimson±4 .99 .99 .98 .20 .21 .21 .20 .20 .21 .025 .026 .027
Dimson±19 1.00 .99 .99 .35 .36 .38 .35 .35 .35 .084 .087 .090

H-period overlapping-returns regression

IV 2 .99 .94 .85 .12 .12 .13 .12 .12 .13 .010 .011 .011
IV 3 .99 .96 .89 .14 .14 .15 .14 .14 .14 .013 .013 .014
IV 4 .99 .96 .92 .16 .16 .17 .15 .16 .16 .016 .016 .017
IV 5 .99 .97 .93 .17 .18 .19 .17 .17 .18 .019 .019 .021
IV 20 1.00 .99 .98 .32 .34 .35 .32 .32 .32 .072 .075 .078

OLSHH 2 .99 .96 .89 .12 .13 .13 .13 .14 .14 .014 .014 .014
OLSHH 3 .99 .96 .92 .14 .14 .15 .15 .15 .16 .019 .019 .019
OLSHH 4 .99 .97 .93 .16 .16 .16 .17 .17 .17 .023 .023 .023
OLSHH 5 .99 .97 .94 .17 .17 .17 .18 .18 .19 .027 .027 .027
OLSHH 20 1.00 .99 .98 .25 .25 .25 .30 .30 .30 .080 .080 .080

Key. There is a partial autocorrelation schedule in the market factor that starts at ρ1 = 0.04, and linearly falls
to zero at lag 15. The implied autocorrelation of monthly market factors is 0.16. Otherwise, the procedure is
like in Table 1.

moderate thin-trading like p = .10; but for the p = .25 stocks, convergence toward unity seems

to be slow: even monthly returns (H = 20) achieve only .97, on average.

Equally interesting are the standard deviations of the betas. There is a good connection

between the theoretical standard errors (SE) and the actual one computed from the cross-

section of betas. OLS is quite precise, despite the slight autocorrelation and heteroscedasticity

induced by thin trading. But for thinly-traded assets, autocorrelation and heteroscedasticity

also make the OLSSE’s underestimate the true error margins. SWFR betas are 1.5 to 3 times

noisier than OLS ones, a feature easily explained from the asymptotic formula (3). Specifically,

OLS is identical to IV with the regressor as instrument, so the main difference between the OLS

and IVSE’s comes from the factor R2 in the numerator of (3), which drops from 1 (OLS) to

about 1/3 (IV with L = 1) or 1/7 (IV with L = 3). These R2s, in turn, imply that the IV

asymptotic errors rise by a factor
√

3 = 1.7 for L = 1 and
√

7 = 2.6 for L = 3. The result is

that the SWFR estimator is actually the noisiest of the entire set. The reason why we show
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Table 3: Simulation results: crash added in Rm

Mean β̂ mean SE (β̂)s stdev across β̂ stdev of SE (β̂)s
prob no trade .00 .10 .25 .00 .10 .25 .00 .10 .25 .00 .10 .25

One-period regression

OLS 1.06 .97 .83 .10 .10 .11 .10 .12 .15 .015 .015 .015

SWFR ±1 1.00 .99 .96 .15 .16 .17 .15 .15 .17 .025 .026 .026
SWFR ±2 .99 .99 .99 .19 .20 .21 .19 .19 .20 .035 .036 .036
SWFR ±3 .99 .99 .99 .22 .23 .24 .22 .22 .23 .045 .046 .048
SWFR ±4 .99 .99 1.00 .24 .25 .27 .24 .24 .25 .055 .057 .059

Dimson ±1 1.00 .99 .96 .13 .14 .14 .13 .13 .15 .020 .020 .020
Dimson ±2 .99 .99 .99 .15 .16 .17 .15 .16 .16 .024 .025 .025
Dimson ±3 .99 .99 .99 .17 .18 .19 .17 .17 .18 .028 .029 .029
Dimson ±4 .99 .99 .99 .19 .20 .21 .19 .19 .20 .032 .033 .033
Dimson ±19 .1.00 1.00 .99 .37 .35 .37 .34 .34 .34 .085 .087 .090

H-period overlapping-returns regression

IV 2 1.03 .98 .90 .12 .12 .13 .12 .12 .14 .018 .018 .018
IV 3 1.02 .99 .93 .14 .14 .15 .13 .14 .15 .021 .021 .021
IV 4 1.01 .99 .95 .15 .16 .17 .15 .15 .16 .024 .024 .024
IV 5 1.01 .99 .96 .17 .17 .18 .16 .17 .17 .027 .027 .028
IV 20 1.00 .99 .99 .31 .32 .34 .30 .31 .31 .075 .077 .080

OLSHH 2 1.02 .99 .93 .12 .12 .13 .13 .14 .15 .020 .020 .020
OLSHH 3 1.01 .99 .95 .14 .14 .14 .15 .15 .16 .025 .025 .025
OLSHH 4 1.00 .99 .96 .15 .15 .16 .16 .16 .17 .029 .029 .029
OLSHH 4 1.00 .99 .97 .16 .17 .17 .18 .18 .18 .033 .033 .032
OLSHH 20 1.00 .99 .99 .24 .24 .24 .29 .29 .29 .080 .080 .079

Key. With probability 0.001 per day, a crash occurs with size uniformly distributed between (minus) 10 and
20. Otherwise, the procedure is like in Table 2.

no results for the case SWFR L = 19 (i.e. about one month either way) is that the variance

simply is absurdly high (five decimals before the dot). Dimson offers more precision for the

same unbiasedness, and the overlapping-observation models do even better (at the cost of some

extra bias). To eliminate bias for all stocks, one needs to be willing to accept SE’s that are at

least half as large again as those of OLS.

In terms of SE, the IV version of overlapping-observation regression does better than SWFR’s

IV estimator, for the same reason: putting more weight on the contemporaneous market return,

its instrument has higher correlation with the regressor than has the SWFR instrument with the

same window size L. The asymptotic SE’s for the IV- and OLS versions of overlapping-return

regressions are quite similar, which is as expected because the estimators are asymptotically

equivalent. They also beat Dimson’s beta for precision (if not for bias, it should be recalled). In

terms of actual estimation error the IV version does somewhat better than the Hansen-Hodrick

OLS one unless the window becomes quite large (H = 20, one month).
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Table 4: Simulation results: thin trading as a market-wide random factor

Mean β̂ mean SE (β̂)s stdev across β̂ stdev of SE (β̂)s
prob no trade .00 .10 .25 .00 .10 .25 .00 .10 .25 .00 .10 .25

One-period regression
OLS 1.07 .98 .84 .10 .10 .11 .10 .12 .15 .015 .015 .015

SWFR ±1 1.00 .97 .91 .15 .16 .16 .15 .16 .17 .025 .025 .025
SWFR ±2 1.00 .99 .96 .19 .20 .21 .19 .19 .20 .035 .035 .036
SWFR ±3 1.00 1.00 .98 .22 .23 .24 .22 .21 .22 .045 .046 .047
SWFR ±4 1.00 1.00 .99 .24 .25 .27 .24 .24 .25 .055 .056 .058

Dimson ±1 1.00 .97 .91 .13 .14 .14 .13 .14 .16 .020 .020 .020
Dimson ±2 .99 .99 .97 .15 .16 .17 .16 .16 .17 .024 .025 .025
Dimson ±3 .99 1.00 .99 .17 .18 .19 .18 .18 .18 .028 .029 .029
Dimson ±4 .99 1.00 .99 .19 .20 .21 .19 .19 .20 .032 .033 .033
Dimson ±19 .99 .99 1.00 .34 .35 .37 .34 .34 .35 .084 .087 .089

H-period overlapping-returns regression

IV 2 1.03 .98 .88 .12 .12 .13 .12 .13 .15 .018 .018 .018
IV 3 1.02 .98 .91 .14 .14 .15 .14 .14 .15 .021 .021 .021
IV 4 1.01 .99 .93 .15 .16 .17 .15 .15 .16 .024 .024 .024
IV 5 1.01 .99 .94 .17 .17 .18 .17 .17 .17 .027 .027 .028
IV 20 1.00 1.00 .98 .31 .32 .34 .31 .30 .31 .076 .077 .080

OLSHH 2 1.02 .98 .91 .12 .12 .13 .14 .14 .15 .020 .020 .020
OLSHH 3 1.01 .99 .93 .14 .14 .14 .15 .15 .16 .025 .025 .025
OLSHH 4 1.01 .99 .94 .15 .15 .16 .17 .16 .17 .029 .029 .028
OLSHH 4 1.01 .99 .95 .16 .17 .17 .18 .18 .18 .032 .033 .032
OLSHH 20 1.00 1.00 .98 .24 .24 .24 .29 .28 .29 .078 .080 .079

Key. A daily number p2000 is generated that distributes uniformally between 0.5 and 1 and represents the
probability that the most illiquid stock trades on that day. (The ordering by liquidity remains determined by
initial market value.) Of the other 1999 stocks, the top 1000 stocks remain 100 percent active, and the others
get a probability that is linearly interpolated between 1 and p2000 on the basis of their liquidity ranking. We
select stock 1000 as the representative active firm, and stocks 1200 and 2000 as the representative medium- and
poorly-traded stocks, respectively. (Their unconditional probabilities of being traded equal 0.90 and 0.75, like
in the base case.) Otherwise, the procedure is like in Table 3.

Lastly, the pecking order on the basis of actual standard error is also echoed by the standard

deviations of the SE’s. That is, when the estimator is more imprecise, also the estimated

theoretical SE becomes more sensitive to sample coincidences, with OLS doing best, followed

by overlapping returns with IV, overlapping returns with OLS, Dimson, and finally SWFR.

2.2 Robustness to Various Departures from the Stylized Model

In this section we check the robustness of these results when key assumptions of the stylized

model are relaxed. All changes are cumulative, that is, they are also retained in subsequent

experiments.

The first change is autocorrelation in the market factor. We give the factor a 15-th order
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Table 5: Simulation results: magnified thin-trading problem

Mean β̂ mean SE (β̂)s stdev across β̂ stdev of SE (β̂)s
prob no trade .00 .25 .50 .00 .25 .50 .00 .25 .50 .00 .25 .50

One-period regression

OLS 1.23 .99 .75 .12 .13 .13 .12 .16 .19 .017 .016 .017

SWFR ±1 1.06 1.07 .87 .16 .17 .18 .16 .16 .20 .025 .025 .025
SWFR ±2 1.02 1.02 .98 .19 .21 .22 .19 .19 .21 .033 .033 .034
SWFR ±3 1.01 1.01 1.02 .22 .24 .25 .22 .22 .23 .043 .043 .045
SWFR ±4 1.01 1.01 1.02 .25 .26 .28 .24 .25 .25 .052 .053 .055

Dimson ±1 1.03 1.08 .88 .15 .16 .17 .15 .15 .19 .022 .022 .022
Dimson ±2 1.01 1.01 1.02 .17 .18 .19 .17 .17 .19 .026 .026 .027
Dimson ±3 1.01 1.01 1.04 .19 .20 .21 .19 .19 .20 .030 .031 .031
Dimson ±4 1.00 1.00 1.02 .20 .22 .23 .20 .20 .21 .034 .035 .035
Dimson ±19 1.00 .99 1.00 .34 .37 .40 .35 .35 .35 .087 .092 .095

H-period overlapping-returns regression

IV 2 1.12 1.04 .82 .13 .14 .15 .13 .14 .18 .019 .019 .020
IV 3 1.08 1.03 .88 .15 .16 .17 .15 .15 .18 .022 .022 .023
IV 4 1.06 1.03 .92 .17 .18 .19 .16 .17 .18 .026 .025 .026
IV 5 1.05 1.02 .95 .18 .20 .21 .18 .18 .19 .029 .029 .029
IV 20 1.01 1.00 .99 .32 .35 .37 .31 .31 .32 .078 .080 .084

OLSHH 2 1.08 1.03 .89 .13 .14 .14 .15 .15 .17 .022 .022 .022
OLSHH 3 1.06 1.03 .93 .15 .15 .16 .16 .16 .18 .027 .027 .027
OLSHH 4 1.05 1.02 .95 .17 .17 .17 .18 .18 .19 .031 .031 .031
OLSHH 4 1.04 1.02 .96 .18 .18 .18 .19 .19 .20 .035 .035 .034
OLSHH 20 1.01 1.01 .99 .24 .24 .24 .30 .30 .30 .083 .082 .082

Key. There are 666 active stocks, 667 stocks that trade 3 days out of 4, and 667 stocks that trade one day out
of two. Otherwise, the procedure is like in Table 3.

autocorrelation (prior to the autocorrelation induced by thin trading), starting at ρ1 = 0.04

and linearly falling to 0 at lag 16. This, it can be checked, induces an autocorrelation of

monthly returns of 0.16. Adding thin trading, we get a total autocorrelation in the index of

about 0.20, which is realistic for monthly intervals. As can be verified in Table 2, the results

do not differ in any meaningful way from the base-case output.

The second change is skewness in the returns. From Bauwens et al. (2006), active stocks

exhibit no skewness at the daily level as long as there is no crash; so we generate skewness via a

crash factor in the market. In the experiment we report the crash occurs with a quite generous

daily probability of 0.001 (about once every 4 years), and when it does take place the fall is

uniformly distributed between –10 and –20 percent. Unlike the regular market factor f , which

retains its 15th-order autocorrelation, the crash factor is not autocorrelated. Table 3 has the

results. The relevant conclusions are unaffected; in fact, there is but one pervasive change: all

betas are higher. This reflects the fact that there is an extra common factor that affects all
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stocks in the same way without increase in the errors-in-variables problems. As a result, there

now is a noticeable upward bias in the active stocks, as predicted theoretically. The reason

why it shows up now and not in the earlier experiments is that the the covariance between beta

error and asset weight is weakened if a common crash factor affects all stocks alike, whether

big or small. The OLS beta is still below unity on average, but the active subgroup no longer

is.6

The above modifications were cumulative, and also show up in the next two experiments,

which have to do with the way we modeled the thin-trading problem. In the first robustness

check we let the probabilities of no trade vary randomly over time, while creating correlation

between the no-trading events across stocks. Specifically, a daily number p2000 is generated that

distributes uniformally between 0.5 and 1 and represents the probability that the most illiquid

stock gets traded on that day. (The ordering by liquidity remains determined by initial market

value.) Of the other 1999 stocks, the top 1000 stocks remain 100 percent active as before, but

the others get a probability that is linearly interpolated between 1 and p2000 on the basis of their

liquidity ranking. We select stock 1000 as the representative active firm, and stocks 1200 and

2000 as the representative medium- and poorly-traded stocks, respectively. Thus, comparable

with the base case, the three stocks we study still have unconditional probabilities of being

traded equal to 1.00, 0.90 and 0.75, but now the non-trading problem is correlated across stocks,

and assets’ errors-in-variables are more strongly correlated with the measurement errors in the

market. Despite this, the only remarkable effect in Table 4 is how small and unsystematic the

changes are relative to the previous case.

In our second robustness check w.r.t. the details of the thin-trading mechanism we return

to the original setup except that we worsen the thin-trading problem substantially. Instead

of 1000 active stocks, 500 moderately traded, and 500 thinly traded ones we make the groups

equally large, and we increase the probability of no trade from 0.10 to 0.25 for the middle group

and from 0.25 to 0.50 for the worst affected stocks. In Table 5, summarizing the results, we see

many effects magnified. The gap between the active and sleepy stocks’ OLS betas is still equal

to the (now larger) probability of no trade, but the active betas are substantially overestimated.

This upward bias for the active stocks gets weakened quite quickly when we use any of the other

estimators, and is no longer a major problem when L = 4; for monthly windows it is entirely

6Results for lower crash probabilities are, not surprisingly, in-between those of Tables 3 and 1 and are
available on request. The same holds for experiments that are identical to those already summarized except for
thicker tails in the market and idiosyncratic returns (five df instead of seven): the changes are minute.
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Table 6: Simulation results: stochastic liquidity, big market variance

Mean β̂ mean SE (β̂)s stdev across β̂ stdev of SE (β̂)s
prob no trade .00 .25 .50 .00 .25 .50 .00 .25 .50 .00 .25 .50

One-period regression

OLS 1.07 .99 .85 .07 .07 .08 .07 .09 .11 .007 .008 .008

SWFR ±1 1.01 .98 .92 .10 .11 .12 .10 .11 .13 .014 .015 .015
SWFR ±2 1.00 1.00 .97 .13 .14 .16 .13 .13 .14 .021 .022 .023
SWFR ±3 1.00 1.00 .99 .15 .16 .18 .15 .15 .15 .028 .030 .032
SWFR ±4 1.00 1.00 .99 .17 .18 .20 .17 .17 .17 .035 .037 .040

Dimson±1 1.00 .97 .92 .09 .10 .11 .09 .10 .12 .010 .011 .011
Dimson±2 1.00 .99 .97 .11 .12 .13 .11 .11 .12 .013 .014 .014
Dimson±3 1.00 1.00 .99 .12 .13 .14 .12 .12 .13 .016 .017 .017
Dimson±4 1.00 1.00 1.00 .13 .14 .16 .13 .13 .14 .018 .020 .020
Dimson±19 .99 1.00 1.00 .23 .25 .27 .23 .23 .24 .056 .059 .063

H-period overlapping-returns regression

IV 2 1.04 .98 .89 .08 .09 .10 .08 .09 .11 .009 .010 .010
IV 3 1.02 .99 .92 .09 .10 .11 .09 .10 .11 .011 .012 .012
IV 4 1.02 .99 .94 .11 .11 .13 .11 .11 .11 .013 .014 .014
IV 5 1.01 .99 .95 .12 .12 .14 .12 .11 .12 .015 .016 .017
IV 20 1.00 1.00 .99 .21 .23 .25 .21 .21 .21 .049 .051 .056

OLSHH 2 1.02 .99 .92 .08 .09 .09 .09 .10 .11 .011 .011 .012
OLSHH 3 1.02 .99 .94 .10 .10 .10 .10 .11 .11 .014 .014 .014
OLSHH 4 1.01 .99 .95 .11 .11 .11 .11 .11 .12 .017 .017 .017
OLSHH 5 1.01 .99 .96 .11 .11 .12 .12 .12 .13 .019 .020 .019
OLSHH 20 1.00 1.00 .99 .16 .16 .16 .20 .19 .20 .052 .053 .053

Key. The market-factor volatility is increased by one-half to 1.5% per diem. Otherwise, the procedure is like
in Table 4.

gone. The other effects that we observed in the base case remain unaffected: Scholes-Williams,

Dimson, and Hansen-Hodrick handle the bias well (in that order), and the IV version of the

overlapping-return regression rather well. Actual precision of OLS now substantially overstates

the calculated one, but still does not do badly relative to the other estimators; the OLS and

IV overlapping-observations models still come next, followed by Dimson and, lastly, SWFR.

We conclude that in all experiments, lower bias comes at the cost of higher SE’s and noisier

estimates of these SE’s.

We end with three encores. In all of these, we return to the stochastic-liquidity setup of

Table 4. First, we increase the market factor volatility from 1% per day to 1.5%, i.e from about

16% per annum to 24%, at constant idiosyncratic noise. Predictably, with a clearer signal and

unmodified residual risk, the precision is higher, but otherwise the outcomes are similar to

those Table 4, as can be seen from Table 6. For the remaining two variants we again return to

the scenario of Table 4, with base-case market variance (and stochastic liquidity and a crash),

but now we add standard negative skewness in both the market and the idiosyncratic factor.
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Table 7: Simulation results: stochastic liquidity, extra skewness, extra kurtosis

Mean β̂ mean SE (β̂)s stdev across β̂ stdev of SE (β̂)s
prob no trade .00 .25 .50 .00 .25 .50 .00 .25 .50 .00 .25 .50

market-factor γ = 0.92, ndf = 6 (skewness -0.32, kurtosis 6.23)

One-period regression

OLS 1.07 .99 .85 .12 .10 .11 .12 .12 .15 .019 .015 .015

SWFR ±1 1.00 .97 .91 .18 .16 .17 .19 .16 .17 .032 .025 .026
SWFR ±2 1.00 .99 .97 .23 .20 .21 .23 .19 .20 .044 .035 .037
SWFR ±3 .99 1.00 .99 .27 .23 .24 .27 .22 .22 .056 .045 .047
SWFR ±4 .99 1.00 .99 .30 .25 .27 .30 .24 .25 .068 .056 .059

Dimson±1 1.00 .97 .92 .16 .14 .14 .16 .14 .16 .026 .020 .021
Dimson±2 .99 .99 .97 .19 .16 .17 .19 .16 .17 .031 .025 .025
Dimson±3 .99 1.00 .99 .21 .18 .19 .21 .18 .18 .036 .029 .030
Dimson±4 .99 1.00 1.00 .23 .20 .21 .23 .19 .20 .041 .033 .034
Dimson±19 .99 .99 .99 .41 .35 .37 .42 .34 .34 .108 .089 .093

H-period overlapping-returns regression

IV 2 1.03 .98 .88 .14 .12 .13 .15 .13 .15 .023 .018 .018
IV 3 1.02 .98 .91 .17 .14 .15 .17 .14 .15 .027 .021 .022
IV 4 1.01 .99 .93 .19 .16 .17 .19 .16 .16 .031 .024 .025
IV 5 1.01 .99 .95 .20 .17 .18 .20 .17 .17 .035 .027 .028
IV 20 1.00 .99 .98 .38 .33 .35 .38 .31 .31 .096 .078 .082

OLSHH 2 1.02 .98 .91 .15 .12 .13 .17 .14 .15 .026 .020 .021
OLSHH 3 1.01 .99 .93 .17 .14 .14 .19 .15 .16 .032 .025 .025
OLSHH 4 1.01 .99 .95 .19 .15 .16 .20 .17 .17 .037 .029 .029
OLSHH 5 1.01 .99 .96 .20 .17 .17 .22 .18 .18 .041 .032 .033
OLSHH 20 1.00 .99 .98 .29 .24 .24 .36 .29 .29 .101 .081 .081

market-factor γ = 0.96, ndf = 4 (skewness -0.37, kurtosis 16.18)

One-period regression

OLS 1.07 .98 .84 .14 .10 .11 .14 .13 .16 .027 .016 .017

SWFR ±1 1.00 .97 .91 .21 .16 .17 .22 .16 .18 .044 .028 .028
SWFR ±2 1.00 .99 .96 .27 .20 .21 .27 .19 .20 .060 .038 .039
SWFR ±3 1.00 .99 .99 .31 .23 .24 .31 .22 .23 .074 .048 .050
SWFR ±4 .99 .99 .99 .34 .26 .27 .35 .25 .25 .087 .058 .061

Dimson±1 1.00 .97 .91 .18 .14 .14 .19 .14 .16 .036 .022 .023
Dimson±2 .99 .99 .97 .22 .16 .17 .22 .16 .17 .044 .027 .027
Dimson±3 .99 .99 .99 .25 .18 .19 .25 .18 .19 .050 .031 .032
Dimson±4 .99 .99 .99 .27 .20 .21 .27 .20 .20 .056 .035 .036
Dimson±19 .99 .99 .99 .48 .36 .37 .49 .35 .35 .136 .093 .095

H-period overlapping-returns regression

IV 2 1.03 .98 .88 .16 .12 .13 .17 .13 .15 .032 .02 .02
IV 3 1.02 .98 .91 .19 .14 .15 .19 .14 .16 .038 .023 .024
IV 4 1.01 .98 .93 .21 .16 .17 .22 .16 .17 .043 .027 .027
IV 5 1.01 .99 .95 .24 .18 .19 .24 .17 .18 .048 .030 .030
IV 20 1.00 .99 .98 .44 .33 .35 .45 .31 .32 .123 .082 .085

OLSHH 2 1.02 .98 .91 .17 .12 .13 .19 .14 .16 .036 .022 .022
OLSHH 3 1.01 .98 .93 .20 .14 .15 .22 .16 .16 .043 .027 .027
OLSHH 4 1.01 .99 .95 .22 .16 .16 .24 .17 .17 .049 .031 .031
OLSHH 5 1.01 .99 .95 .24 .17 .17 .25 .18 .18 .055 .035 .035
OLSHH 20 1.00 .99 .98 .34 .24 .24 .42 .29 .29 .123 .084 .083

Key. The market factor is skewed t, with γ chosen to as to produce a skewness of about –0.32 as in Bauwens
et al. (2006). In the second half of the table, ν is decreased from 6 to 4 df to boost tail-thickness. Otherwise,
the procedure is like in Table 4.
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Table 8: Betas for N=1998 US stocks, daily data 1999-2000

L or SWFR Dimson HH overlap IV overlap
H − 1 mean stdev mean stdev mean stdev mean stdev

(OLS) 0 0.62 0.36 0.62 0.36 0.62 0.36 0.62 0.36
1 0.73 0.44 0.72 0.43 0.69 0.40 0.67 0.39
2 0.73 0.45 0.74 0.45 0.74 0.42 0.69 0.40
3 0.89 0.54 0.81 0.50 0.78 0.44 0.74 0.42
4 0.94 0.58 0.84 0.54 0.82 0.46 0.78 0.44

19 — — 1.06 0.92 1.04 0.67 1.05 0.66

The distribution is a skewed student’s, this time, with its skewness parameter chosen so as to

match the per diem skewness of –0.32 estimated for NASDAQ by Bauwens et al. (2005). In

the second variant we also boost tail-thickness by lowering the ndf from 6 to 4. Table 7 shows

that the main consequence of higher skewness and kurtosis is to lower the precisions across the

board; neither the biases nor the patterns in the precisions are affected; .

3 Field Experiments

In this section we verify to what extent the effects observed above are noticeable in practice.

We do so in two ways. First we simply compute and describe the various beta estimates on

real-world stocks. Second, we see how a hedge-fund manager would fare if she would aim for

market-neutrality on the basis of a particular estimator of the assets’ betas.

3.1 Field experiment 1: estimating betas in real-world data

The data are 10 years of US stock prices, daily, 1994-2003, on originally 2675 stocks in Datas-

tream’s market list early 2004. This is an unbalanced panel, but heterogeneities across stocks

that stem from data availability are equally present for each estimator. We compute the betas

for all of the 1998 stocks that made it into the hedge experiment described in the next sub-

section, using daily prices starting between days 1000 and 1480 for all stocks present on day

1480. Table 8 shows the cross-sectional mean and standard deviation for each estimator, while

Figure 1 presents some of the histrograms.

Unlike in the Monte-Carlo study, now the market-averaged expected beta (absent thin-

trading problems) is not known a priori;7 and the cross-sectional standard deviation contains

7We only know the value-weighted mean value assuming constant weights. Value weighting would swipe
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Figure 1:
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much of the thin-trading problem under the carpet.
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the unknown variability of true betas across stocks and must be affected by heterogeneity of

SE’s too. Despite these complicating factors, the similarities with the simulation results are

striking. Within each and every class we see increasing average betas, indicating a falling bias,

but at the cost of a rising standard deviation. We again note that the two estimators that are

explicitly set up to cope with thin trading do best re bias, but again at the cost of precision.

Even within each class (SWFR versus Dimson; and OLS overlapping versus IV overlapping)

we see the same effect. In sum, like in our Monte-carlo experiments the bias-versus-precision

trade-off also holds across estimators.

Whether bias should be the overwhelming consideration rather than precision depends on

the application. We consider one such application in the remainder of this section.

3.2 Field experiment 2: setting up market-neutral portfolios

We consider the problem of a hedge-fund manager who has selected an underpriced stock and

now wants to add a position in another stock so as to make the combination market-neutral.

Common sense would already suggest we match by industry and size. The question is whether

this suffices: can one just invest equal amounts (up to the sign), implicitly assuming the two

stocks have the same beta, or is it helpful to look at estimated betas and come up with a non-

unit hedge ratio? In this problem, bias and estimation variance are equally bad as they enter

into the portfolio-return as a sum. This can be seen as follows. Regard, in Bayesian style, the

portfolio’s true beta as a random variable. For simplicity and without loss of generality, let all

returns be mean-centered. The portfolio return then equals r̃p = β̃pr̃m+ ẽp. In line 3 of the set

of equations below, we use the fact that, r̃m being centered, the expected cross product equals

the covariance, which in turn equals zero as the portfolio beta is fixed at the beginning of the

period.8 In line 4 we work out the expectation of a product and set the resulting covariance

zero, for the same reason. Line 5 again uses the zero-mean property of r̃m.

var(r̃p) = var(β̃pr̃m) + var(ẽp),

= [E(β̃2
p r̃

2
m)− E(β̃pr̃m)2] + var(ẽp),

= [E(β̃2
p r̃

2
m)− cov(β̃p, r̃m)2︸ ︷︷ ︸

=0

] + var(ẽp),

8In the empirical work, another argument is relevant, but the conclusion is similar: the beta is determined
by decisions based on realized returns prior to t, while the market return is subsequent to t. This rules out
strong links.
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= [E(β̃2
p)E(r̃2m)− cov(β̃2

p , r̃
2
m)︸ ︷︷ ︸

=0

] + var(ẽp),

= [var(β̃p) + E(β̃p)2]var(r̃m) + var(ẽp). (10)

The square-bracketed factor collapses to the familiar β2
p if there is no uncertainty about beta,

the standard textbook case. In the presence of estimation error, however, what matters is the

sum of uncertainty about beta (estimation variance) and bias, the squared deviation from the

target beta of zero.

3.2.1 Procedure

There are four sets of computations, of which we show three. In the first variant, every month

we take all US stocks of a given industry, and rank them by size (market cap). For the long

positions (subscript l) we pick, sequentially, assets ranked 1, 4, 5, 8, 9, 12, ..., and match each

of them with a short positions (subscript s) in a size-wise close stock of the same industry,

notably those ranked 2, 3, 6, 7, 10, 11, etc. Each pair’s hedge ratio must then be set so as to

produce a market-neutral position for each such pair. For the portfolio to have a zero beta,

the weights of the two risky assets have to satisfy

wl
ws

= −βs
βl
. (11)

In a first round of experiments we have one asset that is deemed underpriced, which we then

hedge; so we set wl = 1, implying ws = −β̂l/β̂s and a risk-free position w0 = 1−wl−ws = β̂l/β̂s.

The data are again our 10 years of US stock prices, daily, 1994-2003, on the 2004 Datastream

market list. Of these 2675 stocks, 2×999 have at least one period of 480 days of data and

could be well matched by size and industry. We divide the time line into 123 20-trading-day

periods which we somewhat inaccurately refer to, below, as “months”. Betas are estimated

using the first 480 daily data (24 months). Given the portfolio weights we then hold the two

stocks and a risk-free deposit for one month, and note the portfolio returns per estimator. We

next re-estimate the betas using a one-month-updated 24-month sample, re-rank the stocks

by value, and form new pairs, etc. This produces 99 non-overlapping out-of-sample tests per

pair; and since we have 999 US matched pairs with a 10-year history, there are, for each of the

99 test months, 999 such two-asset-portfolio returns available for performance analysis.

We see three problems with this approach. First, it studies pairs of assets in isolation,

as standard in the optimal-hedge-ratio literature; but a portfolio manager may reckon that

much of this risk must be diversifiable. Second, some estimated beta pairs are occasionally



Thin Trading: Bias v. Estimation Error 20

so egregious, say 2 and 0.1, that hedge ratios of 20 would be implied, generating absurd

variances for the “hedged” portfolios. It is hard to believe a manager would adopt such

positions. Third, the result of an individual hedge depends very much on which stock happens

to be stock l or stock s. If, for instance, the betas are 2 for l and 0.5 for s, the weights

would be (wl = 1, ws = 4), producing on average a sixteen-times higher portfolio variance

than if the betas had been the other way around and the weights, accordingly, had been

(wl = 1, ws = 0.25). This random element in the portfolio strategy would add noise to the

variance of the investment strategy. In the standard hedging literature the position to be

covered is given exogenously, but in the current portfolio-management setting this position is

a decision variable. If the manager actually believed a hedge ratio of 4 is needed, then she

would probably scale down both sides.

The last two of the above problems turned out to be quite large: portfolio-return variances

were quite absurd, thus demonstrating that the naive procedure does not make a lot of sense.

We show, instead, the results for three variants. In one amended version of the experiment we

make two adjustments. First, we truncate the estimated betas at 0.25 and 4, reckoning that no

real-world manager worth her salt would believe estimates outside this range. This provision

was rarely needed in the actual computations. To weaken the effect on the portfolio weights of

switching the betas, we rescale the first-pass weights by their geometric average. Elementary

algebra show that this gives us the following weights (with β̂tr denoting a truncated beta):

wl =

√√√√ β̂trs

β̂trl
; ws = −

√√√√ β̂trl
β̂trs

; w0 = 1− wl − ws, (12)

With this rule it hardly matters whether the stock held long happens to be the smaller-beta

one or not. With estimated betas equal to 2 and 0.5, for example, the weights could now be

either 2 and 0.5 or 0.5 and 2 (depending on whether the high-beta stock acts as stock l or not),

but this has no predictable impact on the portfolio variance.

In the third variant we want to obtain an impression of to what extent estimation risk is

diversifiable. We proceed as in version 2, except that we now work with portfolios of ten stocks

held long and ten held short. For instance, in the first portfolio the stocks with size rank 1,

4, 5, 8, ... , 17, 20 of industry 1 are held long, and assets with ranks 2, 3, 6, 7, . ... , 18, 19

short. The second portfolio proceeds similarly with the next 20 stocks in the industry’s size

ranking, and so on. Betas are computed for the entire long side of the portfolio, and for the

entire short side, and then handled as before: truncated, and converted in balanced weights.

There are 88 such portfolios per month.
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Table 9: Average and Median variances of market-neutral portfolios (single share
exposure hedged by single share matching industry and size)

Panel 1 Panel 2 Panel 3
one stock long, one short ten stocks long, ten short

wl =
√

β̂tr
s

β̂tr
l

, ws = −
√

β̂tr
l

β̂tr
s

wl =
√

β̂tr
s

β̂tr
l

, ws = −
√

β̂tr
l

β̂tr
s

wl = 1, w2 = β̂l/β̂s

# times var (E–2) # times var (E–2) # times var (E–2)
estimator top btm avg med top btm avge med top btm avg med
equal betas 85 1 4.50 3.46 43 4 .565 .408 40 1 .565 .408

OLS 0 1 5.05 3.98 10 3 .599 .420 9 1 .604 .432

SWFR ±1 1 0 5.36 4.12 5 1 .604 .437 8 2 .616 .417
SWFR ±2 0 3 5.99 4.48 5 6 .617 .438 5 4 .627 .435
SWFR ±3 0 8 6.25 4.66 3 5 .627 .442 4 5 .655 .457
SWFR ±4 0 5 6.32 4.74 0 8 .643 .451 1 14 .688 .468

Dimson±1 5 0 5.21 4.02 9 1 .604 .428 8 2 .604 .427
Dimson±2 1 0 5.59 4.15 2 1 .599 .448 5 0 .602 .433
Dimson±3 1 0 5.56 4.26 7 0 .608 .450 4 0 .611 .442
Dimson±4 0 0 5.81 4.41 2 4 .612 .453 3 4 .629 .452
Dimson±19 0 75 8.17 5.86 3 57 .748 .504 1 54 .876 .527

OLSHH 2 2 0 5.20 3.96 1 0 .595 .422 0 0 .601 .424
OLSHH 3 1 0 5.30 4.05 0 0 .597 .422 1 0 .606 .423
OLSHH 4 0 0 5.38 4.08 0 0 .601 .430 1 0 .612 .423
OLSHH 5 0 0 5.43 4.15 1 0 .604 .441 1 0 .617 .430
OLSHH 20 0 2 6.32 4.88 1 6 .660 .470 1 8 .708 .479

IV 2 3 0 5.06 3.97 3 0 .595 .427 3 0 .602 .424
IV 3 0 0 5.19 3.97 0 0 .595 .422 2 0 .601 .425
IV 4 0 0 5.30 4.04 1 0 .597 .424 1 0 .606 .421
IV 5 0 0 5.37 4.10 0 0 .602 .434 1 0 .613 .422
IV 20 0 4 6.34 5.01 3 3 .660 .477 0 4 .707 .484

Key In Panel 1, each stock is matched with another one from the same industry and size, and one is held long

and the other short. In Panel 2 and 3 they are grouped into equally weighted portfolios of ten stocks each; for

instance the stocks with size rank 1,4,5,8, 14 ... are held long, and assets with ranks 2, 3, 6, 7, 10, 11 ... short.

The size ranking is updated every month. The weighting of the short v. long positions depends on the asset’s or

portfolio’s beta in the way indicated in the second line of the heading: in the first and second panel, betas are

truncated at 4 and 0.25, and the long and short weights are made more balanced by the square-root procedure,

while in Panel 3 we use naive weights (no truncation, no balancing). A time-series variance is computed for

each beta and each portfolio (like large hi-tech and so on). We show the average (“avg var”) and median (“med

var”) variance across all portfolios; the number of times a particular estimator shows up with the best variance

across all portfolios (“times top”); and the number of times a particular estimator shows up with the worst

variance (“times btm”). Variance is in E–2.

In the fourth variant we still work with 20-asset portfolios, but leave out the truncation

and the square-root adjustment, reckoning that for portfolios the beta problems should be

substantially attenuated.

We compute, for each beta estimator and month, the cross-sectional variation of the returns
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Figure 2: Portfolio Return variance plotted against variance or mean of betas
SE v. portfolio variance
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across the 999 2-asset portfolios or the 88 20-asset portfolios, which leaves us with, for each

estimator, a time series of 99 variances. For each such time series we report the mean and the

median. In every month we also identify the best- and worst-performing estimator; we then

report how often, out of 99 months, the estimator came out top and bottom.9

3.2.2 Results

The results for the three procedures are shown in Table 9. The equal-beta model does best

on all counts. In the two-asset case (Panel 1) it comes up as the best procedure in 85 of the

99 months, with the runner-up (Dimson, one lag) achieving just 5 gold medals. While the

lead of the equal-beta model is smaller when portfolios of 10 are used, it still comes up 43 or

40 times as the lowest-variance portfolio, with the runner-up (OLS) collecting a mere 9 or 10

firsts. Dimson1 is still a very close third. The equal-beta procedure also delivers the smallest

average variance, followed by OLS. Dimson19 fares systematically worst; in fairness, recall that

we threw out SWFR19 as producing simply too outlandishly imprecise numbers, otherwise that

estimator would have brought up the rear.

The strong side of the equal-beta model is that it surely has zero estimation variance, and

probably only a small bias, which is likely to be diversifiable across portfolios to a large extent.

The suggestion that the beta’s SE is the more important item, not its bias, gets more support

9The alternative is to compute time-series variances per portfolio, and average these across the portfolios
instead of computing cross-sectional variances across portfolios and then averaging these across the months.
In a fully balanced sample both procedures produce the same general average, and it is hard to see why it
would systematically affect the other metrics. But since the number of portfolios changes over time, the second
approach is hard to implement.
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Figure 3: Mean and median portfolio-return variances: 20- v 2-asset portfolios
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if we recall that OLS, our runner-up, has the worst bias but the highest precision, while last-

comer Dimson19 combines zero bias with the highest SE’s. The same picture emerges when we

compare the average variances of within each family. Recall that, for Dimson, SWFR, HH and

IV, the bias disappears as one increases the window L or H, but at the cost of less precision.

We now see that the cost of imprecision outweighs the benefit of a lower bias: within each

family of estimators, the portfolio-return variance steadily increases as the H- or L-window

widens, with only two exceptions out of 57 comparisons of adjacent pairs of variances. Figure

2 plots, for each given beta estimator, the average portfolio-return variance obtained in Table

9 Panel 3 against either the cross-asset standard deviation or the mean as taken from Table

8. We see that returns become more volatile when betas are noisier, but also when the mean

beta rises, that is, when the bias becomes smaller. The last result makes no sense except if

bias comes along with lower precision and if the latter effect dominates. We conclude that the

niceties about bias are dwarfed by issues of standard error when the problem is one of building

market-neutral portfolios.

Predictably, the variances for 20-asset portfolios are substantially lower than those of 2-

asset ones. But the ratio is not a constant ten-to-one, as one would expect if pairwise matching

on size and industry left only purely idiosyncratic noise. In Figure 3 we plot the means or

medians of the 20-asset portfolio variances against those of 2-asset ones. While there is a good

preservation of order, the portfolio variances clearly do not plot on a ray from the origin with

slope 1/10. There is, first, some randomness and, second, a large dose of attenuation: the

slope is 0.04 or 0.07 rather than 0.10, and there is an intercept. The attenuation must be to

some extent explained by the randomness. The reason is that if the 2-asset variances are noisy

estimates of large-sample values, there is an errors-in-variables bias towards zero in the slope

of the trendline. The observation that the more imprecise estimators seem to benefit relatively
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more from attenuation than the precise ones is consistent with this: noisiness in the estimates

goes together with noisiness in the variance. But ascribing all of the attenuation to noisiness

in the 2-asset return variances would be going too far: to shrink a slope from 0.10 to 0.04, the

error variance for the variable on the horizontal axis would have to be 1.5 times larger than the

true variance, which seems hard to reconcile with the strength of the observed relation. If part

of the flattening out is real, then high-variance estimators benefit more from diversification

than low- variance ones. There is another piece of evidence in that direction: the lead of the

equal-beta rule of thumb shrinks when the portfolios are larger, suggesting the estimators do

become less bad. While we do not have enough data to work with 100- or 1000-asset portfolios,

our exploratory evidence on diversification raises the possibility that, with a great many assets,

a regression may actually not do much harm relative to the equal-beta rule of thumb. Still, at

this point there is no evidence that estimation would ever positively help.

4 Conclusion

Two regression coefficients often used in Finance, the Scholes-Williams (1977) quasi-multiperiod

”thin-trading” beta and the Hansen-Hodrick (1980) overlapping-periods regression coefficient,

can both be written as instrumental-variables estimators. We check the performance of these

IV-estimators and the validity of the theoretical standard errors in small and medium samples,

gauge the robustness of the Scholes-Williams estimator outside its stated assumptions, and

report performances relative to the Dimson beta, standard OLS, and the equal-beta model in

a hedge-fund style application. We learn that, across and within “families” of estimators, less

bias comes at the cost of a higher standard error. The hedge-portfolio experiment shows that

the safest procedure is to simply match by size and industry; any estimation just adds noise.

There is a clear relation between portfolio variance and the variance of the beta estimator,

dwarfing the effect of bias.
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