
Robust linear discriminant analysis for multiple

groups: influence and classification efficiencies

Christophe Croux∗, Peter Filzmoser†, and Kristel Joossens∗

Abstract

Linear discriminant analysis for multiple groups is typically carried out using

Fisher’s method. This method relies on the sample averages and covariance ma-

trices computed from the different groups constituting the training sample. Since

sample averages and covariance matrices are not robust, it is proposed to use robust

estimators of location and covariance instead, yielding a robust version of Fisher’s

method.

In this paper expressions are derived for the influence that an observation in

the training set has on the error rate of the Fisher method for multiple linear

discriminant analysis. These influence functions on the error rate turn out to be

unbounded for the classical rule, but bounded when using a robust approach. Using

these influence functions, we compute relative classification efficiencies of the robust

procedures with respect to the classical method. It is shown that, by using an

appropriate robust estimator, the loss in classification efficiency at the normal model

remains limited. These findings are confirmed by finite sample simulations.
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1 Introduction

In discriminant analysis one observes several groups of multivariate observations, forming

together the training sample. For the data in this training sample, it is known to which

group they belong. Discriminant functions, aimed at separating the different groups, are

constructed on the basis of the training sample. These discriminant functions are then

used to classify new observations into one of the groups. A popular discrimination method

is Fisher’s linear discriminant analysis, introduced for two populations by Fisher (1938)

and generalised to multiple populations by Rao (1948). Over the last decade several more

sophisticated classification methods, like support vector machines and random forests,

have been proposed (see Friedman et al 2001). But Fisher’s method is still often used and

performs well in many applications. Also, the Fisher discriminant functions are linear

combinations of the measured variables, making them easier to interpret.

At the population level, the Fisher discriminant functions are obtained as follows.

Consider g populations in a p-dimensional space, being distributed with centers µ1, . . . ,

µg and covariance matrices Σ1, . . . , Σg. The probability that an observation to classify

belongs to group j is denoted by πj , for j = 1, . . . , g, with
∑

j πj = 1. Then the between

groups covariance matrix B is defined as

B =

g
∑

j=1

πj(µj − µ̄)(µj − µ̄)t, (1.1)

with µ̄ =
∑

j πjµj the weighted average of the population centers. The within groups

covariance matrix W is given by the pooled version of the different scatter matrices

W =

g
∑

i=j

πjΣj . (1.2)

The aim of Fisher’s method is to project the data onto a lower dimensional subspace

of dimension s by maximising the between groups variance of the projected data, while

keeping the within groups variance constant. Moreover, the within groups covariance

matrix of the projected data should be the unity matrix. This leads to an eigenvalue

analysis of the matrix

W−1B. (1.3)
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For details and proofs we refer to Johnson and Wichern (1998). Denote now the eigenvec-

tors corresponding to the largest s strictly positive eigenvalues of (1.3) by v1, . . . , vs, and

scale them such that vt
jWvj = 1, for 1 ≤ j ≤ s. If x is an observation to classify, then the

linear combinations vt
1x, . . . , vt

sx are the values of, respectively, the first,. . . , s-th Fisher

linear discriminant functions. Note that the value of s is at most equal to the maximum

number of strictly positive eigenvalues of W−1B, so s ≤ min(g − 1, p). With the aim of

dimension reduction and visualisation (e.g. Cook and Yin 2001), s may be taken smaller

than min(g − 1, p).

The observation to classify is assigned to that group for which the “distance” between

the projected observation and the group center is smallest. Formally, x is assigned to

population k for which

Dk(x) = min
j=1,...,g

Dj(x),

where

D2
j (x) = [V t(x − µj)

t]t[V t(x − µj)] − 2 log πj (1.4)

and V = (v1, . . . , vs) is the matrix having the eigenvectors in its columns. Note that

the squared distances, also called the Fisher discriminant scores, in (1.4) are penalized

by the term −2 log πj , so that an observation is less likely to be assigned to groups with

smaller prior probabilities. A prior probability πj is unknown, but can be estimated

by the empirical frequency of observations in the training data belonging to group j,

for 1 ≤ j ≤ g. By adding the penalty term in (1.4), the Fisher discriminant rule is

optimal (in the sense of having a minimal total probability of misclassification), for source

populations being normally distributed with equal covariance matrix and for s equal to

the maximum number of strictly positive eigenvalues of W−1B (see Johnson and Wichern

1998, page 685).

At the sample level, the centers µj and covariance matrices Σj of each group need to be

estimated, which is typically done using sample averages and sample covariance matrices.

But sample averages and covariance matrices are not robust, and outliers in the training

sample may have an unduly large influence on the classical Fisher discriminant rule.

Hence it has been proposed to use robust estimators of location and covariance instead

and plugging them into (2.6) and (1.2), yielding a robust version of Fisher’s method. Such

a straightforward plug-in approach for obtaining a robust discriminant analysis procedure
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was already taken by Randles et al (1978), using M-estimators, and afterwards by Chork

and Rousseeuw (1992), Hawkins and McLachlan (1997) and Hubert and Van Driessen

(2004) using Minimum Covariance Determinant estimators, and by He and Fung (2000)

and Croux and Dehon (2001) using S-estimators. In most of these papers the good

performance of the robust discriminant procedures was shown by means of simulations

and examples, but we would like to obtain some theoretical results concerning robustness

and efficiency of the discrimination method. The performance of the discriminant rules

will be measured by their error rate, being the total probability of misclassification.

Our contribution is twofold. First of all, we theoretically compute influence functions

measuring the effect of an observation in the training sample on the error rate. In ro-

bustness it is standard to compute an influence function for estimators, but here we are

interested in the error rate of a classification rule. Computation of such a theoretical

influence function for the error rate is difficult, and we present results for a model where

the different populations are normally distributed, with equal covariance matrices, and

collinear centers. In this case the Fisher discriminant rule is optimal, and it turns out

that one needs to compute a second order influence function, since the usual first order

influence function equals zero. We show that the Fisher rule using the sample averages

and sample covariance matrices of each group yields an unbounded influence function for

the error rate, while using robust estimates instead gives a bounded influence procedure.

A second contribution of this paper is that we compute asymptotic relative classifi-

cation efficiencies using the second order influence functions. As such, we can measure

how much increase of the error rate is expected when a robust instead of the classical

procedure is used in case when no outliers are present. Classification efficiencies were

introduced by Efron (1975), who compared the performance of logistic discrimination

with linear discrimination for two-group discriminant analysis. These results were then

extended to multi-group settings by Bull and Donner (1987) and Campbell and Donner

(1989). Also these authors made the assumption of collinear population centers, to keep

the calculations feasible. Note that for two-group discrimination, the population centers

are always collinear. Up to our best knowledge, we are the first to compute asymptotic

relative classification efficiencies for robust discriminant procedures.

The paper is organized as follows. In Section 2, an expression for the error rate of
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Fisher’s multiple discriminant analysis at the model distribution is given. Section 3 defines

the influence of an observation on the error rate and derives expressions for the second

order influence function. Asymptotic classification efficiencies are then given in Section 4.

A simulation study is presented in Section 5, and conclusions are made in Section 6.

2 Error Rate

Let X be a p-variate stochastic variable containing the predictor variables, and Y be

the variable indicating the group membership, so Y ∈ {1, . . . , g}. The training sample

(X1, Y1), . . . , (Xn, Yn) is a random sample from the distribution H . In this section we

will define the Error Rate (ER) as a function of the distribution H , yielding a statistical

functional H → ER(H), which allows to compute influence functions in Section 3.

Denote Tj(H) and Cj(H) the location and scatter of the condition distribution X|Y =

j, for j = 1, . . . , g. The location and scatter functionals may correspond to the expected

value and the covariance matrix, but any other affine equivariant location and scatter

measure is allowed. The functional representations of the between and within groups

covariance matrices are then

B(H) =

g
∑

j=1

πj(H)(Tj(H)−T̄ (H))(Tj(H)−T̄ (H))t and W (H) =

g
∑

j=1

πj(H)Cj(H),

with T̄ (H) =
∑

j πj(H)Tj(H) and πj(H) = PH(Y = j), for j = 1, . . . , g. The first s

eigenvectors of W−1(H)B(H), with s ≤ min(g − 1, p), are then collected in the matrix

V (H), allowing us to compute the Fisher discriminant scores

D2
j (x, H) = (x − Tj(H))tV (H)V (H)t(x − Tj(H)) − 2 log πj(H), (2.1)

for j = 1 . . . , g. A new observation x will be assigned to population k for which the

discriminant score is minimal. In the above formula, the prior group probabilities πj(H)

are estimated from the training data. So we have a prospective sampling scheme in mind,

meaning that the group proportions of the data to classify are the same as for the training

data 1.

1Results for a retrospective sampling scheme, where the prior probabilities differ from the sampling

proportions in the training set, can be obtained in a completely analogous way.
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Let us denote by Hm the distribution of the data to classify. Then, with πj = PHm
(Y =

j), for j = 1, . . . , g, the error rate is given by

ER(H) =

g
∑

j=1

πj PHm

(

Dj(X, H) > min
k 6=j

k=1,...,g

Dk(X, H) | Y = j
)

. (2.2)

In ideal circumstances we have that the data to classify are generated from the same

distribution as the training data set, so H = Hm. When computing the influence function,

however, we need to take for H a contaminated version of Hm.

Expression (2.2) is difficult to evaluate. To make theoretical results possible, we restrict

to normal distributions with identical covariance matrices and collinear centers. Note

that for discriminating g = 2 groups, the collinearity condition is automatically verified.

Formally, we require the model distribution Hm to verify

(M) At the model distribution Hm, X|Y = j follows a normal distribution N(µj , Σ)

for j = 1, . . . , g. The centers µj are different and collinear, and the matrix Σ is non-

singular. Furthermore, every πj = PHm
(Y = j) is strictly positive.

Since we will only work with location and scatter functionals being consistent at normal

distributions, we have (Tj(Hm), Cj(Hm)) = (µj , Σ) for 1 ≤ j ≤ g. Furthermore, since

B(Hm) = B has rank 1, we only can have one strictly positive eigenvalue of W−1B,

implying s = 1. The matrix V (Hm) reduces then to the vector

v1 = Σ−1 µj − µj+1

∆j
(2.3)

with

∆j =
√

(µj − µj+1)tΣ−1(µj − µj+1) (2.4)

for j = 1, . . . , g − 1.

Taking Hm as distribution of the data to classify (with s = 1), expression (2.2) becomes

tractable. Let H be any distribution of the training data. We will reorder the labels of

the groups such that V t(H)T1(H) < V t(H)T2(H) < . . . < V t(H)Tg′(H), with g′ ≤ g,

and such that observations belonging to groups with a label j > g′ are misclassified with

probability one. In the Appendix, a procedure for doing this relabelling is outlined. The

following result holds. Throughout the paper, we use the notation Φ for the cumulative

distribution function of a univariate standard normal, and φ for its density.
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Proposition 1 If the observations to classify are distributed according to a model Hm

verifying (M), the error rate of the Fisher discriminant rule (with s = 1) is given by

ER(H) =

g′−1
∑

j=1

{πjΦ(
Aj(H) + Bt

j(H)µj
√

Bt
j(H)ΣBj(H)

) + πj+1Φ(
−Aj(H) − Bt

j(H)µj+1
√

Bt
j(H)ΣBj(H)

)}

+

g
∑

j=g′+1

πj

(2.5)

with

Bj(H) = V (H)V (H)t(Tj+1(H) − Tj(H)) (2.6)

Aj(H) = log(πj+1(H)/πj(H)) − Bj(H)t(Tj(H) + Tj+1(H))/2 (2.7)

for 1 ≤ j ≤ g and H the distribution of the training sample.

For H = Hm formula (2.5) reduces further to

ER(Hm) =

g′−1
∑

j=1

{πjΦ(
θj

∆j
− ∆j

2
) + πj+1Φ(− θj

∆j
− ∆j

2
)} +

g
∑

j=g′+1

πj , (2.8)

where θj = log(πj+1/πj) and ∆j is defined in (2.4) for j = 1, . . . , g − 1.

3 Influence Functions

To study the effect of an observation on a statistical functional it is common in the

robustness literature to use influence functions (see Hampel et al 1986). As such, the

influence function of the error rate at the model Hm is defined as

IF((x, y); ER, Hm) = lim
ε→0

ER
(

(1 − ε)Hm + ε∆(x,y)

)

− ER(Hm)

ε

=
∂

∂ε
T ((1 − ε)Hm + ε∆(x,y))

∣

∣

ε = 0
,

with ∆(x,y) the Dirac measure putting all its mass in (x, y). Recall that x is a p-variate

observation, and y indicates the group membership. More generally, we define2 the k-th

2Note that our definition of higher order influence function differs from the one used in Gatto and

Ronchetti (1996).
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order influence function as

IFk((x, y); T, H) =
∂k

∂εk
T ((1 − ε)Hm + ε∆(x,y))

∣

∣

ε = 0
. (3.1)

If there is a (small) amount of contamination in the training data, due to the presence

of a possible outlier (x, y), the error rate of the discriminant procedure based on Hε =

(1 − ε)Hm + ε∆(x,y) can be approximated by the following Taylor expansion:

ER(Hε) ≈ ER(Hm) + εIF((x, y); ER, Hm) +
1

2
ε2 IF2((x, y); ER, Hm). (3.2)

In Figure 1, we picture ER(Hε) as a function of ε. The Fisher discriminant rule is optimal

at the model distribution Hm, and therefore we denote ER(Hm) = ERopt throughout the

text. This implies that any other discriminant rule, in particular the one based on a

contaminated training sample, can never have an error rate smaller than ERopt. Hence,

negative values of the influence function are excluded. From the well known property that

E[IF((x, y); ER, Hm)] = 0 (Hampel et al 1986, page 84), it follows that

IF((x, y); ER, Hm) ≡ 0

almost surely. According to (3.2), the behaviour of the error rate under small amounts

of contamination is then characterised by the second order influence function IF2. Note

that this second order influence function should be non-negative everywhere.

In the next proposition, we derive the second order influence function for the error

rate. The obtained expression is quite complex, and depends on populations quantities

of the model Hm, and on the influence functions of the location and scatter function-

als used. At a p-dimensional distribution F , these influence functions are denoted by

IF(x; T, F ) and IF(x; C, F ). We will need to evaluate them at the normal distributions

Hj ∼ N(µj , Σ). For the functionals associated with sample averages and covariances we

have IF(x; T, Hj) = x − µj and IF(x; C, Hj) = (x − µj)(x − µj)
t − Σ. Influence functions

for several robust location and scatter functionals have been computed in the literature:

we will use the expressions of Croux and Haesbroeck (1999) for the Minimum Covariance

Determinant (MCD) estimator, and of Lopuhaä (1989) for S-estimators. For definitions

of these estimators, we refer to Rousseeuw (1985) for the MCD, and to Davies (1987)

for multivariate S-estimators. In this paper, we use the 25% breakdown point versions of

these estimators, with a Tukey Biweight loss function for the S-estimator.
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ERopt

ER(Hε)

ε

Figure 1: Error rate of a discriminant rule based on a contaminated model distribution

as a function of the amount of contamination ε.

Proposition 2 At the model distribution Hm verifying (M), the influence function of the

error rate of the Fisher discriminant rule (with s = 1) is zero, and IF2((x, y); ER, Hm)

equals

g′−1
∑

j=1

πjφ

(

θj

∆j
− ∆j

2

)

∆j

{[IF((x, y); Aj, Hm)

∆j

+

(

µj + µj+1

2
− θj(µj+1 − µj)

∆2
j

)t
IF((x, y); Bj, Hm)

∆j

]2

+
IF((x, y); Bj, Hm)t

∆j

[

Σ −
(

µj+1 − µj

∆j

) (

µj+1 − µj

∆j

)t
]

IF((x, y); Bj, Hm)

∆j

}

(3.3)

with Aj and Bj the functionals defined in (2.6) and (2.7), ∆j is defined in (2.4), and

θj = log(πj+1/πj) for j = 1, . . . , g′ − 1.

The influence functions of the functionals Aj and Bj are easy to compute and given by

IF((x, y); Bj, Hm) = IF((x, y); V V t, Hm)(µj+1 − µj) +
1

πy

(δy,j+1 − δy,j)v1v
t
1IF(x; T, Hy)

(3.4)
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and

IF((x, y); Aj, Hm) = −IF((x, y); Bj, Hm)t µj + µj+1

2

− 1

2πy
(δy,j + δy,j+1)(µj+1 − µj)

tΣ−1IF(x; T, Hy) +
δy,j+1 − δy,j

πy

(3.5)

for 1 ≤ j ≤ g′, and with δy,j the Kronecker symbol (so δy,j = 1 for y = j and zero

for y 6= j). Furthermore, IF((x, y); V V t, Hm) = IF((x, y); V, Hm)vt
1 + v1IF((x, y); V, Hm)t.

Finally, it is shown in the appendix that

IF((x, y); V, Hm) = cy(Σ
−1−v1v

t
1)IF(x; T, Hy)−Σ−1IF(x; C, Hy)v1+

1

2
(vt

1IF (x; C, Hy)v1)v1,

(3.6)

with cy = (µy − µ̄)tV/(V tBV ).

From the expressions above for the second order influence function of the error rate,

one can see that the effect of an observation is bounded as soon as the IF of the location

and scatter functionals are bounded. The MCD- and S-estimators have bounded influence

functions, yielding a bounded IF2(·; ER, Hm). The structure of the obtained expression

becomes more apparent by considering the case p = 1. In this univariate setting, s =

1 = min(g − 1, p), and the Fisher discriminant rule becomes affine equivariant. Hence

we may assume, without loss of generality, that Σ = 1. The corollary below writes

IF2((x, y); ER; Hm) as an explicit function of the IF of the location/scatter measures.

Corollary 1 For p = 1 and Σ = 1, we have that IF2((x, y); ER; Hm) is given by

g′−1
∑

j=1

πj

∆j

φ

(

θj

∆j

− ∆j

2

) {

θjIF(x; C, Hy) +
δy,j+1 − δy,j

πy

+

[

δy,j

(

θj

∆j
− ∆j

2

)

+ δy,j+1

(

− θj

∆j
− ∆j

2

)]

IF(x; T, Hy)

πy

}2

.

(3.7)

In Figure 2, we plot the IF2 in (3.7) as a function of x, and this for every possible value

of y separately. The plots in the left column of the panel correspond to two groups with

µ1 = −0.5, µ2 = 0.5 and π1 = π2 = 0.5, and the right column to three groups with

µ1 = −1, µ2 = 0, µ3 = 1, and π1 = π2 = π3 = 1/3. The first row corresponds to Fisher

discriminant analysis using the classical estimators, the second to the MCD, and the third

row to the S-estimator. Note that IF2 is non-negative everywhere, since contamination in
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the training sample may only increase the error rate, given that we work with an optimal

classification rule at the model.

From Figure 2, we see that outlying observations may have an unbounded influence on

the error rate of the classical procedure. The MCD yields a bounded IF2, but we see that

it is more vulnerable to inliers, as is perceived by the high peaks quite near the population

centers. The S-based discriminant procedure is doing much better in this respect, having

a much smaller value for the maximum influence (the so-called “gross-error sensitivity”).

Moreover, its IF2 is smooth and has no jumps. Notice that extreme outliers still have

a positive bounded influence on the error rate of the robust methods, even though we

know that both MCD and S location and scatter estimators have a redescending influence

function. This is caused by the fact that an extreme outlier in the training sample will

still have an effect on the estimates of the prior probabilities estimates in (2.1). These

above findings hold for both two and three groups. In the three groups case we also see

that outliers being allocated to the second group (indicated by the dotted line), have, in

general, a higher value for the influence function. An explanation is that the observations

in the centrally located group will affect misclassification probabilities in all groups, while

observations in a more outwards located group will basically only have influence on the

misclassification probabilities of two groups. In the next section we will use IF2 to compute

classification efficiencies.

4 Asymptotic Relative Classification Efficiencies

At finite samples, discrimination rules are estimated from a training sample, resulting in

an error rate ERn. This error rate depends on the sample, and gives the total probability of

misclassification when working with the estimated discriminant functions. When sampling

training data from the model Hm, the expected loss in classification performance is

Lossn = EHm
[ERn − ERopt]. (4.1)

This is a measure of our expected regret, in terms of increased error rate, when using some

estimated discrimination procedure (see Efron 1975). The larger the size of the training

sample, the more information available for accurate discrimination, and the closer the

error rate will be to the optimal one. Efron (1975, Theorem 1) showed that the expected
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Figure 2: Second order influence functions for p = 1 and Σ = 1, for multiple group

discriminant analysis using the classical estimators (top), the MCD (middle), and S-

estimators (bottom). Figures on the left correspond to two groups with π1 = π2, and on

the right to three groups with π1 = π2 = π3. The solid curve gives IF2 for an observation

with y = 1, the dotted line for y = 2, and the dashed line for y = 3.
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loss decreases to zero at a rate of 1/n. Campbell and Donner (1989, Theorem 1) extended

Efron’s result to multiple groups to compute the classification efficiency of multinomial

w.r.t. ordinal logistic regression. O’Neill (1980) discusses the large-sample distribution of

the error rate of an arbitrary estimator of the optimal classification rule. These authors

did not use influence functions, and in the following proposition we show how their results

may be reformulated in terms of the expected value of the second order influence function.

Some standard regularity conditions on the location/scatter estimators are needed and

stated at the beginning of the proof in the Appendix.

Proposition 3 At the model distribution Hm, we have that the expected loss in error rate

of an estimated optimal discriminant rule verifies

Lossn =
1

2n
EHm

[IF2((X, Y ); ER, Hm)] + op(n
−1). (4.2)

The above expression (4.2) corresponds to (3.2) with ε = 1/
√

n, and allows to define an

Asymptotic Loss as

A-Loss = lim
n→∞

nLossn =
1

2
E[IF2((X, Y ); ER, Hm)].

Efron (1975) proposed then to compare the classification performance of two estimators

by computing Asymptotic Relative Classification Efficiencies (ARCE). Here, we would

like to compare the loss in expected error rate using the classical procedure, Loss(Cl),

with the loss of the robust Fisher’s discriminant analysis, Loss(Robust). The ARCE of

the robust with respect to classical Fisher’s discriminant analysis is then

ARCE(Robust, Cl) =
A-Loss(Cl)

A-Loss(Robust)
. (4.3)

At the model (M), where the different populations are normally distributed, the classical

procedure uses the Maximum Likelihood estimates, and we have 0 ≤ ARCE(Robust,Cl) ≤
1.

In the case of g = 2 groups, an explicit expression for the ARCE can be obtained.

For g = 2, we have that s = 1 = min(g − 1, p) and the discriminant procedure is affine

equivariant. Without loss of generality, we may assume that µ1 = (−∆/2, . . . , 0)t, µ2 =

−µ1 and Σ = Ip. Then the following proposition holds.
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Proposition 4 The asymptotic loss of Fisher’s discriminant analysis based on the loca-

tion and scatter measures T and C, for g = 2 groups being normally distributed with equal

covariance matrices, is given by

A-Loss =
φ(θ/∆ − ∆/2)

2π2∆

{

(p − 1 +
∆2

4
+

θ2

∆2
+ (π1 − π2)θ) ASV (T1)

+ (p − 1)∆2 π1π2 ASV (C12) + θ2π1π2 ASV (C11) + 1
}

(4.4)

with ∆ = µ2 − µ1 and θ = log(π2/π1). Here, ASV(T1), ASV(C12), and ASV(C11) stands

for the asymptotic variance of, respectively, a component of T , an off-diagonal element of

C, and a diagonal element of C, all evaluated at N(0, Ip).

Evaluating expression (4.4), for both the robust and the classical procedure, immediately

gives the asymptotic relative classification efficiencies in (4.3). We will compute the

ARCE for S-estimators and for the Reweighted MCD-estimator (RMCD), both with 25%

breakdown point. Note that it is common to perform a reweighing step for the MCD,

in order to improve its efficiency. Asymptotic variances for the S- and RMCD-estimator

are reported in Croux and Haesbroeck (1999), using results of Lopuhaä (1989, 1999).

From Figure 3, we see how the ARCE of both estimators varies with ∆ and with the

log-odds ratio θ, for p = 5 (other values of p give similar results). First we note that the

classification efficiency of both robust procedures is quite high, where the S-based method

is the more efficient. Both robust discriminant rules lose some classification efficiency when

the distance between the population centers increases, and this loss is more pronounced

for the RMCD-estimator. On the other hand, the effect of θ on the ARCE is very limited;

changing the group proportions has almost no effect on the relative performance of the

different discriminant methods we considered.

5 Simulations

The results of the previous section were derived at the population level. In a first simula-

tion experiment we show that the derived asymptotic classification efficiencies of Section 4

are confirmed by finite sample results. Afterwards, we present simulation experiments

where we generate training samples from models not satisfying condition (M): one where
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Figure 3: The asymptotic relative classification efficiency of Fisher’s discriminant analysis

based on RMCD and S w.r.t. the classical method, for p = 2, as a function of ∆ (left

figure, for θ = 0) and as a function of θ (right figure, for ∆ = 1).

the population centers are not collinear, and one where outliers were induced in the train-

ing sample. We will compare three different versions of Fisher’s discrimination method:

the classical method, where sample averages and covariance matrices are used in (2.6) and

(1.2), and the methods using RMCD and S-estimators. We compute them using the fast

algorithms of Rousseeuw and Van Driessen (1999) for the RMCD, and Salibian-Barrera

and Yohai (2005) for the S-estimator.

In a first simulation setting we generate m = 1000 training samples of size n according

to a mixture of two normal distributions. We set π1 = π2 = 0.5, µ2 = (1/2, 0. . . . , 0) =

−µ1, and Σ = I2. For every training sample, we compute the discriminant rule and denote

the associated error rate by ERk
n, for k = 1, . . . , m. Since we know the true distribution

of the data to classify, ERk
n can be estimated without any significant error by generating

a test sample from the model distribution of size 100000, and computing the empirical

frequency of misclassified observations over this test sample. Since the model distribution

satisfies condition (M), it is possible to compute the optimal error rate according to

formula (2.8). Then we can approximate the expected loss in error rate by the Monte

Carlo average

Lossn =
1

m

m
∑

k=1

ERk
n − ERopt = ERn − ERopt. (5.1)
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The finite sample relative classification efficiency of the robust method with respect to

the classical procedure is then given by

RCEn(Robust, Cl) =
Lossn(Cl)

Lossn(Robust)
. (5.2)

In Table 1 these efficiencies are reported for different training sample sizes3 for di-

mensions p = 2 and p = 5, and for using the RMCD- and the S-estimator as robust

estimators. We also added the asymptotic classification efficiency, using formula (4.4),

in the row “n = ∞”. We see from Table 1 that the finite sample results are very close

to the asymptotic efficiency; only for the RMCD the convergence is somehow slower for

p = 5. Note that the finite sample efficiencies of both robust procedures are very high.

The average classification errors are reported as well. Standard errors around the reported

results have been computed and are small.4 Table 1 shows that for n = 50 there is still a

gap of a few percentages between the optimal error rate and the finite sample error rate.

For n = 200 we are already getting very close to the optimal error rate, illustrating the

fast (order n−1) convergence to ERopt.

In a second simulation experiment, we simulate according to a normal model H∗
m with

µ1 = (1, 0, . . . , 0)t, µ2 = (−1/2,
√

3/2, 0, . . . , 0)t, µ3 = (−1/2,−
√

3/2, 0, . . . , 0)t, Σ = Ip,

and π1 = π2 = π3. This distribution does not obey condition (M), since the population

centers are not collinear. The centers are at equal distance ∆ =
√

3 from each other,

which makes it possible to derive an explicit expression for the optimal error rate. It is

not difficult to verify that

ER(H∗
m) = 1 + Φ

(

∆√
3

)

− 2

∫ ∞

−∆/
√

3

Φ(
√

3z + ∆)dΦ(z).

If we select s = min(g − 1, p) = 2 discriminant functions, then ER(H∗
m) = ERopt, and we

can compute finite sample relative classification efficiencies using (5.2). We do not have

an expression for the A-loss if s = 2, hence asymptotic efficiencies are not available. From

3The training sample size needs to be large enough to ensure that the robust high breakdown estimators

can still be computed in each group. For larger dimensions, those require a large enough sample size to

be computable.
4More precisely, for p = 2 standard errors around the reported average error rates are about

0.06, 0.03, 0.01% for n = 50, 100, 200 and for p = 5 about 0.05, 0.02% for n = 100, 200 .
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Table 2 we see that the error rates converge quite quickly to ERopt, for the three considered

methods. Clearly, the loss in error rate is more important for the higher dimensions.

Due to the choice of the sampling scheme, there is no loss in discrimination power by

projecting the sample onto the two-dimensional subspace spanned by the first two basis

vectors. Clearly, estimating this subspace is somehow harder in a higher dimensional

space. By looking at the values of the RCEn, the very high efficiency of the S-based

procedure is revealed, while the RMCD also performs well. We also see that the finite

sample efficiencies are quite stable over the different sample sizes.

In Table 3 the results are reported by using only one discriminant function. Such

an approach has the advantage of dimension reduction, but at the model ER(H∗
m) this

leads to a loss of discrimination power. Again, we see that the error rates ERn are quite

stable over the different sample sizes, and are converging quickly to the asymptotic error

rate (this convergence is a bit slower for p = 5) for all estimators considered. The latter

error rate will be suboptimal, leading to an increased probability of misclassification of

about 14% (compared to ERopt) in this example. Hence the discriminant rule is not

“consistent”, in the sense of not being asymptotically optimal, and one cannot compute

asymptotic relative efficiencies. This is comparable to the asymptotic efficiency of an

estimator, which can only be compared among consistent estimators.

Finally, we illustrate the robustness of the RMCD- and S-based discriminant procedure

by introducing outliers in the training sample. We generate 10% of the data according

to a contaminated model Hc, being identical to model H∗
m, but with population centers

being shifted to −9 ∗ µj, for j = 1, . . . , 3. Empirical error rates are computed for s = 2

and s = 1 and need to be compared with the results from Tables 2 and 3. Table 4

clearly shows that the error rates of the robust procedure are only slightly affected by the

outliers. The classical procedure, however, is completely misled by the outliers, and gives

unacceptable high misclassification probabilities of around 64%. (Note that in the three

group case, random guessing would already give an error rate of 66.67%.

6 Conclusions

This paper studies classification efficiencies and robustness properties of Fisher’s linear dis-

criminant analysis. The centers and covariances appearing in the population discriminant
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Table 1: Finite sample relative classification efficiencies, together with average error rates

in percentages, for RMCD- and S-based discriminant analysis, for several values of n and

for p = 2, 5. Results for g = 2 groups, and ∆ = 1.

Relative Efficiencies Error rates

n RCEn(Cl,RMCD) RCEn(Cl,S) ERn(Cl) ERn(RMCD) ERn(S)

p=2 50 0.8732 0.9828 32.66 32.92 32.69

100 0.8813 0.9772 31.77 31.89 31.79

200 0.9204 0.9788 31.28 31.32 31.29

∞ 0.8783 0.9381 30.85 30.85 30.85

p=5 100 0.8320 0.9894 31.93 32.15 31.94

200 0.8872 0.9936 31.39 31.45 31.39

∞ 0.9219 0.9783 30.85 30.85 30.85

Table 2: Finite sample relative classification efficiencies, together with average error rates

in percentages, for RMCD- and S-based discriminant analysis, for several values of n and

for p = 2, 5. Results for a setting with g = 3 groups, and s = 2.

Relative Efficiencies Error rates

n RCEn(Cl,RMCD) RCEn(Cl,S) ERn(Cl) ERn(RMCD) ERn(S)

p=2 50 0.8790 0.9995 32.48 32.77 32.48

100 0.8633 0.9897 31.41 31.58 31.42

200 0.8898 0.9864 30.90 30.96 30.90

∞ 30.35 30.35 30.35

p=5 100 0.8757 0.9689 35.53 36.27 35.70

200 0.8614 0.9650 33.88 34.45 34.01

∞ 30.35 30.35 30.25
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Table 3: Finite sample average error rates in percentages, for the same sampling scheme

as in Table 2, but with s = 1.

Error rates

n ERn(Cl) ERn(RMCD) ERn(S)

p=2 50 47.19 47.23 47.25

100 46.63 46.64 46.65

200 46.28 46.22 46.28

∞ 44.33 44.33 44.33

p=5 100 49.08 49.29 49.20

200 47.99 48.27 48.09

∞ 44.33 44.33 44.33

Table 4: Finite sample average error rates in percentages, for the same sampling scheme

as in Table 2 and 3, with p = 2, but with 10% of outliers introduced in the training

sample. Results are given for s = 2 and s = 1.

Error rates

n ERn(Cl) ERn(RMCD) ERn(S)

s=2 50 62.94 34.87 39.42

100 64.45 31.55 34.82

200 64.97 30.89 31.71

s=1 50 62.31 46.90 47.40

100 63.91 46.68 46.97

200 64.78 46.24 46.59
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rule can be estimated by their sample counterparts, but the theory also allows for plugging

in robust estimates instead, yielding a robust discriminant procedure. Influence functions

and asymptotic relative classification efficiencies were computed at a model where all

groups are normally distributed with equal covariance and collinear group means. At this

model, the Fisher discriminant rule is optimal. In Section 3 it is shown that for optimal

classification rules the influence function vanishes, and that the second order influence

function is the appropriate tool to use. Taking the expected value of the second order

influence function allows then to compute asymptotic relative classification efficiencies.

This efficiency measures the loss in classification performance (at the model) when using

a robust instead of the classical procedure. It was shown that this loss remains very

limited, if one uses efficient robust estimators of location and scatter like RMCD- and S-

estimators. If outliers are present, the robust method completely outperforms the Fisher

rule based on sample averages and covariances.

For the two-group case, influence functions for the error rate of linear discriminant

analysis were already computed by Croux and Dehon (2001) and for quadratic discrimi-

nant analysis by Croux and Joossens (2005). However, they used a non-optimal classifica-

tion rule, by omitting the penalty term in (1.4), leading to essentially different expressions

for the influence function (in particular, the first order IF will not vanish); they also did

not consider classification efficiencies. A next challenge would be to compute asymptotic

classification efficiencies for the multiple group case with non-collinear centers. However,

in the general setting, no tractable expression for the error rate is available. One might

fear that it will not be possible to obtain theoretical results here, and that only simulations

and numerical experiments (as those reported in Section 5) are possible.

Acknowledgment: This research has been supported by the Research Fund K.U. Leuven

and the “Fonds voor Wetenschappelijk Onderzoek”-Flanders (Contract number G.0385.03).

Appendix

Description of the procedure for ordering the group labels: We will drop the

dependency on H in the notation. Since s = 1, it follows from (2.1) that D2
j (x) = bjx1+aj,

with bj = −2T t
j V , aj = (V tTj)

2 − 2 log πj , for j = 1, . . . , g, and with x1 = V tx. The
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minimum of the discriminant scores can thus be found by minimising a set of g linear

functions in x1. The resulting minimum, denoted here by f(x1), will be piecewise linear.

Let now s1 = −∞ < s2 < . . . < sg′ < sg′+1 = ∞ such that f is linear on every interval

]sj , sj+1[ for 1 ≤ j ≤ g′. We will relabel now the groups in such a way that D2
j (x) ≡ f(x1)

on the intervals ]sj , sj+1[. Moreover, it is not difficult to see that sj < sj+1 implies

bj > bj+1, for j = 1, . . . , g′−1. It is then clear that Rj = {x ∈ R
p | mink D2

k(x) = D2
j (x)},

for 1 ≤ j ≤ g′. If a function bjx1 + aj is not corresponding to any of the intervals on

which f in linear, then the label j needs to be set larger than g′, and Rj = ∅.
To conclude, we will order the groups with respect to decreasing values of bj , or increasing

values of V tTj, and remove the indices j corresponding to empty regions Rj. 2

Proof of Proposition 1: We will use the notation of the above description of the

procedure to order the group labels. Let (X, Y ) ∼ Hm. First note that if Y = j, with

j > g′, then Rj = ∅ and the observation will always be misclassified. This explains the

presence of the last term in (2.5). Now for 1 ≤ j ≤ g′, denote ΠR
j = P (V tX > sj+1|Y = j)

and ΠL
j = P (V tX < sj |Y = j). Then the probability that an observation coming from

one of the first g′ groups is misclassified is given by

g′−1
∑

j=1

πjΠ
R
j +

g
∑

j=2

πjΠ
L
j .

Now for 1 ≤ j ≤ g′ − 1, we have

ΠR
j = PHm

(

bj(V
tX) + aj > bj+1(V

tX) + aj+1|Y = j
)

= PHj
(−2(Tj − Tj+1)

tV V t[X − (Tj + Tj+1)/2] > 2 log(πj/πj+1) | Y = j)

= PHj
(−Bt

jX < Aj)

= P
(

Z <
Aj + Bt

jµj
√

Bt
jΣBj

| Z ∼ Np(0, Ip)
)

= Φ
(Aj + Bt

jµj
√

Bt
jΣBj

)

where Aj = Aj(H) and Bj = Bj(H) are defined in (2.6) and (2.7). Similarly

ΠL
j = Φ

(−Aj−1(H) − Bt
j−1(H)µj

√

Bt
j−1(H)ΣBj−1(H)

)

.

Collecting terms yields the result. 2
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Proof of Proposition 2: We fix (x, y) and denote Hε = (1 − ε)Hm + ε∆(x,y). To

compute IF and IF2, we need to compute the first and second order derivative of ER(Hε).

Expression (2.5) can be structured as

ER(Hε) =

g′−1
∑

j=1

[πjΠ
R
j (Hε) + πj+1Π

L
j+1(Hε)] +

g
∑

j=g′+1

πj . (A.1)

Since the last term in the above expression is constant, it will not infer in the expression

for the influence function. We will also use the functionals Ej = Aj(B
t
jΣBj)

−1/2 and

Fj = Bj(B
t
jΣBj)

−1/2, where we drop the dependency on H .

Throughout this proof, we also use that at the model, that is for ε = 0, the following

identities hold: βj := Bj(Hm) = Σ−1(µj+1−µj) = v1∆j and αj := Aj(Hm) = θj −βt
j(µj +

µj+1)/2. Furthermore βt
jΣβj = ∆2

j , Ej(Hm) = αj/∆j and Fj(H) = βj/∆j such that, for

j = 1, . . . , g − 1

ΠR
j (Hm) = Φ(

θj

∆j
− ∆j

2
) and ΠL

j+1(Hm) = Φ(− θj+1

∆j+1
− ∆j+1

2
).

Before continuing we need the following lemmas. We use the shorthand notation IF(·) =

IF((x, y); ·, Hm)

Lemma:

(i) IF(Ej) = IF(Aj)/∆j − αjβ
t
jΣ IF(Bj)/∆3

j

(ii) IF(Fj) = (Ip − βjβ
t
jΣ/∆2

j ) IF(Bj)/∆j

(iii) IF(Fj)
t(µj+1 − µj) = 0

(iv) IF2(Fj)
t(µj+1 − µj) = − IF(Bj)t

∆j
{Σ −

(

µj+1−µj

∆j

)(

µj+1−µj

∆j

)t

} IF(Bj)

∆j

(v) πjφ(
θj

∆j
− ∆j

2
) = πj+1φ(− θj

∆j
− ∆j

2
)

Proof:

(i) and (ii) can be obtained via straightforward derivation. By definition of Fj , we have

F t
j (Hε)ΣFj(Hε) = 1 for all Hε. From the latter it follows that

(
∂

∂ε
F t

j (Hε))ΣFj(Hε) = 0, (A.2)
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for any ε > 0. Evaluating (A.2) at ε = 0 results in (iii). Deriving (A.2) once more w.r.t.

ε and evaluating at ε = 0 results in

IF2(Fj)
t(µj+1 − µj)/∆j = −IF(Fj)

tΣ IF(Fj). (A.3)

Since

(Ip −
βjβ

t
jΣ

∆2
j

)tΣ(Ip −
βjβ

t
jΣ

∆2
j

) = Σ − Σβjβ
t
jΣ

∆2
j

= Σ − (
µj+1 − µj

∆j

)(
µj+1 − µj

∆j

)t,

(iv) follows. Finally (v) follows from

log[φ(
θj

∆j

− ∆j

2
)/φ(− θj

∆j

− ∆j

2
)] = (− θj

∆j

− ∆j

2
)2/2 − (

θj

∆j

− ∆j

2
)2/2 = θj = log

πj+1

πj

which ends the proof of the Lemma. 2

The first order derivative of πjΠ
R
j (Hε) + πj+1Π

L
j+1(Hε) equals now, for 1 ≤ j ≤ g′ − 1,

πjφ(
θj

∆j
− ∆j

2
)

∂

∂ε

[

Ej(Hε) + F t
j (Hε)µj

]

∣

∣

ε = 0

+πj+1φ(− θj

∆j
− ∆j

2
)

∂

∂ε

[

−Ej(Hε) − F t
j (Hε)µj+1

]

∣

∣

ε = 0

= −πjφ(
θj

∆j
− ∆j

2
)IF(Fj)

t(µj+1 − µj)

= 0

using lemma (iii) and (v). This implies that IF((x, y); ER, Hm) = 0. The second order

derivative of πjΠ
R
j (Hε) + πj+1Π

L
j+1(Hε) at ε = 0 equals

πjφ
′(

θj

∆j

− ∆j

2
)[

∂

∂ε
(Ej(Hε) + F t

j (Hε)µj)
∣

∣

ε = 0
]2

+πj+1φ
′(− θj

∆j

− ∆j

2
)[

∂

∂ε
(−Ej(Hε) − F t

j (Hε)µj+1
∣

∣

ε = 0
]2

+πjφ(
θj

∆j
− ∆j

2
)

∂2

∂ε2
(Ej(Hε) + F t

j (Hε)µj)
∣

∣

ε = 0

+πj+1φ(− θj

∆j
− ∆j

2
)

∂2

∂ε2
[−Ej(Hε) − F t

j (Hε)µj+1]
∣

∣

ε = 0
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Using φ′(u) = −uφ(u) this can be written as

−πj(
θj

∆j
− ∆j

2
)φ(

θj

∆j
− ∆j

2
)[IF(Ej) + IF(Fj)

tµj]
2

+πj+1(
θj

∆j
+

∆j

2
)φ(− θj

∆j
− ∆j

2
)[IF(Ej) + IF(Fj)

tµj+1]
2

+πjφ(
θj

∆j
− ∆j

2
)[IF2(Ej) + IF2(Fj)

tµj] + πj−1φ(− θj

∆j
− ∆j

2
)[−IF2(Ej) − IF2(Fj)

tµj+1]

Using lemmas (iii) and (v) the above equation reduces to πjφ(θj/∆j − ∆j/2) times

−
(

θj

∆j

− ∆j

2

)

[

IF(Ej) + IF(Fj)
tµj

]2
+

(

θj

∆j

+
∆j

2

)

[

IF(Ej) + IF(Fj)
tµj+1

]2

−IF2(Fj)
t(µj+1 − µj)

= ∆j [IF(Ej) + IF(Fj)
t(µj + µj+1)/2]2 − ∆j [IF2(Fj)

t(µj − µj+1)/∆j ]

The above expression together with (A.1) results in (3.3). 2

Proof of equation (3.6) for IF((x, y); V, Hm): At the model Hm, let λ1 be the largest

eigenvalue of the matrix W−1B and denote v2, . . . , vp for the eigenvectors corresponding to

the null eigenvalues. The influence function of the functional V1, being the first eigenvector

of the matrix W−1B is

IF((x, y); V1, Hm) =
1

λ1

p
∑

k=2

(vt
kIF((x, y); W−1B, Hm)v1)vk −

1

2
(vt

1IF(x; C, Hy)v1)v1. (A.4)

(See Lemma 3 of Croux and Dehon, 2002, for the influence function of the eigenvectors

of a non-symmetric matrix.) Using the fact that

IF((x, y); W−1B, Hm) = W−1IF((x, y); B, Hm) −W−1IF((x, y); W, Hm)W−1B,

it is easy to see that the IF((x, y); V1, Hm) can be written as

1

λ1

p
∑

k=2

vt
k(IF((x, y); B, Hm) − λ1IF(x; C, Hy)v1)vk −

1

2
vt
1IF(x, C, Hy)v1v1. (A.5)

Now, it is not difficult to verify that

IF((x, y); B, Hm) = (µy − µ̄)(µy − µ̄)t −B + IF(x; T, Hy)(µy − µ̄)t + (µy − µ̄)IF(x; T, Hy)
t.
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Since the eigenvectors v2, . . . , vk are perpendicular to µy − µ̄, (A.5) simplifies to

IF((x, y); V1, Hm) = cy

p
∑

k=2

(vt
kIF(x; T, Hy))vk−

p
∑

k=2

(vt
kIF(x; C, Hy)c1)vk−(vt

1IF(x; C, Hy)v1)v1/2,

with cy = (µy − µ̄)tv1/λ1. The nice property that Σ−1 =
∑p

k=1 vkv
t
k and the fact that

vt
1Bv1 = λ1 yields the equations (3.6). 2

Proof of Proposition 3: Collect the estimates of location and scatter being used to

construct the discriminant rule in a vector θ̂n and denote Θ the corresponding functional.

Suppose that IF((X, Y ); Θ, Hm) exists and that θ̂n is consistent and asymptotically normal

with

lim
n→∞

nCov(θ̂) = ASV(θ̂n) = EHm
[IF((X, Y ); Θ, Hm)IF((X, Y ); Θ, Hm)t]. (A.6)

Evaluating (2.5) at the empirical distribution function H = Hn, gives ERn = ER(Hn) =

g(θ̂n), for a certain (complicated) function g. Denote θ0 the true parameter, for which

g(θ0) = ERopt. Since θ0 corresponds to a minimum of g, the derivative of g evaluated at

θ0 equals zero. A Taylor expansion of g around θ0 yields then

ERn = ERopt +
1

2
(θ̂n − θ0)

tHg(θ̂n − θ0) + op(‖θ̂n − θ0‖2),

with Hg the Hessian matrix of g at θ0. It follows that

nE[ERn − ERopt] =
1

2
E[

(

n1/2(θ̂n − θ0)
)t

Hg

(

n1/2(θ̂n − θ0)
)

] + op(1)

=
1

2
Hg traceE[

(

n1/2(θ̂n − θ0)
)(

n1/2(θ̂n − θ0)
)t

] + op(1)

=
1

2n
Hg trace ASV(θ̂n) + op(1).

From (A.6) and definition (5.1) we have then

Lossn =
1

2n
Hgtrace

(

EHm
[IF((X, Y ); Θ, Hm)IF((X, Y ); Θ, Hm)t]

)

+ op(n
−1). (A.7)

On the other hand, at the level of the functional it holds that ER ≡ g(Θ), and

definition (3.1) and the chain rule imply

IF2((x, y); ER, Hm) = IF((x, y); Θ, Hm)tHgIF((x, y); Θ, Hm)
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since Θ(Hm) = θ0 and the derivative of g at θ0 vanishes. Using trace properties, we get

E[IF2((x, y); ER, Hm)] = Hgtrace
(

EHm
[IF((X, Y ); Θ, Hm)IF((X, Y ); Θ, Hm)t]

)

. (A.8)

Combining (A.7) and (A.8) yields the result (4.2) of proposition 3. 2

Proof of Proposition 4 Without loss of generality, for the case of 2 groups, take a

model Hm with µ1 = −∆
2
e1, e1 = (1, 0, . . . , 0)t, µ2 = ∆

2
e1 and Σ = Ip. Denote e2, . . . , ep

the other basis vectors. The second order influence function of the error rate in (3.3)

simplifies then to

π1∆φ(
θ

∆
− ∆

2
)
[IF((x, y); A, Hm)

∆
− θ

∆

et
1IF((x, y); B, Hm)

∆

]2

+

p
∑

k=2

[et
kIF((x, y); B, Hm)

∆

]2

.

(A.9)

Using obvious notations, we have ASV (A) = E[IF(A)2], ASV (Bk) = et
kE[IF(B)IF(B)t]ek,

for k = 1, . . . , p, and ASV (A, B1) = et
1[IF(B)IF(A)]. By a symmetry argument,

ASV (B2) = . . . = ASV (Bp). Taking the expected value of (A.9) gives then

A-loss =
π1

∆
φ(

θ

∆
− ∆

2
){ASV (A) − 2θ

∆
ASC(A, B1) +

θ2

∆2
ASV (B1) + (p − 1) ASV (B2)}.

(A.10)

At our model Hm, equations (3.4) and (3.5) become

IF((x, y); A, Hm) = −∆et
1IF(x; T, Hy)/(2πy) + (δy,2 − δy,1)/πy

and

IF((x, y); B, Hm) = (δy,2 − δy,1)IF(x; T, Hy)/πy − ∆IF(x; C, Hy)e1,

from which it follows

ASV (A) = ((∆/2)2 ASV (T1) + 1)/(π1π2)

ASV (B1) = ASV (T1)/(π1π2) + ∆2 ASV (C11)

ASV (A, B1) = −∆(π1 − π2) ASV (T1)/(2π1π2)

ASV (B2) = ∆2 ASV (C12) + ASV (T1)/(π1π2).

Inserting the above equations in (A.10) results in (4.4), and ends the proof. 2
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