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Abstract

Support vector machines for classification have the advantage that the curse of dimension-
ality is circumvented. It has been shown that a reduction of the dimension of the input
space leads to even better results. For this purpose, we propose two information criteria
which can be computed directly from the definition of the support vector machine. We
assess the predictive performance of the models selected by our new criteria and compare
them to existing variable selection techniques in a simulation study. The simulation results
show that the new criteria are competitive in terms of generalization error rate while being
much easier to compute. We arrive at the same findings for comparison on some real-world
benchmark datasets.
Keywords: Information Criterion, Supervised Classification, Support Vector Machine,
Variable Selection.

1. Introduction

We study classification using the support vector machine (SVM). We start from a training
set {(xi, yi)} containing n observations. Each p-dimensional observation xi = (xi1, . . . , xip)
has a class label yi assigned to it, which is either +1 or −1. We wish to find a function
f(·) such that for an observation x the predicted class ŷ = +1 if f(x) is positive, and
ŷ = −1 if f(x) is negative. We want this function to assign the correct class labels to the
training observations (low training error rate) and to accurately classify new observations
(low generalization error rate). Working with a subset of the p variables xi1, . . . , xip reduces
variability of the class-label estimator and might lead to better out-of-sample predictions.

It is only true to some extent that variable selection would not be necessary in the
support vector machine setting since it manages to circumvent the so-called “curse of di-
mensionality” (see for example Cristianini and Shawe-Taylor, 2000, Hastie, Tibshirani, and
Friedman, 2001, or Schölkopf and Smola, 2002). While the SVM approach avoids fitting a
number of parameters equal to the dimension of the input space, there remains the high
probability of a perfect separation in high-dimensional problems. For example, if p is larger
than the number of observations, it is always possible to perfectly separate the two classes
of training data by a hyperplane. In general, the risk of overfitting will increases with the
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dimension for most data configurations. Hence, the risk of obtaining a decision rule with
poor generalization properties (high generalization error rate) cannot be avoided. Guyon
et al. (2002) illustrate this and show that variable selection can further improve the SVM’s
performance.

Variable selection techniques can be divided into three categories. Filters select subsets
of variables as a pre-processing step, independently of the prediction method. Wrappers
utilize the classification method to score subsets of variables. Finally, embedded methods
include variable selection into the construction of the classifier. In this paper we propose
new information criteria for SVMs, yielding a wrapper method where we consider the SVM
merely as a black box. We refer to Guyon and Elisseeff (2003) for an introduction to vari-
able and feature selection in Machine Learning. Information criteria are a standard tool for
model selection in traditional statistics. Information criteria for variable selection assign a
numerical value to each subset of the variables under consideration. The subset with the
lowest value of the information criterion is then selected. Examples are the Akaike informa-
tion criterion (AIC, Akaike, 1973) and the Bayesian information criterion (BIC, Schwarz,
1978). Claeskens and Hjort (2008) survey and explain the use of common information cri-
teria for statistical variable selection in likelihood-based models, we refer to there for more
references.

For support vector machines only very few information criteria have been developed.
The kernel regularisation information criterion (KRIC) of Kobayashi and Komaki (2006)
was originally proposed for parameter tuning of the SVM. We apply it for variable selection.
However, the KRIC has a complicated definition and is computationally expensive for large
sample sizes. In this paper two new information criteria are proposed, one shares properties
with AIC, the other with BIC. We want the new criteria to select a preferably compact
subset of variables with good predictive properties. We will show that submodels selected
by the new criteria are as performing as the ones chosen by the KRIC, while they incur
substantially less computational overhead. We also make a comparison with using cross-
validated error rate based criteria, as in Kearns et al. (1997). An important contribution of
this paper is that our numerical comparisons show that the popular, but time consuming,
cross-validation criteria are outperformed in generalization error by the new information
criteria, where the latter are coming at almost no additional computational cost.

Alternative approaches perform variable selection in feature space instead of in input
space (Shih and Cheng, 2005), or select a set of “maximally separating directions” in the
input space Fortuna and Capson (2004). These methods, however, do not select a set of
original input variables. Various other authors have suggested different formulations for the
SVM such that variable selection is performed automatically. Examples of such embedded
methods can be found in Bi et al. (2003), Zhu et al. (2004), Neumann, Schnörr and Steidl
(2005), Lee et al. (2006), Wang, Zhu, and Zou (2006), Zhang (2006), and Lin and Zhang
(2006).

In Section 2 we define the support vector machine setting, we review existing information
criteria and we describe ranking techniques to speed up the variable selection process. In
Section 3, we define the new information criteria and highlight their advantages. Section
4 contains the results of a simulation study and in Section 5 we compare the different
techniques on a few real-world benchmark datasets. Section 6 concludes and gives some
directions for further research.
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2. Problem Setting

2.1 The Support Vector Machine

We denote the training sample (xi, yi), 1 ≤ i ≤ n, with xi a p-dimensional vector of
explicative variables, and yi ∈ {−1, +1} the class label. The goal is to estimate a target
function f(x) in the space of explicative variables such that f(xi) > 0 for yi = +1, and
f(xi) < 0 for yi = −1.

We start with linear support vector machines, where f(x) is of the form f(x) = w′x+ b.
For binary classification this function is obtained by solving the minimisation problem

min
w,b,ξi

{
1
2
‖w‖2 + C

n∑

i=1

ξi

}
subject to

{
yi(w′xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.
(1)

The ξi are slack margin variables, indicating how close a point xi lies to the separating
boundary (if ξi < 1), or how badly it is misclassified (if ξi > 1). The tuning parameter C
controls how much weight is put on trying to achieve perfect separation.

The dual problem can be solved more easily, and has the following form:

min
α
{1
2
α′Qα−

n∑

i=1

αi} subject to
{

0 ≤ αi ≤ C, i = 1, . . . , n,∑n
i=1 yiαi = 0.

(2)

Here αi is the weight given to the observation (xi, yi), and Q is a positive semi-definite
matrix with entries Qi,j = yiyjx

′
ixj . The vector w can be found from w =

∑n
i=1 yiαixi. The

negative intercept b is found by computing b = 0.5(r2 − r1), where

r1 =

∑
0<yiαi<C(Qα)i − 1∑

0<yiαi<C 1
and r2 =

∑
0>yiαi>−C(Qα)i − 1∑

0>yiαi>−C 1
.

If no i exist for which 0 < yiαi < C, then define

r1 =
1
2

(
min

αi=0,yi=1
(Qα)i − max

αi=C,yi=1
(Qα)i

)
,

and analogously for r2, with yi = −1. Note that we can write ξi = [1 − yiai]+, where
[x]+ = max{0, x} and where ai = f(xi).

The linear SVM can be extended towards more complex decision functions in a rather
straightforward way. Therefore we replace the inner products x′ixj in the definition of Q
by a more general kernel function K(xi, xj). See Cristianini and Shawe-Taylor (2000) for
the properties that these kernel functions must have. This leads to a more general decision
function

f(x) =
n∑

i=1

yiαiK(xi, x) + b. (3)

Popular choices for the kernel function in (3) are the linear kernel, where the kernel function
is K(x, z) = x′z, the polynomial kernel of the form K(x, z) = (c0 + γx′z)d, and the radial
basis kernel K(x, z) = exp(−γ‖x − z‖2), where c0, γ and d are regularization parameters
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that can be tuned for optimal performance of the classifier. In this more general setting,
we have

‖w‖2 =
n∑

i,j=1

yiyjαiαjK(xi, xj) = α′Qα

for the squared norm of the weight vector, where Qi,j = yiyjK(xi, xj).

2.2 Existing Variable Selection Techniques for SVM

We compare our new methods (Section 3) to variable selection based on (ten-fold) cross-
validation (CV), guaranteed risk minimisation (GRM, Vapnik 1982) and the kernel regu-
larisation information criterion (KRIC) by Kobayashi and Komaki (2006). Each of these
will be explained in more detail below.

Ten-fold cross-validation divides the training data in ten parts of roughly equal size.
One part is left out, the other nine parts are the training data and are used to fit the SVM.
This SVM is applied to the part that is left out to obtain an estimate of the error rate.
This process is repeated ten times (each time a different part is left out) to obtain the CV
generalization error rate ε̂(S) as the average of the ten separate error rates. We select the
model with the lowest value of ε̂(S), where S ranges over all subsets of variables under
consideration. Another common method is five-fold CV. The lower the number of folds,
the less computing time is required, but the higher the variability of the estimates of the
generalization error. Note that n−fold CV is the same as the computationally infeasible
leave-one-out CV.

General risk minimisation (Vapnik, 1982) is derived from the estimated generalization
error rate, using

GRM(S) = ε̂(S) +
|S|
n

(
1 +

√
1 + ε̂(S)(n/|S|)). (4)

Here, |S| stands for the number of input variables in the set S and n is the number of
observations in the training sample. We select the model with the lowest value of GRM(S),
where S ranges over all subsets of variables under consideration. Kearns et al. (1997)
compare CV, GRM and minimum description length (Rissanen, 1989). Their experiments
have demonstrated that none of the criteria is consistently better than the others. Note
that the computational overhead for computing these measures can be immense, since we
need to train ten support vector machines to estimate the generalization error rate for only
one submodel.

We now define the KRIC of Kobayashi and Komaki (2006). This criterion was originally
developed to tune the constant C in the SVM definition (1), and by extension to tune the
kernel parameters. We use it without much adjustment for variable selection. Denote by
xi,S the subvector of xi, consisting of elements xij with j ∈ S, and similarly for other
vectors. We estimate the SVM (1) using the observations (xi,S , yi), yielding the vectors
ωS , bS and ξS , where the subscript S refers to the subset of variables under consideration.
In the dual problem (2), we have αS = (αS,1, . . . , αS,n) and [QS ]i,k = yiykK(xi,S , xk,S). The
decision rule fS(x) is as in (3), and we set ai,S = fS(xi,S). Next, we define vectors tS and
mS of length n, with components

tS,i = η2 exp(−ηai,Syi)
(1 + exp(−ηai,Syi))2

and mS,i = −η
yi exp(−ηai,Syi)

1 + exp(−ηai,Syi)
, i = 1, . . . , n.
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Here we choose η = log(2) such that log(1 + exp(−ηx)) and η[1 − x]+ coincide for x = 0,
see Kobayashi and Komaki (2006) for further motivation. With λ = C−1 log 2 the KRIC
for the logistic Bayesian model for SVMs is defined as

KRIC(S) = 2
[ n∑

i=1

log
(
1 + exp(−ηai,Syi)

)
(5)

+ trace((QSdiag(tS) + λIn)−1QS(diag(mS)2 − n−1mSmt
S))

]
.

Alternatively, Sollich’s Bayesian model for SVMs (Sollich, 2002) leads to a KRIC with a
similar form as the one in (5). Using

ν(ai,S) = (1 + exp(−2C))−1(exp(−C[1− ai,S ]+) + exp(−C[1 + ai,S ]+)),

the KRIC for the Sollich Bayesian model for SVMs is defined as

KRICS(S) = KRIC(S)− 2n log
n∑

i=1

ν(ai,S). (6)

The computation of the KRIC includes inverting an n × n-matrix with only a few zeroes.
Therefore, the computation is time-consuming if the sample size n is large. Both the CV
error rate and the KRIC may require a prohibitive computing time when a large number
of different models needs to be evaluated.

2.3 Ranking Techniques

A full subset search is computationally not feasible even not for problems with only a
small number of dimensions (p = 15 for example). To dramatically reduce the number of
models while still selecting a model that is “almost” the best model, Chen, Li and Li (2005)
use a genetic algorithm, while Peng, Long and Ding (2005) suggest a combined backward
elimination/forward selection strategy. However, both of these techniques still suffer from
the possibility that a large number of models needs to be checked before arriving at a
solution.

Alternatively, variable ranking consists of assigning a “value of importance” to each
variable and sorting the variables according to their importance. This results in a series
of p stacked models, thus only p evaluations of the variable selection criterion are needed.
The most commonly used algorithm is the SVM recursive feature elimination (SVM-RFE)
technique from Guyon et al. (2002). For a linear SVM, the variables are ranked by w2

j , with
wj the j-th component of the weight vector w. This technique assumes that the variables are
standardized to have mean 0 and variance 1. The extension proposed by Rakotomamonjy
(2003) allows application to SVMs with a non-linear kernel. We use the following SVM-RFE
algorithm with variable influence

∆‖wS‖2
(j)=

∣∣‖wS‖2 − ‖wS\{j}‖2
∣∣

as suggested by Rakotomamonjy (2003).
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Step 1: Initialise S ← {1, . . . , p}, the subset of unranked features, and r ← (), the vector
of ranked features.

Step 2: Repeat the following steps until S = ∅.
(a) Train a SVM on (xi,S , yi), and compute ‖wS‖2 = α′SQSαS .

(b) For each j ∈ S, train a new SVM on (xi,S\{j}, yi). This gives a value ‖wS\{j}‖2 =
α′S\{j}QS\{j}αS\{j} for each j ∈ S.

(c) Obtain j0 = argminj |‖wS‖2 − ‖wS\(j)‖2| and set S ← S \ {j0} and r ← (j0, r).

The vector r contains the ranked variables, with the first element the most important one.
A disadvantage of this method is that the number of SVMs to be trained is O(p2). This can
be overcome by using αS instead of αS\{j} in Step 2b, such that ‖wS\{j}‖2 ≈ α′SQS\{j}αS .
Rakotomamonjy (2003) argues that this will not affect the ranking significantly, while still
allowing a major reduction in computational time, bringing the number of SVMs to be
estimated to O(p). We employ this approximation in the simulation study in Section 4 and
in the real data examples in Section 5.

The most easiest way to rank the variables is by filtering methods. Zhang et al. (2006)
propose using sj = |wj(mj,+1 −mj,−1)| for ranking, where mj,+1 and mj,−1 are the within-
class means of variable j. Shih and Cheng (2005) use the Fisher score

Sj =
|mj,+1 −mj,−1|√

σ2
j,+1 + σ2

j,−1

for a linear SVM, where σ2
j,+1 and σ2

j,−1 are the within-class variances of variable j. The
main advantage of using Sj is that it is not necessary to train any SVM to rank the variables.
The Fisher score ranking is considered in Sections 4 and 5.

3. The New Information Criteria

As stated in the previous section, evaluating the CV error rate or the KRIC of a particular
support vector machine model requires a high number of additional computations. For
this reason, we propose two new criteria which use information already available in the
SVM, without additional complicated computations. The criteria are based on how badly
the SVM violates the margin constraints, which are written as

∑n
i=1 ξi,S , where ξi,S is the

margin slack of observation i in the support vector machine trained on the variables with
indices in S, where S is a subset of {1, . . . , p}. Alternatively, we can use the logarithm
of this sum, analogous to Bai and Ng (2002) for selecting the number of factors in factor
analysis. However, in the SVM setting this has the drawback that the value is undefined if
the sum equals zero, which can happen if the data are perfectly separable. Also, Bai and
Ng (2002) advise using a log-transform for scalar invariance reasons. Since we follow the
advice to standardise the variables before training the SVM, for better ranking as explained
in Section 2.3, we automatically have scalar invariance of the sum of the margin slacks. For
these reasons, we choose not to take the log-transform.

Generally (but not always),
∑

i ξi,S will decrease as more variables are added. Therefore
we add a penalty term related to the number of included variables to ensure a tradeoff
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between accuracy and simplicity of the chosen model. We suggest adding a linear penalty
term, such that we get an information criterion of the form

IC(S) =
n∑

i=1

ξi + C(n)|S| , (7)

where S is the set of variables included in the model.
A first choice is to take C(n) constant in (7). It is interesting to note that IC(S) is then,

up to constant factors, an easily computable approximation of the KRIC of Kobayashi and
Komaki (2006), hereby providing a theoretical justification for its use. To better understand
this, note first that log

(
1 + exp(−ηai,Syi)

)
is a continuous approximation of the hinge loss

function η[1 − yiai,S ]+ = ηξi,S for all 1 ≤ i ≤ n. Hence, the first term of the KRIC can
be approximated, up to a constant factor, by

∑
i ξi,S . For the approximation of the second

term in (5), rewrite

W = (QSdiag(tS) + λIn)−1QS(diag(mS)2 − n−1mSmt
S)

= V diag(tS)−1(diag(mS)2 − n−1mSmt
S),

with V = (A + λIn)−1A a symmetric, positive semi-definite matrix and A = QSdiag(tS).
Denoting A− the generalised inverse of A, and using a series expansion around λ = 0, gives
that the leading term of V = A−(I + λA−)−1A is equal to A−A. This expansion converges
as long as the eigenvalues of λA− are strictly less than one, which can be obtained by taking
λ small enough. We now use a singular value decomposition of both A and A− and use
the fact that the singular values of A− are the reciprocals of the non-zero singular values
of A, to obtain that the product A−A is a n× n diagonal matrix with on the diagonal |S|
ones and the remaining entries zero. Thus, the leading term of trace(W ) equals the sum of
|S| diagonal entries of the matrix diag(tS)−1(diag(mS)2 − n−1mSmt

S)). The i-th diagonal
element of this matrix is equal to

n− 1
n

t−1
S,im

2
S,i =

n− 1
n

exp(−ηai,Syi).

To further facilitate computations we replace this by 1, motivated by the fact that ηai,Syi

is often small. Although this approximation might be crude for a single term, we found
empirically that it works well for the summation over the entire training set. Hence, we
arrive at the approximation trace(W ) ≈ |S| which is the linear penalty term in (7).

Taking the constant value C(n) = 2, leads to our first new support vector machine
information criterion (SVMIC):

SVMICa(S) =
n∑

i=1

ξi + 2|S|. (8)

The newly proposed criterion SVMICa for support vector machines shares the form of the
penalty with the well-known Akaike (1973) information criterion. This AIC is defined as
minus twice the value of the maximised log likelihood of the model, plus two times the num-
ber of parameters to be estimated (that is, 2|S|). Because the penalty 2|S| is not dependent
on the sample size n, we expect that both criteria share some properties, such as having
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Figure 1: Values of KRIC and SVMICa in a simulation experiment, showing high correla-
tion (0.975).

the tendency to not select the most parsimonious model. For the AIC, Woodroofe (1982)
has shown that in the limit for n → ∞, the expected number of superfluous parameters is
less than one.

To support the definition of SVMICa , we ran a simulation experiment and compared
the values of KRIC and SVMICa for 100 models. The sample size is n = 50, with 10
variables of which only the first 4 variables are different from zero. A detailed description of
the simulation setting can be found in Section 4. We used a linear kernel. Figure 1 reports
these numerical results and shows a high correlation (0.975) between the values of the two
criteria. Other simulation settings gave comparable correlation values.

Our second proposed criterion follows the spirit of Schwarz’s (1978) Bayesian information
criterion (BIC). This criterion is defined similarly as the AIC, but instead of the penalty
2|S|, it uses log(n)|S|. The BIC has been shown to be consistent (Haughton 1988, 1989).
This means that if the true model is contained in the search list, the criterion will (in the
limit for n → ∞) select this correct model. For a related construction for factor models,
see Bai and Ng (2002). This motivates us to take C(n) = log(n), and we define our second
criterion

SVMICb(S) =
n∑

i=1

ξi + log(n)|S|. (9)

It is immediate that the computational cost of both SVMICs is much lower than of the
cross-validated error rate (10 more SVMs to train for 10-fold cross-validation) and of the
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kernel regularisation information criterion KRIC (which needs computations of the order
O(n3) due to the matrix inversion). The best case is when the ξi,S are directly available.
Computing the SVMICs is only an O(n) computation in that case, and usually even less
when employing the property that

ξi,S 6= 0 ⇔ αi,S = 1.

When only αS and QS are available, ξi,S is computed using the relation

ξi,S =
[
1− yi

n∑

j=1
αj,S>0

αj,S [QS ]ij
]
+
.

This means that in the worst case, the computation time of the SV MICs is O(n2), which
is still faster than using either CV error rate or KRIC.

4. Simulation Results

We perform M = 100 simulation runs with the following settings. We generate n ∈
{25, 50, 100, 200} independent observations xi, 1 ≤ i ≤ n of dimension p ∈ {25, 50, 100, 200},
with distribution N (0, σ2Ip) where σ2 = 1. For each observation we generate a class label
yi ∈ {−1, +1}, with P (yi = 1) = 1/2. Finally, we let µ = (1/2,−1/2,−1/2, 1/2, 0, . . . , 0)
of dimension p, and set xi ← xi + yiµ to separate the two classes to some extent. This
implies that the optimal separating hyperplane is x′µ = 0, such that ŷ = +1 if x′µ > 0,
resulting in a generalization error rate of Φ(−‖µ‖2/σ), with Φ the cumulative distribution
function of a standard normal. In our example, with σ = 1 and ‖µ‖2 = 1, we find an
optimal generalization error rate of 0.159.

During each simulation run, we standardize the variables to improve the numerical
performance of the SVM algorithm. The variables are ranked using either the Fisher score
or based on the variable influence on w, as described in Section 2.3. For each of the nested
models obtained in the variable ranking step, we compute (i) SVMICa and (ii) SVMICb as
in (8) and (9). We compare their performance to (iii) ten-fold CV, (iv) Vapnik’s GRM as
in (4), (v) KRIC for the logistic Bayesian model for SVMs as in (5), and (vi) KRIC for the
Sollich model for SVMs as in (6). An important remark is that for ten-fold CV, we employ
the CV2 method, which includes the feature selection procedure in each cross-validation
step, as suggested by Zhang et al. (2006). Computing the CV error rate in the usual way
can lead to a (severely) biased estimate of the generalization error, and using CV2 reduces
this bias.

The experiment is repeated with two different kernels (i) a linear kernel K(x1, x2) = x′1x2

leading to a linear decision rule (ii) a quadratic kernel K(x1, x2) = (γx′1x2 + 1)2, with
γ = 1/p, the inverse of the number of variables, leading to a quadratic decision rule. The
tuning parameter C in each SVM that we train is chosen to be C = 1, as we standardize the
explicative variables a priori. This is also the standard setting for C for the svm procedure
in the R software package. We experimented with other values of C in the range from 0.1 up
to 10, and found only minor differences in the simulation outcomes. We test the accuracy of
the classifiers computed from the selected input variables by estimating their generalization
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Linear kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 32.2 29.4 32.6 31.6 33.5 31.8 36.2 34.5 31.3 29.0 31.5 29.9

50 34.6 31.6 35.3 32.6 35.3 33.5 37.4 35.4 34.4 33.2 34.4 33.2
100 37.4 33.9 37.3 35.0 37.8 34.4 38.6 35.7 37.0 34.9 37.1 34.9

50 25 24.4 21.6 24.6 23.2 27.1 25.5 31.1 29.6 25.7 24.9 26.0 25.9
50 28.5 23.3 27.7 24.8 29.5 26.3 31.4 30.5 29.8 28.7 30.2 29.7
100 30.9 24.6 29.1 25.0 31.0 28.0 32.1 30.9 31.0 30.1 31.3 30.8

100 25 19.9 18.5 19.6 18.9 24.6 23.8 30.1 30.1 21.8 20.6 22.3 21.7
50 22.9 19.2 20.2 19.0 25.8 25.4 29.9 29.6 26.9 26.8 27.3 27.8

200 25 17.8 17.0 16.9 16.8 22.7 21.5 28.9 29.3 18.7 18.0 19.2 18.9
Quadratic kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 31.3 30.7 34.2 33.8 33.8 32.9 37.7 36.6 29.5 28.4 30.2 30.1

50 35.8 35.3 39.3 38.5 39.6 38.5 43.6 42.6 33.3 33.0 33.9 34.1
100 43.3 43.3 48.3 48.4 42.8 42.7 49.2 48.7 37.1 37.1 37.7 38.2

50 25 22.7 21.3 25.0 24.3 26.7 25.9 31.8 31.7 23.6 22.5 24.8 25.1
50 24.4 23.0 26.8 26.8 29.8 28.1 33.9 33.5 27.6 27.1 29.1 29.3
100 26.4 25.6 30.8 30.2 34.1 33.8 40.3 40.1 31.1 30.9 32.5 32.8

100 25 19.4 18.5 19.9 19.1 23.8 19.2 30.6 30.2 20.0 20.0 21.7 22.0
50 19.7 18.5 19.8 19.5 24.2 22.0 30.5 30.7 22.6 22.6 24.7 25.1

200 25 20.1 20.3 17.1 16.8 22.4 21.4 29.4 29.6 18.3 18.1 20.3 20.6

Table 1: Simulated average generalization error rate (%) for the six methods using two
different kernels. For each method, the number on the left resulted from ranking
by variable influence on ‖w‖2, and the number on the right in each column is from
ranking by the Fisher scores Sj .

(out-of-sample) error rate from a test sample of 10000 new observations. These observations
are generated in the same way as the training sample.

Table 1 reports the generalization error rates, obtained by averaging over the 100 sim-
ulation runs. An overall observation is that the error-rate based selection criteria (CV and
GRM) have the worst performance. The performances of the KRICs and the new SVMICs
are comparable. More precisely, we observe that the KRICs are better as a variable se-
lection method for small sample sizes (n = 25), while the SVMICs give better results for
larger sample sizes. This is especially apparent when the quadratic kernel is used. For
a small number of observations compared to the number of variables, we also note that
SVMICa slightly outperforms SVMICb in terms of generalization error rate, and that the
opposite is true with many observations and fewer variables. The differences in generaliza-
tion error rates become smaller as the number of variables grows. This is particulary true
for CV, whose relative performance becomes better at large sample sizes. But SVMICa
and SVMICb are still somewhat ahead, and have the advantage that they are much easier
(and less time-intensive) to compute than the other criteria, included the KRICs having a
computation time of order O(n3). Note that, as n grows, the generalization error rates of
the models obtained by our two suggested criteria are converging towards the theoretically
obtained minimal generalization error rate of 15.9%. Investigating which variable ranking
criterion is better, results in case of linear kernels to a strong preference for ranking with
the Fisher score. For the quadratic kernel, it is slightly better to rank the variables based
on variable influence on ‖w‖2.
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Figure 2: Generalization error rates for 100 simulation experiments, for n = 100, p = 25
(a) linear kernel, ranking with ‖w‖2, (b) linear kernel, ranking with Fisher score,
(c) quadratic kernel, ranking with ‖w‖2, and for (d) n = 25, 100 variables, linear
kernel and ranking with ‖w‖2.

Figure 2 presents the values of the 100 simulated generalization errors as boxplots, giving
insight in the variability of the variable selection methods. For most of the cases it turns
out that cross-validation is highly variable, while GRM has a small variability. This good
property of GRM is, however, accompanied by a much higher average generalization error
rate. Comparing the different information criteria shows that SVMICa is quite comparable
to the KRICs. The SVMICb has a larger variability. In the setting with small sample size
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(n = 25) and relatively large number of variables (100), all methods, except for GRM, are
comparable with respect to variability, but GRM has again the largest median error rate.
Our main conclusion from this analysis is that SVMICa has a similar variability than the
KRIC criteria, but SVMICb has a larger variability. Recall that the average error rates, as
reported in Table 1, were of similar magnitude for all the four information criteria. Hence,
when needing to choosing between the two newly proposed information criteria, we have a
preference for SVMICa.

Given the variability of the generalization errors over the 100 simulation runs, see the
boxplots in Figure 2, it is important to test whether the averages reported in Table 1 are also
significantly different from each other. We performed standard t-tests, and most difference
are indeed significant. For example, for the settings presented in Figure 1, we obtained
that, at the 1% level, (a) all differences are significant, except between SVMICb and the
2 KRiCs (b) all differences are significant, except between SVMICa and the 2 KRICs (c)
all differences are significant, except between SVMICb and the 2 KRICs (d) the differences
with the GRM method are significant, the others not.

Furthermore, we investigate which models are actually chosen by the different criteria.
This information is reported in Table 2. For each setting, it shows how many times the
correct subset of input variables, containing only the first four input variables, was chosen
(C, correct). This table also shows how many times a too-sparse group of variables was
selected (U, underfitting), and how many times a too-rich group of variables was chosen
(O, overfitting). So an overfit means that all correct variables are selected, but in addition
some superfluous ones, while an underfit selects a subset of the important variables, but no
irrelevant variables are included. The good performance of SVMICa and SVMICb might
be due to the fact that these criteria seem to have the tendency to select a set of variables
which includes all significant ones as the number of observations grows. The simulation
results indicate that SVMICa behaves like AIC with its tendency to overfit. The SVMICb
seems to share the property of BIC that it selects the correct model more often, if at least
this true model is one of the possibilities to select from. The cross-validated error rate, and
the general risk minimisation in particular, seem to have the tendency to ignore variables
which nevertheless are important. As a consequence, the models that these criteria select
are of poor predictive quality. The two KRICs of Kobayashi and Komaki (2006) share
the overselection property exhibited by SVMICa, but the KRICs select excessive variables
even more frequently than SVMICa. This can explain why these criteria perform somewhat
worse when the number of observations is large, and why they outperform the proposed
SVMICs when the number of observations is small, since the latter tend to underfit the
model in the case of few observations.

This concludes the results for the case of two populations coming from an identical
distribution, differing only in mean. Another case that we examined is where the variances
of the two populations differ from each other. We performed a simulation study, in a similar
way as the previous one, where the samples have been drawn from N (µ, Ip) for class +1,
and from N (−2µ, 4Ip) for class −1.

The results of this simulation are summarized in Tables 3 and Table 4. We observe
similar results as in the case where both populations had equal variance. Selection based
on CV error rate and on GRM still perform rather poor. As before, the performances
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Kernel: Linear Quadratic
Models selected: C U O R C U O R

n = 25; p = 25 SVMICa 1 22 1 76 3 36 0 61
SVMICb 0 42 0 58 0 64 0 36
CV 0 38 4 58 1 40 5 54
GRM 0 77 0 23 0 75 0 25
KRIC 1 1 7 91 0 1 25 74
KRICS 0 0 9 91 0 0 49 51

n = 200; p = 25 SVMICa 22 0 76 2 2 0 98 0
SVMICb 77 9 10 4 67 14 6 13
CV 7 48 43 2 4 43 49 4
GRM 1 98 1 0 1 99 0 0
KRIC 6 0 93 1 8 0 84 8
KRICS 1 0 99 0 0 0 100 0

n = 25; p = 100 SVMICa 0 8 0 92 0 35 0 65
SVMICb 0 20 0 80 0 63 0 37
CV 0 23 6 71 0 33 10 57
GRM 0 56 0 44 0 64 0 36
KRIC 0 1 0 99 0 0 41 59
KRICS 0 0 1 99 0 0 56 44

Table 2: Simulated frequencies of selected models, with variable ranking done by influence
on ‖w‖2. Here ‘C’ denotes correct selection, ‘U’ is underfitting, ‘O’ is overfitting,
and ‘R’ for all other situations.

Linear kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 28.9 28.0 30.1 29.2 30.4 28.4 32.7 31.6 29.0 27.5 28.8 27.7

50 33.3 30.2 34.2 31.3 35.1 31.4 35.3 33.1 32.7 30.7 32.5 30.5
100 35.6 31.5 35.7 32.3 36.0 32.6 36.9 33.7 34.8 32.6 34.8 33.0
200 36.5 33.2 36.4 34.4 36.4 34.2 36.6 35.6 36.4 33.5 36.1 33.7

50 25 23.3 20.5 23.9 21.9 26.1 24.9 28.9 28.6 24.2 23.6 24.6 24.3
50 27.1 21.7 25.7 22.7 27.7 25.2 29.1 28.4 27.7 26.8 27.6 27.1
100 28.3 23.1 27.4 23.7 28.7 25.2 29.9 28.7 28.4 26.7 28.4 27.5

100 25 19.0 17.4 18.1 17.4 22.7 21.5 27.6 27.6 20.5 20.0 21.0 20.9
50 21.8 17.8 19.3 18.0 23.5 22.7 26.9 27.0 24.8 25.0 25.0 25.5

200 25 17.0 16.1 15.9 15.6 21.4 20.7 27.0 27.0 17.9 17.0 18.3 17.8
Quadratic kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 29.2 28.9 31.8 31.8 31.8 28.7 35.4 34.7 25.7 24.9 25.8 26.2

50 35.1 35.8 39.6 40.0 38.1 37.6 42.8 42.4 30.5 30.8 31.3 32.3
100 42.1 41.7 48.2 48.1 42.2 42.3 49.4 48.7 35.0 36.0 36.2 38.1
200 50.1 50.1 50.1 50.1 44.7 44.4 50.1 50.1 38.9 40.0 40.4 41.8

50 25 20.5 19.3 23.5 22.2 25.9 24.5 30.6 30.2 19.0 19.1 19.5 19.9
50 23.1 22.2 26.1 26.2 28.3 27.6 33.2 32.7 23.8 23.9 25.1 26.1
100 26.5 25.8 30.4 30.4 34.5 33.7 40.5 40.4 28.2 28.8 30.1 32.3

100 25 14.6 15.2 18.5 16.4 20.8 19.9 27.8 27.1 14.2 14.5 14.5 14.9
50 17.9 17.0 18.4 17.8 22.0 21.5 27.7 28.3 18.1 18.5 19.5 20.3

200 25 9.9 9.8 12.9 13.2 19.6 17.6 29.3 26.8 10.1 10.3 9.7 9.8

Table 3: As Table 1, but now for two populations with different variances

of the KRICs and SVMICs are similar. More precisely, the SVMICs have an improved
performance with respect to the KRICs when the sample size is large (n ≥ 50) and the
linear kernel is used, and the KRICs work slightly better for small sample sizes (n = 25).
For the quadratic kernel, we notice a good performance of the KRICs, which is only matched
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Kernel: Linear Quadratic
Models selected: C U O R C U O R

n = 25; p = 25 SVMICa 0 22 1 77 1 36 0 63
SVMICb 0 47 0 53 1 57 0 42
CV 1 40 1 58 1 39 8 52
GRM 0 76 0 24 0 70 0 30
KRIC 0 0 6 94 0 0 25 75
KRICS 0 0 8 92 0 0 50 50

n = 200; p = 25 SVMICa 11 0 85 4 0 20 0 80
SVMICb 69 10 16 5 0 45 0 55
CV 6 56 37 1 0 33 4 63
GRM 0 100 0 0 0 56 0 44
KRIC 5 0 93 2 0 0 40 60
KRICS 0 0 99 1 0 0 53 47

n = 25; p = 200 SVMICa 0 1 0 99 0 52 0 48
SVMICb 0 8 0 92 0 54 0 46
CV 0 22 2 76 0 22 5 73
GRM 0 46 0 54 0 54 0 46
KRIC 0 1 0 99 0 0 46 54
KRICS 0 0 0 100 0 0 56 44

Table 4: As Table 2, but now for two populations with different variances

by SVMICa for larger sample sizes. From Table 4 we can again make the same observations
as before when the linear kernel is used. For the quadratic kernel the SVMICs have more
difficulty selecting all the relevant variables than the KRICs, which explains why the latter
criteria have an improved performance here.

We also conducted a simulation experiment where the input variables were strongly
correlated. First, the observations were generated as in the first simulation experiment.
Then, we applied the transformation

xij = ρxikj + εij with εij ∼ N (0, ρ2) i.i.d.

where i = 1, . . . , n, kj is chosen arbitrarily between 1 and 4, and 4 < j ≤ p/2, such that
about half of the unimportant input variables are correlated with the four important ones.
The parameter |ρ| < 1 controls the degree of correlation. We have chosen ρ = 0.8 and found
similar results (not reported) as for the case where the variances of both class-population
differ.

5. Tests on Real Data Sets

We compare the performance of the new methods with that of the other discussed criteria on
several real-world datasets. We use some of the benchmark datasets used in Rakotomamonjy
(2003), and in Rätsch et al. (2001). The datasets used are the Pima Indians Diabetes
database (768 observations, 8 variables), the Statlog Cleveland Heart Disease database (303
observations, 14 variables), and Leo Breiman’s ringnorm and twonorm datasets (both 7400
observations, 20 variables). These datasets are available from the UCI Machine Learning
Repository (the first two), and the Delve Repository (last two). We perform 100 random
splits of the data in a training sample and a test sample, where the size of the training
sample is chosen as

√
2n, with n the total number of observations in the dataset. We chose

the size of the training set such that there is a sufficient amount of observations in the test
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Ranking: Variable influence on ‖w‖ Fisher scores
Data Kernel: Linear Quadratic Radial Linear Quadratic Radial
Diabetes SVMICa 28.6 28.5 29.2 28.0 28.2 28.4

SVMICb 29.0 28.9 29.2 28.6 28.5 28.9
CV 28.6 29.1 29.1 28.8 28.5 29.3
GRM 29.6 29.7 29.6 29.1 29.2 29.3
KRIC 28.5 28.2 29.4 27.5 28.1 29.6
KRICS 28.6 28.5 29.7 28.3 28.6 29.7

Heart SVMICa 27.0 27.4 27.7 27.6 28.0 28.3
SVMICb 27.6 28.9 28.9 28.2 29.3 29.5
CV 27.6 28.6 27.2 26.8 28.0 28.8
GRM 29.3 30.3 29.4 28.8 30.4 30.6
KRIC 25.4 23.4 23.8 24.5 23.2 23.8
KRICS 25.3 23.5 25.2 25.2 23.7 25.0

Ringnorm SVMICa 31.1 16.4 8.4 30.8 15.6 6.5
SVMICb 34.9 20.2 13.5 35.2 22.4 13.4
CV 33.9 32.1 26.6 32.8 25.6 21.2
GRM 39.2 41.3 38.6 39.3 38.4 37.3
KRIC 30.1 16.3 6.0 29.6 15.9 4.4
KRICS 29.9 16.0 3.1 29.2 15.4 2.5

Twonorm SVMICa 9.9 9.3 11.4 10.1 8.9 9.4
SVMICb 13.5 14.1 15.9 15.0 15.2 16.0
CV 20.5 21.0 19.8 21.0 21.1 20.8
GRM 31.4 31.7 31.6 30.8 31.2 31.3
KRIC 8.0 7.5 11.0 6.8 6.8 9.2
KRICS 7.5 6.0 4.0 6.6 5.5 4.8

Table 5: Generalization error rates (%) for variable selection applied to four data sets. Two
variable ranking schemes and three types of kernel are used for each of the criteria.

sample to estimate the generalization (out-of-sample) error rate. The training sample size
is relatively small, such that the computation time for the KRIC remains within bounds.
For each of these partitions we perform variable selection on the training sample exactly
as in the simulation study. We first rank the variables to retain p stacked subsets of input
variables, and then use the information criteria to select the variables that best explain
the training data. Then, we predict the class labels for the test sample, and use these
predictions to estimate the generalization error rate. We use variable ranking based on
variable influence on ‖w‖2 as well as on Fisher score, and we use a linear, quadratic and
radial kernel.

The estimated generalization error rates are presented in Table 5 for each dataset and
estimation setting. We observe that the KRICs are the preferred choice of variable selection
criterion in terms of generalization error rate for the ‘twonorm’ and ‘heart’ datasets. For
the ‘ringnorm’ and ‘diabetes’ datasets the difference in performance between the KRICs
and our newly proposed SVMICs is less pronounced. The predictive performance of the
models selected by SVMICa are for most settings comparable to that of the KRIC, while
being much faster to compute. These results are consistent across all settings. The CV
error rate and especially the GRM have a poor performance, which is in line of the results
obtained in the simulation.

From these results, and the results obtained in Section 4, we suggest to use either
the SVMICa or the SVMICb if a preliminary analysis of the data or a priori knowledge
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indicates that the true decision function is almost linear. When it differs strongly from a
linear function, the researcher has a choice between the ease of computation of the support
vector machine information criteria, or the somewhat improved predictive performance,
though with higher computational cost, of the kernel regularization information criterion.

Finally, we applied the newly proposed information criteria for variable selection to two
large data sets, the “Madelon” (n = 2000, p = 500) and “Arcene” data (n = 100, p = 10000).
These data sets were part of the NIPS 2003 feature selection, and are described in detail
in Guyon et al (2006). Given the high dimensionality of these data, the variables were
ranked according to the Fisher score. We used a linear kernel and computed balanced error
rates (BER), that is the average of the error rate of the positive class and the error rate
of the negative class. When using SVMICa we obtain a BER of 43.0% for the Madelon
data, and 31.1% for the Arcene data. For SVMICb we get 37.3% and 31.1%, respectively.
In Guyon et al (2006, 2007) the BER of other feature selection methods is presented, and
it turns out that several other methods yield much better performance on these data. A
possible explication is that we used a standard SVM, without any optimal tuning of the
regularization parameters.

6. Conclusions

In this paper we considered the problem of variable selection in support vector machines. We
proposed two new information criteria, SVMICa and SVMICb, which allow us to evaluate
the suitability of the selected subset of variables for predictive purposes, without much
additional computational costs. We provided an argumentation for these criteria, linking
SVMICa to the KRIC of Kobayashi and Komaki (2006), and justifying SVMICb with the
need for a consistent selection criterion. We demonstrated the effectiveness of these criteria
in a simulation study, where we compared their predictive performance to the KRIC, cross-
validation and general risk minimization. Especially for decision functions which are close
to an affine function, we found that SVMICa and SVMICb performed the best of all tested
criteria, and were also the easiest to compute. For more complicated decision functions,
we found that SVMICa still performs well for selecting models with good generalization
properties. We repeated the experiment on several real data examples, and the result
confirmed the good properties of these newly proposed criteria. In particular we showed that
cross-validation criteria are outperformed in generalization error by the new information
criteria, where the latter are coming at almost no additional computational cost.

The aim of our paper was to propose an information criterion for a standard SVM.
We do not claim that the procedure is outperforming other very advanced feature selection
methods, which are not relying on a standard SVM. Obtaining information criteria for other
machine learners is an interesting topic for future research. Another research question is
how suitable the information criteria are for optimal tuning of the regularization and other
parameters of the SVM, without necessarily selecting a subset of input variables. Finally,
it would be interesting to continue on the theoretical verification of the good performance
of our two proposed criteria, and for example try to obtain consistency results for the SVM
information criteria.
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