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A mixed model approach is used to construct optimal cross-over designs. In a cross-over 
experiment the same subject is tested at different points in time. Consider as an example an 
experiment to investigate the influence of physical attributes of the work environment such as 
luminance, ambient temperature and relative humidity on human performance of acceptance 
inspection in quality assurance. In a mixed model context, the subject effects are assumed to be 
independent and normally distributed. Besides the induction of correlated observations within 
the same inspector, the mixed model approach also enables one to specify the covariance 
structure of the inspection data. Here, several covariance structures are considered either 
depending on the time variable or not. Unfortunately, a serious drawback of the inspection 
experiment is that the results may be influenced by an unknown time trend because of inspector 
fatigue due to monotony of the inspection task. In other circumstances, time trend effects 
can be caused by learning effects of the test subjects in behavioural and life sciences, heating 
or aging of material in prototype experiments, etc. An algorithm is presented to construct 
cross-over designs that are optimally balanced for time trend effects. The costs for using the 
subjects and for altering the factor levels between consecutive observations can also be taken 
into account. A number of examples illustrate utility of the outlined design methodology. 

Keywords: optimum design of experiments; linear mixed effects model; cross-over design; run 
order; time trend; cost 
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1 Introduction 

In an experiment the same unit is often tested or investigated at different points in time. 
The resulting experiment is called a cross-over design and the study units are commonly 
referred to as subjects. Consider as an example an experiment in which interest is in the 
effects of different advertising campaigns on sales in a number of test markets. Here, the 
subjects are the test markets. Fifteen markets are randomly selected and in each market 
four different advertising campaigns are tested spread over one year. Other examples 
of cross-over studies include prototype experiments in industry, clinical trials in medical 
sciences, animal feeding experiments and tasting trials. An important advantage of cross­
over designs is that they economize on subjects. This is of particular importance when 
only a few subjects can be utilized for the experiment. 

In this paper a mixed model approach is used to design cross-over experiments. A careful 
description of the use of mixed models in practice is given in the excellent books of 
Verbeke and Molenberghs (1997) and Brown and Prescott (1999). The simplest way a 
linear mixed model can be used to analyze cross-over data is to use a random effects 
model with subject effects fitted as random. Instead of taking fixed values, the subject 
effects are then realisations from a normal probability distribution. They thus give rise 
to another source of random variation in addition to the residual variation. This induces 
observations on the same subject to have a constant correlation while observations on 
different subjects are uncorrelated. However, the correlation between observations on 
the same subject is often not constant. For instance, correlation may decrease as the 
measurements become more widely separated in time. Such specific patterns of covariance 
are usually defined as a function of the time point or the number of the observation. 
Consequently, as opposed to the basic assumption that the error terms are independent 
and identically distributed, in cross-over studies the independence assumption is relaxed 
and more complicated data structures can be taken into account. The correlated nature 
of the repeated observations gives more appropriate effect estimates and standard errors 
because all sources of variability between subjects are excluded from the experimental 
error. This means that only variation within subjects enters the experimental error. 

2 Literature review 

For simple regression models without blocking, a number of authors have tackled the 
problem of designing experiments under the assumption of correlated error terms instead 
of relying on uncorrelated errors. Bischoff (1993) investigates in what situations an exact 
V-optimal design with uncorrelated errors and constant variance is also V-optimal when 
the error terms are correlated. Martin, Jones and Eccleston (1998) study the efficiency of 
two-level factorial designs under an AR(1) or an MA(1) error process. This approach is 
extended to multi-level factorials in Martin, Eccleston and Jones (1998). Kiefer and Wynn 
(1981) study optimal balanced block designs and Latin square designs with autocorrelated 
errors. Eccleston and Chan (1998) and Donev (1998a) search for optimal row-column 
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designs with correlated observations. The former authors present design algorithms based 
on simulated annealing and tabu search, whereas Donev (1998a) proposes an exchange 
algorithm. 

Another part of the relevant literature concerns the design of cross-over trials for treatment 
comparisons. Hedayat and Afsarinejad (1975, 1978) derive conditions for their optimality 
and Cheng and Wu (1980) investigate the universal optimality of balanced cross-over 
trials. For an arbitrary covariance matrix, necessary and sufficient conditions for the 
universal optimality of cross-over designs for treatment comparisons are given by Kushner 
(1997a). The case of two treatments is elaborated in Matthews (1987) and Kushner 
(1997b) and more on the topic can be found in Matthews (1994a, 1994b). Algorithmic 
approaches are given in Donev and Jones (1995), Jones and Donev (1996) and Donev 
(1997). The design of cross-over trials for treatment comparisons and correlated error 
terms receives attention from Kunert (1991) and Donev (1998b). 

However, the literature on the construction of cross-over experiments for response surface 
models is extremely concise. The only important contribution comes from Berger and 
Tan (1998) who apply optimal design theory to longitudinal studies in which interest is in 
describing the behaviour of an important response variable through time. They compute 
V-optimal designs for linear regression models with random subject effects and first-order 
autoregressive correlations. A numerical method is used to compute the optimal time 
points at which to measure the response. 

An important disadvantage of cross-over studies is the possibility of a systematic effect 
or trend that distorts the outcome of the experiment. For instance, in the advertising 
experiment seasonal differences in purchase behaviour will certainly influence the results. 
In prototype experiments, trend effects may be induced due to aging of the material 
over time, warm-up in laboratories, instrument drift, etc. In cross-over studies for the 
behavioural and life sciences, learning effects or fatigue of the test subjects may cause 
an important order effect. Afsarinejad (2001) accounts for the presence of a time trend 
and derives some rules to construct trend-free repeated measures designs for treatment 
comparisons. However, he does not consider the possibility of correlated error terms. 
In Giovagnoli and Romano (2001) an example is given of a cross-over study in software 
engineering-an area that has recently established a new perspective for the application 
of experimental design. An experiment was carried out at the Telecom Research Centre 
in Turin in which only one programmer was involved. Interest was in a comparison among 
different ways of writing the computer code for multimedia services on the web. However, 
a specific problem is that as the experiment progresses, the programmer's performance 
improves because of a learning process, especially due to greater familiarity with the tools 
or the language. One may expect that experience gained with a certain type of application 
will lead to a higher productivity for subsequent projects. Based on complete enumeration, 
Giovagnoli and Romano (2001) compute a V-optimal design for this non standard design 
problem. Again, a serious criticism is that the authors did not take into account the 
possibility for correlated errors within the same programmer. Another criticism concerns 
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the fact that they did not balance the run order for the unwanted trend effects. A 
final example of the appearance of trend effects in cross-over studies is an experiment on 
acceptance inspection in quality assurance. The aim is to investigate the influence of a 
number of physical attributes of the work environment such as luminance, temperature 
and relative humidity on human accuracy of the inspection task. Unfortunately, the 
results of the inspection experiment may be influenced by an unknown time trend because 
of inspector fatigue due to monotony and repetition associated with the inspection task. 
This example will be further elaborated in section 6.1. 

The literature review shows that addressing the design of trend-resistant cross-over studies 
for regression models offers a challenging problem still to be solved. This paper will present 
a linear mixed model approach and will propose a generic construction algorithm to tackle 
this important design problem. 

3 The statistical model 

The linear mixed model introduced by Laird and Ware (1982) is an extension of the fixed 
effects model by the incorporation of random effects. In the context of cross-over studies, 
the jth response value Yij for subject i may be specified as 

Yij = f'(Xij)fj + g'(tij)9 + "Ii + ISij, (1) 

where Xij is the design point for the jth measurement within subject i and t ij E [-1,1] is 
the time point at which the observation is taken. All factors are assumed to have coded 
levels between -1 and 1. The (p xl) vector f (Xij) represents the polynomial expansion 
of Xij for the response model. In this paper the (q xl) vector g( tij) is introduced to 
represent the polynomial expansion for the time trend. The p fixed effects are represented 
by fj and the (q xl) vector of parameters of the polynomial time trend is denoted as 9. 
Finally, "Ii is the random effect for subject i and ISij denotes the error term. The random 
subject effects are assumed to have mean zero and constant variance 11~. 

For the ki observed responses pertaining to subject i model (1) can be rewritten as 

(2) 

where Yi is the k; dimensional vector of response values Yij, with j E {I, ... ,ki }, Fi and 
G i are the (ki x p) and the (ki x q) extended design matrices for f(x) and the polynomial 
time trend g(t) respectively. The k; dimensional vector lk, has elements one and the 
vector E:i contains the ki error components ISij of the ith subject. These error terms are 
assumed to be normally distributed with mean zero and variance-covariance matrix V E:,. 

A large variety of covariance patterns are available for use in cross-over studies. In the 
general unstructured pattern, the variances of the responses differ for each time point 
tij and the covariances differ between each pair of time points tij and tik, with j, k E 
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{I, ... , kilo Here, emphasis is restricted to relatively simple covariance structures in 
which the intrasubject variance-covariance matrix Ve, only depends on its dimension ki . 

Most of the covariance patterns are easy to justify when the observations are equally 
spaced. For example, in the compound symmetry model all covariances are equal. Take 
as a simple example an experiment with four measurements on the ith subject (i.e. ki = 4). 
The corresponding variance-covariance matrix then looks like 

[
lPPP1 

V =a2 pIp P 
e; E: P pIp , 

P P P 1 

(3) 

where a~ denotes the experimental error variance and p is the coefficient of correlation 
between different error terms. 

An obvious way to model the possibility that periods close together in time might have 
a higher correlation than periods far apart in time comes from a time series viewpoint. 
For the autoregressive model the variances are equal and the covariances decrease ex­
ponentially depending on their separation Ii - kl. More specifically, in the first-order 
autoregressive model-henceforth shortly referred to as AR(l)-the error term Cij is as­
sumed to depend upon its predecessor ci,j-l as 

(4) 

where p is the autocorrelation parameter and the disturbance term Vij is independent 
and identically distributed with mean zero and constant variance a~. It is commonly 
assumed that Cil has mean zero with the same variance as all other error terms. Besides, 
to derive the variance-covariance matrix the stationarity condition Ipl < 1 is imposed. 
This condition ensures that the impact of what happened in the past gradually dies 
out. For instance, for four observations the variance-covariance matrix for the first-order 
autoregressive model is 

(5) 

There are also covariance patterns in which the covariances are based on the exact value 
of time rather than on the number of observation. Such covariance patterns are especially 
useful in situations where the time points are irregularly spaced. Many ways are available 
to define covariances from the time interval but most of them are based on an exponential 
decay of the covariance with the time interval between pairs of observations on the same 
subject. This paper restricts attention to three frequently used patterns. Firstly, for the 
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power model the variance-covariance matrix for four observations equals 

(6) 

Secondly, the variance-covariance matrix for four observations under the exponential 
model is 

1 

exp _Itis-till expl~~l 
p 

exp _lti4-till 
p 

exp (_Itil~td) exp (_ltil~tiSI~ 
1 exp _lti2-tiSI 

exp(-~l 1 p 

exp ( _lti4~t'21 exp ( _lti4~t.;sl) 

exp _It'2-ti41 expl-~l 
p 

exp _It'S-t.;41 
p 

1 

and finally, the variance-covariance matrix for the Gaussian model is 

1 exp(_ltil~'212) exp(_ltil~;iSI2l expl-'t.;l~:'412l 

exp _ltiS~ilI2 exp ( _ltiS~:i212) 1 exp _It.;S~'412 
exp 1-'ti2~;il'2l 1 exp ( _It'2~:iSI2 exp _lti2~:'412 

exp _lti4~;ilI2 exp (_It.;4~~212) exp (_lti4;;iSI2) 1 

(7) 

(8) 

If b subjects have to be tested, combining all subject-specific models (2) gives the following 
linear mixed model for n = L:~=l ki observations: 

Y = Ff3 + G8 + Z, + e, (9) 

where y, e, F and G are obtained from stacking the respective vectors Yi and ei and 
the extended design matrices Fi and Gi underneath each other. The matrix Z equals 
diag[lk" ... , lkbJ and the vector, equals [-rl, ... , 'Ybl' with mean zero and between-subject 
variance-covariance matrix V, = O"~Ib. Besides, the random subject effects are assumed 
to be uncorrelated with the error terms. The variance-covariance matrix Ve of the error 
terms of all subjects now has a block-diagonal structure with the submatrices Ve, on the 
diagonal. The variance-covariance matrix of the observations Y equals 

(10) 

It follows that this matrix is block-diagonal with the size of the blocks equal to the number 
of observations on each subject. The matrix blocks of zeros off the diagonal represent zero 
covariances for observations belonging to different subjects. 
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4 Optimal run orders 

Based on the linear mixed effects model (9), in this section a methodology is outlined to 
construct trend-resistant and cost-efficient run orders for cross-over experiments. Firstly, 
an optimality criterion is presented with which run orders can be computed that have an 
optimal balance for time trend effects. Next, some definitions are introduced to allow for 
cost considerations during the design phase of a cross-over study. Taking into account 
cost considerations is reco=ended since trend-resistant run orders can be difficult to 
perform due to the large number of factor level changes they often involve. Finally, an 
optimality criterion is given to incorporate both trend-resistance and cost-efficiency. 

4.1 Trend-resistant run orders 

This section explains how the V-optimality criterion can be used to compute run orders 
that are optimally balanced for time trend effects. The V-optimality criterion minimizes 
the generalized variance of the parameter estimates or, alternatively stated, it minimizes 
the volume of the confidence ellipsoid around the parameter estimates. This criterion is 
also preferred for two other reasons. Firstly, V-optimal designs usually perform well with 
regard to other alphabetic optimality criteria, whereas this is often not true for other 
optimality criteria. An extra reason is the invariability of the V-optimality criterion to 
a linear transformation of the design matrix or the factor levels. This implies that, as 
opposed to for instance the A- and the [-optimality criterion, the ordering of designs with 
respect to the V-optimality criterion does not depend on the coding of the variables. 

Based on Searle (1971) it can readily be shown that, in the absence of time trend effects 
8, the information matrix on the parameter estimates [3 and l' of model (9) is given by 

[ 
F'V-IF F'V-IZ ] 

M = Z'V~IF Z'V"EIZ\ V;:/ . (11) 

The V-optimal run order b1J is found by maximizing the information on the parameter 
estimates of interest, namely [3. Mathematically, the corresponding criterion value equals 

I 
F'V-IF F'V-IZ I 
Z'V~IF Z'V-IZe+ V-I 

V= ee, 
IZ'V"EIZ + v;y11 . 

(12) 

However, when the outcome of the experiment is influenced by time trend effects 8, the 
information matrix on the parameter estimates [3, iJ and l' in model (9) equals 

[ 
F'V"EIF F'V"EIG F'V"EIZ 1 

M = G'V"EIF G'V"E1G G'V"EIZ . 
Z'V"EIF Z'V"EIG Z/V"EIZ + V;yl 

(13) 

If interest is restricted to the important parameter estimates [3, whereas the q parameters 
modeling the time dependence are treated as nuisance parameters, the Vroptimal run 
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order 8Vt that minimizes the generalized variance of the parameter estimates (J is found 
by maximizing the criterion value 

F'VgIF F'VgIG F'Vg1Z 
G'VgIF G'VgIG G'Vg1Z 
Z'VgIF Z'VgIG Z'VgIZ + V;:;l 

I G'V IG G'V lZ I 
Z'V~lG Z'Vg1Ze+ V;yl 

(14) 

Optimality criterion (14) is in fact nothing else but an extension of the Vs-optimality 
criterion of Atkinson and Donev (1992) to the linear mixed effects modeL Based on 
Atkinson and Donev (1996), the Vroptimal run order 8Vt and the V-optimal run order 
8v are compared to each other by means of the so-called trend factor 

TF(8 ) = {Vt (8Vt )}1/P 
Vt V(8v ) (15) 

This trend factor is a positive number between zero and one and reaches its maximum 
value 1 if all time trend components are orthogonal to the factorial effects. Alternatively 
stated, this condition boils down to the requirement 

(16) 

The Vroptimal run order 8vt is then said to be completely trend-free for the postulated 
time trend get). Note that the power Ijpin (15) ensures the unit of variance, independence 
of the dimension of the model and proportionality to the design size n. For instance, this 
means that a Vroptimal run order with trend factor 0.5 has to be replicated twice in 
order to obtain the same amount of information about the important effects f3 as with 
the V-optimal run order in the absence of the time trend. 

4.2 Cost considerations 

In Tack and Vandebroek (2001, 2002) it is shown that trend-robust run orders for the 
linear fixed effects model can be costly to perform since they involve a large number of 
factor level changes from one observation to the next one. Therefore, it is worthwhile to 
take account of cost considerations during the design phase. The importance of allowing 
for costs also follows from the fact that industrial experimentation counts for a large part 
of total innovation time and cost. This cost also includes the opportunity cost of time or 
time-to-market, a variable which has gained importance in today's global economy since 
it has a major impact on total profit. 

Here, the general cost approach of Tack and Vandebroek (2001) is adopted and extended to 
the optimum design problem for cross-over studies. Two cost concepts will be introduced. 
Firstly, the measurement cost c",,(x.;) at design point Xi is defined as the cost that is 
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associated with the factor levels constituting design point Xi. Examples include the cost 
for using a particular subject, the cost of material, the cost for spending time during 
the measurement, etc. For instance, in a clinical trial for controling blood pressure, 
applying a new hypertensive drug A may be more expensive than a standard drug B. The 
measurement costs Cm(Xi) are based on prior knowledge or can be estimated from previous 
experimentation. If a rough guess is not satisfactory, the following method can be used 
to get a more reliable cost estimate. The aim is to have an expert to produce three cost 
estimates: an optimistic estimate Copt, a realistic estimate Creal and a pessimistic estimate 
Cpes. The expected cost then equals (coPt + 4Creal + c pes)/6. The total measurement cost 
Cm of an experiment simply equals the weighted sum of the measurement costs at the 
different design points. Mathematically, 

d 

Cm = L niCm(Xi) , (17) 
i=l 

where d denotes the number of distinct design points and ni is the number of replicates 
at design point Xi. 

Secondly, the transition cost Ct(Xi, Xj) between two consecutive measurements at Xi and 
Xj is also allowed for. In cross-over trials the transition cost is often proportional to 
the time between two consecutive treatments. For instance, the larger the temperature 
change in the inspection experiment, the longer the waiting time between two consecutive 
measurements, resulting in a higher transition cost. The transition costs Ct(Xi, Xj) are 
again based on prior knowledge or can be estimated from previous experimentation. The 
total transition cost Ct of an experiment equals the weighted sum 

d 

Ct = L n(i,jJCt(xi,Xj), (18) 
i=l,j=l 

where n(i,j) is the number of transitions from design point Xi to design point Xj in a 
particular run order. Note that contrary to the total measurement cost Cm, the total 
transition cost Ct depends on the specific run sequence. The total cost C of an experi­
ment now equals the sum of the total measurement cost and the total transition cost, or 
equivalently, 

(19) 

4.3 Trend-resistant and cost-efficient run orders 

When both safeguard against destructive temporal trend effects and cost-efficiency are 
calculated for, the (Vt, C)-optimal run order 5(1),,0) maximizes the amount of information 
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per unit cost. Mathematically, the (Dt, C)-optimality criterion equals 

F'VelF F'VelG F'VelZ lip 

G'VelF G'VelG G'VelZ 
Dl/p Z'VelF Z'VelG Z'VelZ + v;;/ 

(Dt, C) = -Ct = '--------------::-/.,--'--'---

I G'VelG G'VelZ 11 p 

Z'VelG Z'VelZ + V;yl C 

(20) 

In a similar way as (15), the trend factor of the (Dt, C)-optimal run order O("D"C) is defined 
as 

(21) 

4.4 Estimation of the variance components 

Not surprizingly the optimality of a cross-over design depends on the unknown covariance 
structure. Henceforth, let (J;, (J; and p denote the guesses or point estimates of the true 
but unknown parameters (J;*, (J;* and p* respectively. These guesses or estimates have 
to be used in the optimality criteria (12), (14) and (20) and may sometimes be available 
from a pilot study or a similar investigation. 

It should however be pointed out that the estimates of the variance components based 
on prior experimentation are generally biased downwards because the estimation meth­
ods assume that the fixed effects are known, rather than being estimated from the data. 
Residual or restricted maximum likelihood overcomes this problem by automatically ad­
justing for the loss in degrees of freedom corresponding to the estimation of the fixed 
effects. More on the analysis of cross-over designs can be found in the excellent textbook 
of Vonesh and Chinchilli (1997). 

Using estimates of the variance components as approximations to the true variance compo­
nents generally leads to an estimated variance-covariance matrix of the important effects 
that is biased downwards. This is due to the fact that the variability introduced by not 
working with the true variance components is not taken into account in the approximation 
for the true variance-covariance matrix (see Kackar and Harville, 1984). 

The next section describes our algorithm to compute trend-resistant and cost-efficient run 
orders for cross-over studies under the linear mixed effects model. 

5 The design construction algorithm 

The literature offers a number of methods to compute optimal designs for correlated 
observations. For instance, Eccleston and Chan (1998) present algorithms based on simu­
lated annealing and tabu search to construct optimal row-column designs. Donev (1998a) 
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does the same but uses an exchange algorithm. Design algorithms for the construction 
of cross-over designs for treatment comparisons can be found in Donev and Jones (1995), 
Jones and Donev (1996) and Donev (1997, 1998b). Goos and Vandebroek (2001a, 2001b) 
develop exchange algorithms to compute V-optimal regression designs in the presence of 
random block effects and for split-plot experiments respectively. Tack and Vandebroek 
(2002) provide an exchange algorithm to construct trend-resistant and cost-efficient re­
gression designs with either fixed or random block effects. 

Here, the latter exchange algorithm will be extended to construct optimal cross-over 
designs for the linear mixed model. An exchange algorithm computes an optimal design 
by searching over a predefined list of candidate points. This list of candidate or support 
points consists of a coarse grid which covers the entire experimental region. It is usually 
computed as in Atkinson and Donev (1992). They assume the design region to be a 
hypercube and the grid points are chosen with two, three, four or more equi-spaced 
levels per factor depending on the fact whether the response model respectively contains 
linear, quadratic, cubic or higher order terms. For instance, for a full quadratic model 
in two factors the grid points are (0,0), (±1,0), (0, ±1) and (±1, ±1). Alternatively, the 
experimenter can specify the set of candidate points himself. This often occurs when the 
design region is hyperspherical, restricted due to technical constraints on the factor levels 
or when a finer grid is necessary. After specifying or constructing the candidate set of 
design points, the design problem is the combinatorial one of selecting with replacement 
n design points out of the list of d candidate points in order to optimize a user-specified 
optimality criterion. The number of observations n is usually dictated by technical or 
economical considerations. 

5.1 Description of the algorithm 

The input to our algorithm consists of the number of observations n, the number of sub­
jects b, the number of measurements ki per subject (with i E {I, ... , b}), the number of 
factors m, the order and the number of parameters p of the response function, the poly­
nomial expansion for the response function f(x), the order and the number of parameters 
q of the time trend, the polynomial expansion for the time trend get), cost information 
and the list of time points at which the important response can be measured. A covari­
ance pattern and estimates a;, a~ and p of the true parameters a;*, a~* and p* are also 
needed. The experimenter also has the possibility to impose a constraint on the number 
of replications for each design point Xi. Such constraints are usually due to the scarcity 
of resources. Finally, the optimality criterion must be specified too. Choices are among 
the D-, the Dr and the (Dt , C)-optimality criterion. 

The exchange algorithm proceeds in three phases. In the first phase the experimenter 
is at liberty to include n. (0 :::; n. < n) design points with corresponding time points. 
These points represent data already available and the design problem then boils down to 
the augmentation or the repair of a previously failed experiment. A starting run order 
is now completed by the assignment of no - n. (n. :::; no :::; n) randomly chosen design 
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points to arbitrarily chosen time points within the subjects. To avoid singular information 
matrices, the number no must satisfy no ::::: p + q + b. 

In the second phase the starting run order is augmented to n trials. This is done by 
sequentially adding n - no design points at time points still available. These additions 
are made at the largest improvement of the criterion value and within the constraints ki 

on the number of observations per subject. 

The third phase is called the optimization phase. This final phase comprises an iterative 
improvement of the run order by eValuating three different exchanges or interchanges of 
design points and/or time points. Firstly, the effect on the criterion value is investigated 
of replacing any design point Xi within a subject by a new design point Xj from the list of 
candidate points. Secondly, the effect on the optimality criterion is examined of moving a 
design point from any time point tij within a subject i to a free time point tik within the 
same subject. Thirdly, the interchange of design point Xij at time point tij within subject 
i and design point Xkl at time point tkl within another subject k is evaluated. The design 
change leading to the largest improvement of the criterion value will be executed and the 
process is repeated till no further improvement in the criterion value can be obtained. 
Note that during the optimization phase none of the n. observations specified in the first 
phase can be removed from the run order or assigned to another subject or time point. 

The probability of finding the global optimum, instead of getting stuck at a local optimum, 
can be increased by repeating the algorithmic search several times from different starting 
designs or 'tries'. This number of tries v is a user-specified constant. The appendix 
outlines the design algorithm in detaiL 

5.2 Computational aspects 

In the exchange algorithms of Fedorov (1972), Wynn (1972), Mitchell (1974), Cook and 
Nachtsheim (1980) and Atkinson and Donev (1989,1992) for the linear model with uncor­
related errors the effect of a design change can readily be calculated since the information 
matrix can be written as a sum of outer products. This is also possible in the approaches 
of Tack and Vandebroek (2001, 2002) and Goos and Vandebroek (200la, 200lb). More 
specifically, the criterion value after the addition or the deletion of a design point is easily 
updated by simply adding or subtracting outer products of the polynomial expansions of 
the design points. 

However, in case of correlated error terms the information matrix can no longer be written 
as a sum of outer products. Updating the determinant and the inverse of the information 
matrix then becomes computationally more prohibitive. In Chasalow (1992) and Donev 
(1998b) the problem is solved by using the Cholesky decomposition (see theorem 14.5.11 
of Harville, 1997) of the variance-covariance matrix of the observations. Cholesky decom­
position enables one to write the variance-covariance matrix as the product of a unique 
lower triangular matrix and its transpose. The information matrix can then be written 
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as a sum of outer products, which makes the use of handy update formulae still possible. 
Since the variance-covariance matrix of the observations remains unchanged during the 
optimization phase, the decomposition has to be carried out only once. 

Unfortunately, in this paper Cholesky decomposition is no longer useful. This is because 
the decomposition has to be carried out each time the elements of the variance-covariance 
matrix of the observations are affected by a design change. For instance, if the covariance 
structure is based on the spatial patterns (6), (7) or (8) and if an already present design 
point is assigned to a new time point, the variance-covariance matrix of the observations 
has to be updated and a new Cholesky decomposition is needed. We are therefore no 
longer convinced of the computational advantages of using Cholesky decomposition. In­
stead, the criterion values (12), (14) or (20) will be calculated from scratch after each 
design change. This facilitates the computer code because there is no need to implement 
difficult update formulae. 

6 Examples and practical applications 

This section presents two examples in order to carefully illustrate the developed design 
methodology. The inspection experiment is discussed in the first example, in which the 
aim is to demonstrate the benefit of taking into account cost considerations during the 
design phase of a cross-over study. The experiment will also clarify how to use the 
exchange algorithm of section 5 in a practical setting. The aim of the second example is 
to investigate how robust the optimal run orders are for misspecification of the variance 
components, the correlation p* and the covariance pattern. 

6.1 The inspection experiment 

This example concerns an experiment in acceptance inspection in quality assurance. In­
spection has always been a vital part of a manufacturing process. The purpose of in­
spection, i.e. the control of outcoming products, is to accept or reject an item based on 
specified quality characteristics. An inspector examines all outcoming items one at a time 
and measures important quality characteristics to determine if they conform to specified 
purchasing standards. Unfortunately, inspection is not always perfect because it may give 
false results due to monotony and repetition associated with the inspection task. It can 
create boredom and fatigue in inspectors and cause rapid degradation of the inspector's 
performance as the number of inspected items increases. Besides these mental issues, the 
heterogeneity of the group of inspectors may also influence the quality of the inspection 
task. Think of the variation in terms of age, experience, physical characteristics and cog­
nitive abilities. Physical issues in the work environment form another critical element in 
human performance in inspection tasks. Important physical issues include the surround­
ings such as lighting and temperature. The appropriate strategy then is to design the 
environment and the workload to fit the human inspectors and not the other way around. 
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Therefore, an experiment will be set up in an attempt to decide on the most legible 
attributes of an inspection environment. The production process to be inspected consists 
of an oil groove cutting process and the subsequent soldering of lead wires. The outcoming 
items have to be checked for both the grooves and the quality of the soldering step. In 
the cutting process, tool changes and damaged bits can lead to items missing grooves. 
Also items with grooves cut in the wrong places must be discovered and removed. Finally, 
soldering defects such as undone lead wires make an item unacceptable. The aim of the 
experiment is to improve the probability of succesful human performance of the inspection 
task. Therefore, the experiment involves a number of inspectors and the influence of two 
physical factors on human performance is investigated: the distance between the inspector 
and the outcoming items (Xl) and the ambient temperature (X2). The corresponding 
factor levels are shown in table 1. Each combination of levels of the two controllable 
factors constitutes an experimental condition. A measurement then comprises the control 
by a particular inspector of a fixed number of outcoming items for a certain combination 
of distance Xl and temperature X2. The number of nonconforming items detected by the 
inspector is compared to the true error rate of the checked items and a performance ratio 
is calculated. All measurements on the same inspector are performed one after the other. 
This induces the results being influenced by an unwanted time trend due to inspector 
fatigue over the course of the experiment. 

Table 1: Description of the inspection experiment 

factor 
distance Xl (m) 
temperature X2 (OC) 

levels 
O,lj 0,5j 0,9 
16,20,24 

coded levels 
-1,0, 1 
-1,0, 1 

The input to the exchange algorithm consists of the number of tries v = 30000, the number 
of factors m = 2, the number of observations n = 18, the number of inspectors b = 3, 
the number of measurements per inspector kl = k2 = k3 = 6, the design points (0,0), 
(0, ±I), (±I,O) and (±I, ±1) and the full second-order polynomial expansion f(x) = 
[1, Xl, X2, XIX2, xf, x~l'. The transition cost for altering the distance Xl or the temperature 
X2 from ±I to ° or vice versa is assumed to be twice as high as when the particular 
factor level remains the same. The transition between -1 and + 1 or vice versa is three 
times as expensive. Besides, the error terms are assumed to follow the AR(I) model 
with p E {-0.9j -0.5j O.Oj 0.5j 0.9}. The guesses of the variance components are based on 
previous experimentation and equal (]"~ = 0.9 and (]"~ = 0.1. Vr and (Vt, C)-optimal run 
orders will now be computed for different postulated time trends and 6 equally spaced 
time points between -1 and 1 within each block. These time trends are of first, second, 
third or fourth order and will be denoted as gl(t), g2(t), g3(t) and ~(t) respectively. 
Finally, no restriction is imposed on the number of replicates per design point. 

As an illustration, the computed Vroptimal run orders with the postulated time trend 
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gl(t) are displayed in table 2. A striking result is that the number of factor level changes 
increases with the autocorrelation coefficient p. A similar conclusion could be drawn 
for the Vcoptimal run orders computed with other postulated time trends and/or other 
values for 0";, 0"; or p. 

Table 2: Vt-optimal run orders for gl(t) and varying values of p 

p= -0.9 p = -0.5 p= 0.0 p=0.5 p= 0.9 
subject t Xl X2 Xl X2 Xl X2 Xl X2 Xl x2 

1 -1.0 -1 0 0 -1 1 1 1 -1 -1 -1 
1 -0.6 -1 0 0 -1 1 -1 -1 -1 -1 1 
1 -0.2 1 -1 1 1 0 0 0 1 1 0 
1 0.2 1 -1 1 1 0 0 -1 -1 -1 1 
1 0.6 0 1 -1 0 -1 -1 1 0 0 -1 
1 1.0 0 1 -1 0 -1 1 -1 1 1 1 
2 -1.0 0 -1 -1 1 1 1 -1 1 1 -1 
2 -0.6 0 -1 -1 1 0 -1 0 -1 0 1 
2 -0.2 -1 1 0 0 -1 1 1 0 1 -1 
2 0.2 -1 1 0 0 -1 -1 -1 1 -1 -1 
2 0.6 1 0 1 -1 1 -1 0 -1 0 0 
2 1.0 1 0 1 -1 1 0 1 1 -1 -1 
3 -1.0 1 1 1 0 -1 0 1 1 1 1 
3 -0.6 1 1 1 0 -1 1 -1 0 0 -1 
3 -0.2 0 0 -1 -1 1 -1 1 1 -1 0 
3 0.2 0 0 -1 -1 -1 -1 1 -1 1 1 
3 0.6 -1 -1 0 1 0 1 0 0 -1 0 
3 1.0 -1 -1 0 1 1 1 1 -1 1 -1 

All computed run orders are compared to each other in table 3. The comparison is made 
in terms of the amount of information obtained on the important parameters {3, i.e. the 
Vt-criterion value. The first panel refers to the Vcoptimal run orders, whereas the second 
panel relates to the (Vt, C)-optimal run orders. For instance, the Vt-criterion value of 
the (Vt, C)-optimal run order with p = 0.9 and a first-order time dependence gl(t) equals 
48.9. As a matter of fact, the (Vt, C)-optimal run orders are less informative than their 
Vcoptimal counterparts. It also turns out that, for a given optimality criterion and given 
order of the time trend, more information is gathered if the observations are strongly 
auto correlated, either negatively or positively. 

In terms of the trend factors (15) and (21), the computed V t- and (Vt, C)-optimal run 
orders are compared to each other in table 4. A quick glance at the table reveals that 
for a given autocorrelation coefficient p the trend factor decreases with the order of the 
postulated time dependence. This is not unexpected since the more complicated the time 
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Table 3: Drcriterion values of the optimal run orders 

Droptimality (Dt, C)-optimality 
p gl(t) g2(t) g3(t) g4(t) gl(t) g2(t) g3(t) g4(t) 

-0.9 64.8 53.8 52.1 48.1 58.0 50.0 48.7 45.3 
-0.5 15.3 12.7 12.5 11.1 14.1 11.2 11.2 9.9 
0.0 8.5 7.7 7.7 7.0 7.6 6.3 6.2 5.5 
0.5 13.7 12.5 12.4 11.9 12.5 11.6 11.5 10.7 
0.9 52.3 50.3 50.1 49.2 48.9 47.7 47.3 45.6 

trend, the more difficult it is to attain an optimal protection against unwanted time trend 
effects. It is also worthy of mention that in most cases the Dt-optimal run orders become 
better balanced for trend effects as the coefficient p grows larger. Alternatively stated, 
the more the observations belonging to the same subject are positively autocorrelated, 
the less distortion of the results by the unwanted trend effects. 

Table 4: Trend factors of the optimal run orders 

Droptimality (Dt, C)-optimality 
p gl(t) g2(t) g3(t) g4(t) gl(t) g2(t) g3(t) g4(t) 

-0.9 0.970 0.804 0.779 0.719 0.868 0.747 0.728 0.678 
-0.5 0.981 0.816 0.801 0.708 0.903 0.717 0.715 0.637 
0.0 0.999 0.903 0.899 0.823 0.890 0.743 0.731 0.646 
0.5 0.999 0.912 0.905 0.864 0.908 0.842 0.834 0.778 
0.9 0.999 0.963 0.958 0.940 0.936 0.913 0.905 0.873 

It can also be seen from table 4 that the temporal trend causes much more harm to the 
estimates in case of the (Dt, C)-optimality criterion than in case of the Dt-optimality 
criterion. For instance, for a linear time dependence gl(t) and p = 0.9, the trend factor 
of the (Dt, C)-optimal run order only equals 0.936, whereas the trend factor of the Dr 
optimal run order amounts to 0.999. However, the (Dt, C)-optimal run orders demonstrate 
superiority with respect to the amount of information obtained per unit cost. This is 
clearly illustrated in table 5, which compares the computed run orders in terms of their 
(Dt, C)-criterion value. It also follows that autocorrelation is very beneficial to the (Dt, C)­
criterion value of the optimal run orders. The highest (Dt, C)-criterion values, i.e. the 
lowest cost of information, are obtained for strongly negative values of the autocorrelation 
parameter p. Finally, the cost of information increases with the order of the postulated 
time dependence. 
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Table 5: (Dt, C)-criterion values of the optimal run orders 

Droptimality (Dt , C)-optimality 
p gl(t) g2(t) g3(t) g4(t) gl(t) g2(t) g3(t) g4(t) 

-0.9 1.410 1.120 1.085 1.002 1.416 1.190 1.160 1.079 
-0.5 0.333 0.265 0.272 0.230 0.371 0.320 0.319 0.284 
0.0 0.142 0.119 0.128 0.121 0.200 0.176 0.173 0.158 
0.5 0.196 0.176 0.180 0.175 0.223 0.203 0.201 0.191 
0.9 0.746 0.719 0.726 0.723 0.829 0.796 0.789 0.774 

6.2 Robustness against misspecification 

This section studies the robustness of the Droptimal designs against misspecification of 
the variance components a;* and a~*, the parameter p* and the covariance pattern of the 
error terms. More specifically, consider an experiment with two factors Xl and X2, the 
polynomial expansion f(x) = [1, xl, X2, X1X2, xf, x~l', a first-order polynomial time trend 
gl(t), design points taken from the 32 factorial, no restriction on the number of replicates 
per design point and three subjects with six measurements each. Within each subject 
there are 6 equally spaced time points between -1 and 1. Dt-optimal run orders will be 
computed for various combinations of the error structure, the variance components a; 
and a; and the parameter p. In order to preserve valid comparisons and without loss of 
generality, the total variance a; + a~ is set equal to 1. The following patterns for the 
variance-covariance matrix Ve; are used: 

• E1: independent errors with constant variance 

• E2: compound symmetry error structure (3) 

• E3: autoregressive error terms (5) 

• E4: the power model (6) 

• E5: the exponential model (7) 

• E6: the Gaussian model (8) 

Figure 1 displays the criterion values of all Droptimal run orders computed for several 
combinations of the error structure Ei and the subject variance a~. Note that the error 
variance a; is then automatically set equal to 1 - a~. The results are restricted to cases 
in which p = 0.5. More specifically, figure 1 relates to 54 run orders resulting from the 
combination of 9 subject variances a~ E {0.1; 0.2; ... ; 0.8; 0.9} and 6 error structures 
E i . Each line then refers to the Droptimal run orders computed for a particular error 
structure (see the legend ofthe figure) and differing subject variances a~ on the horizontal 
axis. For instance, the criterion value (on a per parameter basis) of the Dt-optimal run 
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order under the assumption of independent error terms E1 (solid line) and 0"; = 0.5 (see 
the horizontal axis) is equal to 12.03. A striking result is that for each line (i.e. for any 
covariance pattern Ei) the optimal run orders become more informative as the subject 
variance 0"; grows larger. In addition, for a given subject variance 0"; on the horizontal 
axis, the largest criterion value corresponds with the covariance pattern defined by the 
power model (E4). The opposite is true for error terms assumed to be uncorrelated, 
namely error structure El. 
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Figure 1: 'Drcriterion values of the optimal run orders for p = p* = 0.5 and different error 
structures and subject variances 0"; 

--- (E1) independent error terms 
.......... (E2) compound sy=etry 
- - - - - - - (E3) autoregressive error terms 
. _. _. - (E4) power model 
- - - - - (E5) exponential model 
- - - (E6) Gaussian model 

In a similar way, figure 2 depicts the criterion values of all 'Droptimal run orders com­
puted for several combinations of the error structure Ei and parameter p, but with fixed 
0"; = 0"; = 0.5. In particular, it concerns 45 'Droptimal run orders resulting from the com­
bination of 9 values of p (i.e. p E {0.1; 0.2; ... ; 0.8; 0.9}) and 5 error structures Ei. No 
results are displayed for the 'Droptimal run orders with independent error terms E1 since 
for this error structure the parameter p is not defined. Each line refers to the 'Droptimal 
run orders computed for a particular error structure (see the legend of the figure) and 
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differing parameters p on the horizontal axis. For instance, the criterion value (on a per 
parameter basis) of the Droptimal run order with error terms according to the Gaussian 
model E6 (see the legend of the figure) and p = 0.9 (see the horizontal axis) is equal to 
447. Not surprizingly, it holds for each line (i.e. for any covariance pattern E i ) that the 
larger the value of p, the more informative the associated optimal run order. The increase 
in the criterion value for large values of p is especially pronounced for an error structure 
that follows the Gaussian model E6. 
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Figure 2: Drcriterion values of the optimal run orders for (J"; = (J"~ = 0.5 and different 
error structures and values of p 

.......... (E2) compound symmetry 
- - - - - - - (E3) autoregressive error terms 
. _. _. - (E4) power model 
- - - - - (E5) exponential model 
- - - (E6) Gaussian model 

The trend factors (15) of all computed run orders are given in table 6 and table 7. Table 
6 refers to the run orders computed with p = 0.5 (i.e. the run orders used in figure 1), 
whereas in table 7 (J"~ = (J"; = 0.5 is assumed (see the run orders used in figure 2). For 
instance, the Droptimal run order under the assumptions (J"~ = 0.1, (J"; = 0.9, p = 0.5 
and uncorrelated errors (E1) has trend factor 0.9995. Both tables obviously show the 
complete trend-resistance of the Droptimal run orders under the compound symmetry 
error structure (E2). Generally speaking, all run orders demonstrate a good safeguard 
against unwanted trend effects. It also follows that, at least for this example, low subject 
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variances O"~ in table 6 or high values for p in table 7 are beneficial for the trend factors 
of the optimal run orders with auto correlated error terms (E3) or errors that follow the 
power model (E4). The opposite is true if the covariance pattern follows the Gaussian 
model (E6). 

Table 6: Trend factors of the 'Dr optimal run orders for several error structures (p = 0.5) 

0"2 
'''/ 

0"2 
e E1 E2 E3 E4 E5 E6 

0.1 0.9 0.9995 1.0000 0.9986 0.9996 0.9976 0.9771 
0.2 0.8 0.9995 1.0000 0.9983 0.9994 0.9977 0.9769 
0.3 0.7 0.9995 1.0000 0.9979 0.9992 0.9977 0.9771 
0.4 0.6 0.9995 1.0000 0.9975 0.9990 0.9978 0.9774 
0.5 0.5 1.0000 1.0000 0.9973 0.9988 0.9976 0.9778 
0.6 0.4 1.0000 1.0000 0.9966 0.9987 0.9977 0.9780 
0.7 0.3 1.0000 1.0000 0.9965 0.9985 0.9976 0.9782 
0.8 0.2 1.0000 1.0000 0.9965 0.9983 0.9976 0.9784 
0.9 0.1 1.0000 1.0000 0.9963 0.9981 0.9976 0.9786 

Table 7: Trend factors of the 'Dr optimal run orders for several error structures (O"~ = 
0"; = 0.5) 

p E2 E3 E4 E5 E6 
0.1 1.0000 0.9970 0.9980 0.9993 1.0000 
0.2 1.0000 0.9975 0.9977 0.9960 0.9992 
0.3 1.0000 0.9979 0.9985 0.9972 0.9957 
0.4 1.0000 0.9980 0.9985 0.9982 0.9920 
0.5 1.0000 0.9973 0.9988 0.9976 0.9778 
0.6 1.0000 0.9960 0.9990 0.9977 0.9721 
0.7 1.0000 0.9986 0.9991 0.9973 0.9659 
0.8 1.0000 0.9989 0.9993 0.9973 0.9593 
0.9 1.0000 0.9992 0.9995 0.9987 0.9531 

In the remainder of this section, we will have a close look at the robustness of the optimal 
run orders for misspecification of O"~*, 0";* or p*. We have computed how the optimal run 
orders discussed in the previous paragraphs perform for several true variance components 
0";* (O"~* is then set to 1 - 0";*). Without loss of generality, the results will be restricted 
to fixed p = p* = 0.5 and error terms following the AR(l) process. They are shown in 
figure 3. The vertical axis displays the decrease in the trend factor (in percent) caused 
by possible misspecification of the true error variance 0";* as 0"; (O"~ = 1 - 0";). The true 
error variances 0";* are marked out on the horizontal axis. More specifically, each line in 
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figure 3 refers to one particular run order, namely the 'Dcoptimal run order computed 
with p = 0.5 and the assumed error variance 0"; as shown in the legend of the figure. For 
instance, the solid line refers to the 'Dcoptimal run order computed with p = p* = 0.5 
and 0"; = 0.1. The line shows how this run order performs if the true error variance 0";* 
(on the horizontal axis) differs from the assumed value 0"; = 0.1. For instance, ifthe true 
error variance equals 0";* = 0.6 (on the horizontal axis), whereas the assumed one equals 
0"; = 0.1, then this run order is about 0.13% less trend-resistant than if the error variance 
would have been correctly specified as 0"; = 0";* = 0.9. It turns out that the more the true 
error variance 0";* on the horizontal axis deviates from the assumed variance 0"; = 0.1, 
the lower the performance of that run order. For instance, if the true error variance is 
0";* = 0.9 rather than 0.1, then the loss in the trend factor amounts to about 0.38%, 
which is much more than 0.13%. This observation also holds for the optimal run orders 
computed with another assumed error variance 0"; (see the other lines in the figure). 
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Figure 3: Relative difference in trend factor for several assumed error variances, error 
structure E3 and p = p* = 0.5 
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In fact, the losses in the trend factor due to misspecification of the variance components are 
very small as compared to the decreases caused by misspecification of the autocorrelation 
coefficient p*. The results for misspecification of p* are given in figure 4, in which each 
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line refers to the 'Dt-optimal run order computed with (J; = (J;* = (J~ = (J~* = 0.5 and 
a particular coefficient p shown in the legend of the figure. The true autocorrelation 
coefficients p* are marked out on the horizontal axis. A quick glance at the figure learns 
that the losses in the trend factor due to misspecification of p* increase with the difference 
between the assumed correlation coefficient p and the true one p*. For instance, suppose 
that the assumption p = 0.6 is made. The legend refers to the corresponding line in the 
figure. If the true autocorrelation coefficient equals p* = 0.4 (on the horizontal axis), then 
the loss in the trend factor due to a wrong specification of p equals 0.64%. However, if 
the true autocorrelation coefficient equals p* = 0.2 (on the horizontal axis), then the loss 
in the trend factor is much larger, namely 1.76%. 
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Figure 4: Relative difference in trend factor for several values of p*, error structure E3 
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With the exception of error terms that follow the Gaussian model, comparable losses 
were observed for the other error structures. In case of the Gaussian model, the decreases 
in the trend factor due to misspecification of the autocorrelation coefficient p* are more 
pronounced. Figure 5 demonstrates that in this case the loss can amount to 40%. 
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As a final illustration, it is worthwhile to investigate the robustness of the computed 
run orders against misspecification of the covariance pattern. In order to clarify the 
importance of such an investigation, suppose that for a specific design problem at hand 
a 'Dcoptimal run order is computed under the assumption of auto correlated error terms. 
If, however, the subsequent data analysis and statistical inference would reveal that the 
error terms are uncorrelated rather than autocorrelated, then one may wonder to what 
extent the computed run order is still useful as compared to an optimal run order under 
the correct assumption about the error terms. Here, the results are confined to the 'Dc 
optimal run orders with IJ; = IJ~ = P = 0.5, but the conclusions can be extended to 
other parameter settings. These parameters are assumed to be correctly specified, i.e. 
IJ;* = IJ~* = p* = 0.5. Table 8 displays the results. Each column refers to the 'Dc 
optimal run order computed for a particular assumption about the error structure and 
gives the losses in the trend factor due to possible misspecification of the covariance 
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pattern. For instance, if the error terms are assumed to be uncorrelated (E1), whereas 
they in fact decay according to the AR(l) model (E3), the computed run order is 7.30% 
less trend-resistant than the optimal run order that one would obtain if the error structure 
would have been specified correctly. It follows that the assumption of uncorrelated error 
terms (E1) or compound symmetry (E2) is least robust against misspecification, since 
these assumptions involve large decreases in the trend factor if neither E1 nor E2 is 
the true covariance pattern (see the first two columns). Much better safeguard against 
misspecification of the error structure is obtained if the error terms are assumed to follow 
the AR(l) model (E3), the power model (E4) or the exponential model (E5). In these 
cases, the losses are much lower (see the columns with headings E3, E4 and E5). For 
instance, misspecifying the true error structure E1 as E3 leads to a loss of about 3.39%, 
whereas in the opposite case a misspecification of the true error structure E3 as E1 gives 
a loss of 7.30%. In addition, it can also be seen from the tabulated results that no harm 
is caused if the error terms are postulated to be uncorrelated (E1), whereas in fact they 
have a compound symmetric pattern (E2), or vice versa. Finally, the loss in the trend 
factor is also negligible if the AR(l), the power or the exponential model is assumed and 
if the true error structure is one of these three covariance patterns. 

Table 8: Relative difference in trend factor for several error structures and 0"; = 0";* = 

0"; = 0";* = P = p* = 0.5 

assumed covariance pattern 
true covariance pattern E1 E2 E3 E4 E5 E6 

independent error terms E1 0.00 0.00 3.39 3.86 l.88 8.67 
compound symmetry E2 0.00 0.00 3.74 4.23 2.09 9.41 
autoregressive error terms E3 7.30 14.94 0.00 0.03 0.00 2.35 
power model E4 11.09 19.78 0.00 0.00 0.36 l.86 
exponential model E5 6.56 13.79 0.19 0.23 0.00 2.69 
Gaussian model E6 29.21 39.09 4.17 5.10 5.31 0.00 

Summing up, the results of the robustness study have revealed that little harm is induced 
by misspecifying the variance components, whereas the opposite is true if the correlation 
parameter is misspecified. In the latter case, assuming a large value for the correlation 
parameter is recommended to guard against possible misspecification. In addition, good 
protection against misspecification of the error structure is obtained if the error terms are 
modeled according to the AR(l), the power or the exponential model. On the contrary, 
destructive loss can result from neglecting the possibility for correlated error terms. 
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7 Conclusion 

An exchange algorithm was presented to compute optimal cross-over designs for li~ear 
mixed effects models. Under this model, correlation among the repeated measures is in­
duced either indirectly through the subject specific random effects or directly through 
specification of the intrasubject variance-covariance matrix. This paper has focused on 
covariance structures that readily fit into the cross-over scheme. The covariance patterns 
are usually chosen to depend on a variable such as the time point or the number of the 
observation. The algorithm enables the experiment@r to construct run orders of cross­
over studies that are optimally balanced for polynomial time trend effects. A practical 
application has clearly shown that taking into account cost considerations leads to sub­
stantial decreases in the cost per unit information obtained. In addition, the results have 
revealed that misspecification of the parameter p can lead to considerable losses in the 
trend-resistance. Finally, ignoring the possibility for correlated error terms can be very 
destructive for the optimality of the computed run order. Therefore, an optimal protec­
tion against misspecification of the covariance pattern is obtained if the error terms are 
assumed to follow the AR(I), the power or the exponential model. 

Appendix. The design algorithm 

In the outline of the exchange algorithm the value of the user-specified optimality crite­
rion is written as Q. The 1)-, the 1)t- and the (1)t, C)-optimality criterion are different 
possibilities. The set P stands for the list of d distinct candidate points. The set B 
contains the b test subjects and the number of observations per subject are denoted as 
k1, ... ,kb . The list of time points is given by T = {Tr, ... ,n} where Tr denotes the list 
of time points within subject r. After each design change the list of time points T has to 
be updated. Let the initial list of time points be written as T*. The current number of 
measurements per subject is given by the series k(l), ... ,k(b) and ni represents the current 
number of replicates at design point Xi. The set R = {R1 , ... ,Rb} represents the run 
order, where Rr = {(Xi, t j )} is the run order for subject r. The optimal run order and 
the corresponding criterion value will be written as Rapt = {R1oPt '··· ,Rbopt } and Qopt 

respectively. In order to preserve clearness, the possibilities to include ns ;:::: 0 design 
points in the starting run order and to impose a restriction on the number of replicates 
for each design point are omitted from the outline. After reading the input, the algorithm 
proceeds as follows: 

1. Set Qopt = O. 

2. Repeat 1/ times: 

(a) Set Vi E P : ni = 0, VT E B : k(r) = 0, R = {}, T = T* and Q = O. 

(b) Randomly choose no with p + q + b ::; no ::; n. 

(c) Repeat no times: 
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i. Randomly choose rEB. 

ii. If Tr =I- {} and k(r) < kr then k(r) = k(r) + 1, else go to i. 
iii. Randomly choose k E Tr . 

iv. Randomly choose i E P. 

v. ni = ni + l. 
vi. 14 = 14 U {(Xi, tk)}. 

vii. Tr = Tr \ {tk}. 
viii. Update Q. 

(d) Repeat n - no times: 

i. Determine i E P, rEB with k(r) < kr and k E Tr with largest effect on 
Q. 

ii. ni = ni + 1 and k(r) = k(r) + l. 
iii. 14 = 14 U {(:x;, tk)}. 
iv. Tr = Tr \ {k}. 
v. Update Q. 

(e) Consider the exchanges and interchanges. 

i. Set I::,. = l. 
ii. Find the best exchange of design points: 

'V rEB, 'V:x; E 14, 'V JED, :x; =I- Xj: 

compute the effect 1::,.~(X;,tk)'(Xj,tk) on Q of deleting (:x;, tk) and adding 
(Xj, tk) in subject r. 
If 1::,.~(X;,tk)'(Xj,tk) > I::,. then I::,. = ,6.~(X;,tk)'(Xj,tk)' S = 1 and store i,j,k,r. 

iii. Find the best exchange of time points: 
'V rEB, 'V tk E 14, 'V I E Tr , tk =I- tz : 
compute the effect 1::,.~(X"tk),(X;,tl) on Q of deleting (:x;, tk) and adding (Xi, tz) 
in subject r. 
If 1::,.~(X;,tk)'(X"tl) > I::,. then ,6. = 1::,.~(X;,tk),(X;,tl)' S = 2 and store i, k, I, r. 

iv. Find the best interchange between subjects: 
'V r, s E B with s > r, 'V (:x;, tk) E 14, 'V (Xj, tz) E Rs , :x; =I- Xj: 
compute the effect 1::,.;,(X;,tk),S,(Xj,tl) on Q of interchanging (:x;, tk) in subject 
r and (Xj, t z) in subject s. 
If 1::,.;,(X;,tk),S,(Xj,tl) > I::,. then I::,. = 1::,.;,(X;,tk),S,(Xj,tz)' S = 3 and store i, j, k, I, r, s. 

(f) If I::,. > 1 then 

i. If S = 1 then 14 = 14 \ {(:x;, tk)}U {(Xj, tk)}, ni = n; -1 and nj = nj + l. 
ii. If S = 2 then 14 = 14 \ {(:x;, tk)} U {(:x;, tz)} and Tr = Tr \ {I} U {k}. 

iii. If S = 3 then 14 = 14 \ {(:x;, tk)} U {(Xj, tk)} and Rs = Rs \ {(Xj, tz)} U 
{(Xi, tz)}. 

iv. Update Q. 
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v. Go to step (e). 

(g) If Q ;::: Qopt, then Qopt = Q, Ropt = R. 

3. Write Qopt and Ropt . 

The algorithm is implemented in Fortran 77 and makes use of the Netlib library of Bell 
Labs. More specifically, it uses the random number generator 'rand' and the respec­
tive routines 'svert', 'sfact' and 'sdet' to compute the inverse, the factorization and the 
determinant of a symmetric matrix. 
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