
A heuristic methodology for solving spatial a
resource-constrained project scheduling problems

Eline De Frene, Damien Schatteman, Willy Herroelen and Stijn Van de Vonder

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0722

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A heuristic methodology for solving spatial
resource-constrained project scheduling

problems

Eline De Frene Damien Schatteman Willy Herroelen
Stijn Van de Vonder

Department of Decision Sciences and Information Management
Research Center for Operations Management
Faculty of Economics and Applied Economics

Katholieke Universiteit Leuven (Belgium)
email: <first name>.<family name>@econ.kuleuven.be

June, 2007

Abstract

In this paper we present a heuristic methodology for solving resource-
constrained project scheduling problems with renewable and spatial
resources. We especially concentrate on spatial resources that are
encountered in construction projects, but our analysis can easily be
generalized to other sectors. Our methodology is based on the appli-
cation of a schedule generation scheme on a priority list of activities.
We explain why the parallel schedule generation scheme is not appli-
cable for projects with spatial resources. We introduce a procedure for
transforming priority lists into precedence and resource feasible lists
that avoid deadlocks on the spatial resources. We conclude from a
computational experiment on two sets of instances that priority rules
performing well for the regular resource-constrained project schedul-
ing problem also perform well in the presence of spatial resources and
allow to effectively solve large problems in very short CPU time.
Keywords: Resource-constrained project scheduling, construction,
spatial resources

1

1 Introduction

Our recent experience with field-testing an integrated risk management ap-
proach developed under a joint research contract with the Belgian Building
Research Institute (Schatteman et al. (2006)) revealed the need for the devel-
opment of scheduling procedures able to cope with so-called spatial resources
(de Boer (1998)). Spatial resources are assigned to a group of activities
rather than to a single activity and are monopolized by the group from the
start of the first activity till the completion of the last activity in the group.
The objective of this paper is to introduce an effective and efficient heuristic
methodology for scheduling resource-constrained projects in the presence of
both renewable and spatial resources.

The paper is organized as follows. In Section 2, we review the literature
and introduce the type of spatial resources dealt with in this paper through
problem settings that may occur in construction projects. A mathematical
programming formulation is given in Section 3. In Section 4 we demonstrate
why traditional project scheduling methodology fails to deal effectively with
the presence of spatial resources. Our heuristic solution methodology is pre-
sented in Section 5. Sections 6 and 7 are devoted to the results of a com-
putational experiment performed on two datasets. The last section provides
overall conclusions.

2 Spatial resources

The concept of spatial resources has been introduced by de Boer (1998).
He explored a project scheduling problem with the Royal Netherlands Navy
Dockyards where the dry docks of shipyards served as spatial resources. A
spatial resource is not required by a single activity, as is the case with renew-
able resources, but by a group of activities, called a spatial resource activity
group (or just activity group). The spatial resource is occupied from the first
moment an activity from such a group starts until the last activity in the
group finishes. As long as other resources and precedence constraints permit,
all activities in the same group can be scheduled simultaneously. However, if
two activity groups require the same spatial resource unit, at most one group
can be in progress at the same time.

The solution procedure introduced by de Boer (1998) aims at minimizing
maximum lateness and is based on a parameterized regret-based random
sampling, analogous to the adaptive search method of Kolisch and Drexl
(1996). It has been applied to rather simple spatial resource networks with
only one spatial resource (a dry dock) with single unit availability. As a

2

result, all activities of all spatial resource groups have a constant spatial
resource requirement. The procedure has been tested on a small number of
generated networks with only 15% of the activities belonging to a spatial
activity group.

Paulus and Hurink (2006) and Hurink et al. (2006) added an adjacency
constraint to the definition of spatial resources, specifying that the spatial
resource units that are assigned to an activity group need to be adjacent in
space.

In this paper, we deal with a different and much broader project setting.
For the spatial resources used in construction work - formworks, cranes, scaf-
folds, temporary girders, large machinery - adjacency is not a factor. Some
of these are treated as spatial resources because of their inherent immobility.
Withdrawing such spatial resources from an activity group during idle times
in order to assign them to a different activity group, is only unfeasible due
to the required time and effort to move and set-up these resources.

In this paper we drop the adjacency requirement. We consider project
networks that require an arbitrary number of spatial resources in more than
a single unit. Activities within a group that occupies spatial resource units,
may call other spatial resource units and as such belong to different groups.
de Boer (1998) makes the crucial assumption that if a project has more
than one activity group, precedence relations are set between the groups
such that no cycles occur. We will in contrast transform a priority list into a
precedence and resource feasible priority list in which cyclical spatial resource
calls cannot occur.

We assume that projects are represented by an activity-on-the-node net-
work G(N, A), where the set of nodes N represent the activities and the set
of arcs A denotes the finish-start, zero-lag precedence relations. We assume a
single dummy start and end node. Rρ denotes the set of renewable resources
and we assume a constant availability of renewable resource type k ∈ Rρ,
denoted as aρ

k. The per period required renewable resource units of type k by
activity j is a constant number rρ

jk. The set of spatial resources is denoted
as Rσ and we assume a constant availability of spatial resource type k ∈ Rσ,
denoted as aσ

k .
We define an activity group g ∈ G, with G as the set of activity groups, as

a subnetwork of the project network that starts with a so-called call activity
jc
g, ends with a release activity jrr

g and contains 0, 1 or more intermediate
activities, which can be release activities. We will denote an intermediate
activity that serves as a release activity for group g as jri

g . Likewise, an
intermediate activity that does not change the spatial resource requirement
of the group will be denoted as ji

g. A call activity is the first activity of

3

the activity group that reserves a number rσ
jc
gk > 0 of spatial resource units

of type k ∈ Rσ. A call activity jc
g ∈ g will obtain the requested spatial

resource units at its scheduled starting time sjc
g

so that it can occupy the
reserved units for its entire duration pjc

g
. The total amount of claimed spatial

resource units remain reserved for the group until release activity jri
g or jrr

g

releases part respectively all of the remaining claimed resource units of the
corresponding spatial resource type. A release activity jrl

g (with l equal to r
or i) of an activity group g releases spatial resource units, i.e. rσ

j
rl
g k

< 0, at its

completion time fj
rl
g

, so that they can become available to other groups. Any
activity belonging to a particular group can act as call or release activities for
other groups. This implies that the call activity of group g claiming resource
type k ∈ Rσ may at the same time be a call activity for another group g′ 6= g
for the same resource type k ∈ Rσ.

Figure 1: Activity groups

As shown in Figure 1, the activities of an activity group can also be a
member of other activity groups. For simplicity, we assume that intermediate
activities of activity groups do not serve as release activity. Activity 1, for
example, is a call activity that claims a number of units of spatial resource
type 1 that will be occupied by the activities 1, 2, 5 and 6 of activity group 1
until they are released by release activity 6. Activity 1 is also a call activity
that claims a number of units of resource type 1 and resource type 2 to be
occupied by the second group activities 1, 7 and 8 until they are released

4

by the release activity 8. Activity 2, being a member of activity group 1,
is also a call activity requesting a number of units of resource type 1 and 3
to be used by the activities 2, 9 and 10 of activity group 3. Activity 5 is a
release activity of a fourth activity group that releases the resource units of
the resource types that were claimed for this group by its call activity 3.

The subset X ⊂ N unites all call activities in the project. Likewise
Y ⊂ N groups all release activities. We remark that an activity can belong
to X as well as to Y .

3 Formal problem statement

The basic resource-constrained project scheduling problem (RCPSP) can be
conceptually formulated as:

minimize sn (1)

subject to

∑
j∈St

rρ
jl ≤ aρ

l ∀l ∈ Rρ; ∀t (2)

sj ≥ si + di ∀(i, j) ∈ A with i, j ∈ N (3)

sj ≥ 0 ∀j ∈ N (4)

The objective function in Eq. (1) is to minimize the project makespan,
given by the start time sn of the dummy end activity n. Eqs. (2) are the
renewable resource constraints. For each renewable resource type l ∈ Rρ,
we assume that a finite amount aρ

l is available on a period-per-period basis.
Resource feasibility implies that for each resource type l and for each time
period t the sum of the resource requirements rρ

jl of the activities that are
in progress during period t (St = {j|sj ≤ t < sj + pj}) cannot exceed
the availability aρ

l . Eqs. (3) specify the precedence constraints. Whenever
(i, j) ∈ A, activity j cannot start before immediate predecessor i has finished.
sj represents the starting time of activity j and pj its deterministic duration.
Eqs. (4) impose non-negativity constraints on the decision variables sj.

The basic RSPSP (problem m, 1|cpm|Cmax in the notation of Herroelen
et al. (2000)) has been shown by Blazewicz et al. (1983) to be NP -hard in
the strong sense.

5

The RCPSP only takes resource constraints for renewable resources into
account. The spatial resource-constrained project scheduling problem (prob-
lem m,1σ|cpm|Cmax in the notation of Herroelen et al. (2000)) additionally
requires the specification of spatial resource constraints, as follows:

∑
g∈Gt

rσ
gk ≤ aσ

k ∀k ∈ Rσ; ∀t (5)

As we already mentioned before, each spatial resource type k ∈ Rσ has
a constant availability of aσ

k per time period t. For each spatial resource
type k and for each time period t the sum of the resource requirements rσ

gk

of the activity groups that are in progress during period t (Gt = {g|sg ≤
t < fg}) cannot exceed the availability aσ

k . Hereby, sg and fg denote the
start, respectively the completion times of activity group g, i.e. sg = sjc

g
and

fg = fjrr
g

.
The spatial resource unit requirements to be taken into account in each

time period t will be determined as follows:

rσ
gk =

{
rσ
jc
gk if jc

g ∈ St∑
o∈Zi

rσ
ok otherwise

In other words, if a call activity jc
g belonging to activity group g is in

progress in period t, i.e. jc
g ∈ St, then the number of spatial resource units

occupied by the group in period t is defined as rσ
gk = rσ

jc
gk. If no activity jc

g of

the activity group g is in progress during period t, i.e. jc
g /∈ St, or the activity

in progress is an intermediate activity ji
g or a release activity jrl

g , then rσ
gk is

set equal to
∑

o∈Zi
rσ
ok, where Zi is the set of predecessors of activity i|i = ji

g

or i = jrl
g , with i ∈ g and fi ≤ t.

The spatial resource-constrained project scheduling problem adds spatial
resource constraints to the strongly NP-hard RCPSP. Its complexity justifies
the use of heuristics. The literature on the general type of spatial RCPSP
introduced in this paper is to the best of our knowledge void.

4 Spatial resources and standard project schedul-

ing procedures

Before introducing our heuristic scheduling approach for solving the spatial
resource-constrained project scheduling problem (see Section 5), we will first
illustrate why spatial resources require special treatment.

6

4.1 Spatial resources modeled as renewable resources

It would be tempting to treat spatial resources as if they were regular renew-
able resources which boils down to solve the basic RCPSP model consisting
of Eqs. (1) - (4), supplemented with the following spatial resource constraints:

∑
j∈St

rσ
jk ≤ aσ

k ∀k ∈ Rσ; ∀t (6)

In our problem setting, however, the activities of a spatial activity group,
contrary to the setting of de Boer (1998), cannot be scheduled simultaneously.
Moreover, even when the spatial resources that are reserved for an activity
group are not used at a particular point in time, they cannot be considered
as available for other groups.

Figure 2: Project network

Consider the construction of two separate concrete walls, wall A and
wall B, as shown in Figure 2. In order to be erected, both walls require
a supporting formwork with single unit availability. The construction of a
concrete wall can thus be modeled as a spatial activity group that is a chain
of three activities, i.e. placing the formwork (activities A1 for wall A and
B1 for wall B), pouring the wall (activities A2 and B2), and removing the
formwork (activities A3 and B3). Solving this small problem as an RCPSP
could result in the schedule shown in Figure 3. In this schedule, the execution
of the activity group for wall A is preempted upon completion of activity A1
by activity B1 that belongs to the second activity group. Although the single
unit resource availability constraint is not violated at any time, this schedule
is clearly unfeasible. When activity 1 finishes, activity B1 cannot reserve the
spatial resource unit as long as it has not been released by release activity
A3. Modelling spatial resources as renewable resources may clearly lead to
infeasible schedules.

It would be tempting to avoid this type of schedule infeasibility by im-
posing precedence constraints between the activity groups. Our experience

7

Figure 3: An RCPSP solution

(Schatteman et al. (2006)) shows this to be a common practice among Belgian
construction companies. In the example of Figure 2, introducing a minimal
finish-start, zero-lag precedence relation between release activity A3 and call
activity B1, or between release activity B3 and call activity A1 would avoid
a spatial resource conflict and would avoid the infeasibility shown in Figure
3.

Avoiding schedule infeasibilities by introducing extra precedence rela-
tions, however, may prevent the generation of high quality schedules. Con-
sider the project shown in Figure 4 that consists of two spatial resource
activity groups: building a wall and making a ledger. The erection of the
wall requires formwork 1 while making a ledger requires formwork 2. The
concrete wall has to be poured (activity A2) before the ledger can be made
(activity B1). Activities A1, A2, A3 and B1, shown shaded in the figure, all
require the same single renewable resource unit.

Figure 4: Project network

Translating the finish-start zero-lag precedence relation between activity
A2 and B1 into a finish-start, zero-lag precedence relation between the two
activity groups, i.e. between activity A3 and B1, or imposing maximal zero-
lag precedence relations between the three activities of each activity group
(or equivalently, an extra time-lag between activity A2 and B1 equal to the
duration of activity A3), leads to the schedule shown in Figure 5.

Figure 5: Solution

Because both activity groups do not require the same spatial resource,

8

however, it is possible to start B1 before A3. This minimal makespan solution
is presented in Figure 6.

Figure 6: Optimal solution

4.2 Replacing spatial activity groups by a single ag-
gregate activity

Infeasible preemption of activity groups, the problem illustrated in Figure 3,
can be prevented by aggregating the activities of a spatial activity group into
a single non-preemptable aggregate activity. However, such an approach may
also overlook many potentially good schedules when the project activities also
require renewable resources.

Figure 7: Network (a) without aggregation (b) with aggregation

Consider again the construction of two separate concrete walls, wall A
and wall B, which require the same formwork. Activity C (make ledger) can
start as soon as activity A1 (placing the formwork) is finished. Activities
A1, B1 and C require one unit of a single renewable resource type. Fig-
ure 7(a) represents the corresponding network (the activities requiring the
renewable resource unit are shaded). If the activities of the activity groups
are aggregated into a single non-preemptable activity (Figure 7(b)), the re-
newable resource unit will be in use for the entire duration of the aggregated

9

activities A and B, forcing activity C to be scheduled in series with the
non-preemptable aggregated activities A and B (creating either the chains
<B,A,C>, <A,B,C> or <A,C,B>).

Figure 8(b) shows a resulting schedule with activity C scheduled after
the two groups. Figure 8(a) gives a minimal makespan schedule in which
activity C is scheduled in parallel with activity A2, which is feasible because
activities A2 and A3 do not require the renewable resource unit.

Figure 8: Solution (a) without aggregation (b) with aggregation

5 Algorithm

The heuristic solution procedure described in this section involves the appli-
cation of a schedule generation scheme on a priority list of activities. The
literature on priority list based schedule generation schemes for the RCPSP
is very extensive (for overviews see Kolisch (1996a) and Kolisch (1996b)).

When spatial resources that are to be reserved for all the activities of
activity groups come into play, however, it must be guaranteed that the
priority lists do not result in deadlocks. A deadlock is a situation where
two or more competing actions are waiting for the other to finish, and thus
neither ever does. In the context of spatial resources, deadlock refers to a
specific condition when two or more activities are each waiting for another
to release spatial resource units or more than two activities are waiting for
resources in a circular chain.

Consider the modified example of Figure 2, where both walls are now the
lower and upper part of the same large wall. Activity 6 denotes the extra
activity corresponding to the placement of the upper part on top of the lower
part by means of a crane. Both parts still require the presence of a supporting
formwork until the part is completed. For the lower part, the formwork can
only be removed after the upper part has been placed on top of the lower
part. The upper and lower part can be regarded as two activity groups. The
construction of the lower part consists of setting up the formwork (activity

10

1), pouring the concrete (activity 2) and removing the formwork (activity
7). Analogously, the construction of the upper part consists of setting up the
formwork (activity 3), pouring the concrete (activity 4) and removing the
formwork (activity 5). Mounting the formwork for the lower part (activity
1) and mounting the formwork for the upper part (activity 3) are the call
activities. Removing the formwork from the lower part (activity 7) and from
the upper part (activity 5) are the release activities. Figure 9 shows the
precedence relationships for this project.

Figure 9: A project with possible deadlock

Assume a single formwork is available. If we schedule this project by ap-
plying a serial generation scheme (SGS) on the priority list λ = (1, 2, 3, 4, 5, 6, 7),
starting with activity 1 would result in a deadlock. After scheduling activ-
ities 1 and 2, activity 7 cannot be started yet because it waits for activity
6 to finish and thus transitively for activity 3 to start. Activity 3 on the
other hand, waits for activity 7 to release the formwork. This results in a
circular wait between activities 3 and 7. Applying a different priority list, for
example list λ = (3, 4, 5, 1, 2, 6, 7), avoids the deadlock and leads to a feasible
schedule.

In order to avoid deadlocks, we need a procedure for transforming an
input priority list λ into a precedence and resource feasible priority list µ.

5.1 Transforming the priority list

In this section a procedure is proposed that transforms any priority list λ
into a precedence and spatial resource feasible list µ. The procedure consists
of two algorithms. In Algorithm 1, we start from a list χ that includes all
call activities in the set X sorted in the order dictated by priority list λ.
The algorithm transforms χ into a precedence and spatial resource feasible
list β. Algorithm 2 generates a precedence feasible priority list µ, taking
into account the precedence relations between the call activities imposed by
the spatial resource feasible list generated by Algorithm 1. The schedule

11

generation scheme to transform the priority list into a feasible schedule is
described in Section 5.4.

5.1.1 Constructing a feasible call activity list

We denote by CardX the cardinality of the set of call activities X, and we
let x denote the position in list χ, B the set of activities that are already
added to β and b the position in list β.

The algorithm initializes B = ∅. For every spatial resource type k ∈
Rσ, the variable Vk that denotes the current availability of that resource, is
initialized to aσ

k .
For each release activity j ∈ Y , we define the set Pj with cardinality

cardPj
, as the set of call activities that are direct or transitive predecessors

of j.
For each spatial resource k ∈ Rσ, we define Yk as the set of release activ-

ities for that spatial resource:

∀k ∈ Rσ, i ∈ Y : i ∈ Yk ⇔ rσ
ik < 0. (7)

We also initialize the variables ncPj ,k and rePj ,k, where ncPj ,k stands for
not called and rePj ,k for released. ncPj ,k is initialized by:

∀k ∈ Rσ, j ∈ Yk, i ∈ Pj : ncPj ,k =

cardPj∑
i=1

r′ik with r′ik = max(0, rik). (8)

rePj ,k is set equal to 0 for ∀j, ∀k.
We also initialize every nc′Pj ,k = ncPj ,k. Analogously every re′Pj ,k is set

equal to rePj ,k. The role of the variables nc′Pj ,k and re′Pj ,k will immediately
become clear. The procedure runs as depicted in Algorithm 1. The variable
initializations for this algorithm are given in Table 1.

B = ∅
b = 1
x = 1
∀k ∈ Rσ : Vk = aσ

k

∀k ∈ Rσ, j ∈ Yk, i ∈ Pj : nc′Pj ,k = ncPj ,k =
∑cardPj

i=1 r′ik
∀k ∈ Rσ, j ∈ Yk : re′Pj ,k = rePj ,k = 0

Table 1: Variable initializations Algorithm 1

12

Algorithm 1 Making the call activity list feasible
WHILE (b 6= (cardX + 1)) DO

WHILE (b 6= 0) DO

WHILE (x 6= (cardX + 1) and (X \ B) 6= ∅) DO

1. Check whether already in β

IF (χx ∈ B) THEN x = x + 1

2. Check precedence feasibility

ELSE IF (∃i ∈ X|(i, χx) ∈ A and i /∈ B) THEN x = x + 1

3. Check spatial resource feasibility

ELSE ∀k ∈ Rσ : V ′
k = Vk − rχx,k

IF (∃k ∈ Rσ |V ′
k < 0) THEN x = x + 1

ELSE

∀k ∈ Rσ :

∀j ∈ Yk :

IF ((Pj \ B) 6= ∅ and χx ∈ Pj) THEN

nc′
Pj ,k = ncPj ,k − rχx,k

IF (nc′
Pj ,k = 0 and Pj \ (B ∪ χx) = 0) THEN re′

Pj ,k = rePj ,k − rj,k

V ′′
k = Vk

IF (rχx,k ≥ 0) THEN V ′′
k = V ′′

k − rχx,k

IF (rePj ,k 6= 0) THEN V ′′
k = V ′′

k + rePj ,k

IF (@j ∈ Yk|(Pj \ (B ∪ χx) 6= 0 and nc′
Pj ,k ≤ V ′′

k) THEN

x = x + 1

break

4. Add activity to β

IF not break THEN

βb = χx

B = (B ∪ χx)

∀k ∈ Rσ :

∀j ∈ Yk :

nc′′′
Pj ,k = ncPj ,k and re′′′

Pj ,k = rePj ,k

ncPj ,k = nc′
Pj ,k and rePj ,k = re′

Pj ,k

V ′′′
k = Vk

Vk = V ′′
k

x = 1

b = b + 1

END DO

5. Backtrack

IF (x = cardX + 1) THEN

b = b− 1

IF (b 6= 0) THEN

B = (B \ βb)

∀k ∈ Rσ :

∀j ∈ Yk :

ncPj ,k = nc′′′
Pj ,k and rePj ,k = re′′′

Pj ,k

Vk = V ′′′
k

x = χ(βb) + 1

ELSE no feasible list exists

END DO

END DO

13

The procedure tries to add activities to B one by one, by considering
activities in the order of list χ. As long as x 6= cardX + 1 and (X \ B) 6= ∅,
it can be checked if activity χx can be added to B. Otherwise, no activity
can be currently assigned and a deadlock has been detected. The procedure
backtracks to the previous activity in β.

Step 1 considers the first unscheduled activity in χ.
Precedence feasibility is checked in Step 2. If an activity has call activity

predecessors that are not assigned to B, the next activity in χ is considered.
When the first eligible activity has been found, the algorithm checks in

Step 3 for spatial resource feasibility. It is first checked whether sufficient
units are available for each spatial resource. If not, the next activity in χ is
considered.

If sufficient units are available for the current activity, the procedure goes
through a spatial resource loop. The first spatial resource is examined. For
each j ∈ Yk, the procedure checks if the current activity is a predecessor of j.
If so, the value of ncPj ,k is reduced by the spatial resource requirement of the
current activity. Remark that we do not change the value of ncPj ,k but store
the change in an intermediate variable nc′Pj ,k. The procedure also checks if
all call activities in Pj are already assigned to B. If so, the release activity
j may release its spatial resources units. Next, the algorithm calculates the
potential availability V ′′

k of spatial resource k after current activity χx would
be scheduled. V ′′

k is equal to Vk minus the called number of units and plus
the number of released units.

Now we check whether we will not be entangled by adding this activity
to B. That is to say, if for this spatial resource k, there is at least one release
activity j with not all predecessors definitively or tentatively scheduled for
which it holds that nc′Pj ,k ≤ V ′′

k , the loop is re-executed for the next spatial
resource. If no such release activity can be found, the procedure considers
the next activity in list χ. If the loop can be executed for all spatial resources
and if for the last spatial resource the while-loop does not need to be broken,
the algorithm can move to the next step.

In Step 4, activity χx is added to β. The procedure makes backtrack
copies nc′′′Pj ,k, re′′′Pj ,k and V ′′′

k of variables ncPj ,k, rePj ,k and Vk. Upon adding
χx it could indeed be the case that no other activity can be added to β forcing
the procedure to backtrack. By working this way, we can thus easily delete
the activity from the output list β. Step 4 will also update the variables
ncPj ,k, rePj ,k and Vk by setting them equal to nc′Pj ,k, re′Pj ,k and V ′′

k . If an
activity is added to β, we set x equal to 1, increase b and re-execute the while-
loop. If an activity is deleted from the output list in Step 5, the algorithm is
continued for the next x in the input list.

Ultimately, a precedence and spatial resource feasible list β will be found,

14

if one exists. If there does not exist such a list, there is no need to execute
the second algorithm, because no feasible solution exists for the network.

5.1.2 Constructing a feasible priority list

Algorithm 2 accepts the priority list λ with n activities and changes the
position of the activities until a precedence and spatial resource feasible list
µ is obtained. As mentioned before, we will take the resulting order of list β
of Algorithm 1 into account.

M = {0}
m = 1
l = 1
b = 1
∀k ∈ Rσ : Vk = aσ

k

Table 2: Variable initializations Algorithm 2

The algorithm starts by initializing the set M of activities that are already
added to list µ as M = {0}, with activity 0 being the dummy start activity.
Analogously to the use of subscripts x and b in Algorithm 1, we use the
subscripts l and m to indicate the positions in lists λ and µ respectively. For
every spatial resource k ∈ Rσ, Vk is again initialized to aσ

k . Furthermore we
set b, the position of the considered activity in β, equal to 1.

In Step 1, we look for the first unscheduled activity. Step 2 checks the
spatial resource availability after taking into account the requirement for the
considered activity λl. If this availability becomes negative for at least one
spatial resource, the procedure takes the next activity of the priority list λ. In
Step 3 precedence feasibility is checked. If the activity has predecessors that
are not assigned to M , the next activity in priority list λ is considered. In
order to obtain spatial resource feasibility, it is checked whether the sequence
of the activities in β is preserved. More specifically, if λl is a call activity and
if there exist one or more unscheduled activities that precede λl in β, then
the procedure continues with the next activity in λ. The activity is added
to µ in Step 4. If a call activity is added to µ, b is increased by one.

The combination of these two algorithms leads to a precedence and re-
source feasible priority list µ. This list can be used to schedule activities by
a schedule generation scheme as will be explained in Section 5.4.

15

Algorithm 2 Making the priority list feasible

WHILE (m 6= n) DO

1. Check whether already in µ

IF (λl ∈ M) THEN l = l + 1

2. Check spatial resource availability
ELSE ∀k ∈ Rσ : V ′

k = Vk − rλl,k

IF (∃k ∈ Rσ|V ′
k < 0) THEN l = l + 1

3. Check precedence feasibility

a. Common precedence feasibility
ELSE IF (∃i ∈ N |(i, λl) ∈ A and i /∈ M) THEN l = l + 1

b. Spatial resource feasibility
ELSE IF (λl ∈ X and λl 6= βb) THEN l = l + 1

4. Add activity to µ

ELSE µm = λl

M = (M ∪ λl)
∀k ∈ Rσ : Vk = V ′

k

IF (λl ∈ X) THEN b = b + 1
l = 1
m = m + 1

END DO

16

5.2 Dominance rules

For speeding up our procedure, two dominance rules are added. The domi-
nance rules will both limit the amount of backtracking required by Algorithm
1.

The first dominance rule is the use of a higher backtrack level. In Algo-
rithm 1 we used level 0 as backtrack level. If in our backtrack procedure we
arrive at level 0, we know that no feasible list β exists. But whenever we
add an activity to β we can do the following. If for every spatial resource
k ∈ Rσ : Vk = aσ

k , we can raise our backtrack level to b, the number of ac-
tivities already added to B. If we then have to backtrack and arrive at level
b, we know we can stop backtracking because we are sure we will not find a
feasible list.

The second dominance rule is the addition of an extra control array,
whereby the number of elements is equal to 2cardX . Every element in the
array is initialized to 0. Each time we arrive at the backtrack step, Step 5
in Algorithm 1, we save the set of activities to which we cannot add one of
the remaining unassigned activities. Concretely, for every saved set of activ-
ities we generate a corresponding binary value. For example, if set {1, 2} is
fathomed, the value of element 5 (21 + 22) is set equal to 1. Later on, if we
place activity 2 in the first position of β and we want to check if we can put
activity 1 in the next position in the output list, we first have to determine
whether it is still useful to examine this branch of the tree. The value of our
new set {2, 1} will also be equal to 5 (22 + 21). We can see in our array that
the value of element 5 is already 1, so that we do not have to go on with this
branch. This dominance rule thus prevents the branching of already con-
sidered sets. The higher the total number of different call activities over all
spatial resources, the more effective this second dominance rule. The results
of this dominance rule will be given in Section 7.

5.3 An illustrative example

Figure 10 shows a 10-activity project that requires a single spatial resource
type with aσ = 2. The curved lines in the figure identify the activity groups.
Each group requires one unit of the spatial resource. For example for activity
group {2, 3}, rσ

2 = +1 and rσ
3 = −1. We observe that the set of call activities

X = {2, 4, 5, 7} and the set of release activities Y = {3, 6, 8}. We have
P3 = {2}, P6 = {2, 4, 5} and P8 = {2, 4, 5, 7}.

For every Pj, we derive the values of ncPj
, nc′Pj

, rePj
and re′Pj

:
nc′P3

= ncP3 = r2 = 1 re′P3
= reP3 = 0

nc′P6
= ncP6 = r2 + r4 + r5 = 3 re′P6

= reP6 = 0

17

Figure 10: A project network with spatial resources

nc′P8
= ncP8 = r2 + r4 + r5 + r7 = 4 re′P8

= reP8 = 0
We illustrate the procedure on the activity list λ = (7, 4, 2, 1, 5, 3, 8, 6, 9).
The procedure is initialized by setting B = ∅, b = 1, x = 1 and V = aσ =

2. The procedure starts from the ordered list of call activities χ = (7, 4, 2, 5)
and runs as follows.

b = 1
b 6= cardX + 1 = 5; b 6= 0
x = 1; x 6= cardX + 1 = 5 and X \B = {2, 4, 5, 7} 6= ∅
χx = 7 (activity 7 is the first activity in the ordered list of call
activities)

1. 7 is not an element of B
2. Activity 7 has no predecessor call activities
3. Check spatial resource availability

V ′ = V − rσ
7 = 2− 1 = 1

Check spatial resource feasibility
nc′P3

= 1 and nc′P6
= 3

Activity 7 precedes release activity 8: nc′P8
= 4− 1 = 3

V ′′ = 2− 1 + 0 = 1
nc′P3

≤ V ′′

4. Add activity 7 to B

18

β1 = 7
B = {7}
nc′′′P3

= ncP3 = 1 re′′′P3
= reP3 = 0

nc′′′P6
= ncP6 = 3 re′′′P6

= reP6 = 0
nc′′′P8

= ncP8 = 4 re′′′P8
= reP8 = 0

ncP3 = nc′P3
= 1 reP3 = re′P3

= 0
ncP6 = nc′P6

= 3 reP6 = re′P6
= 0

ncP8 = nc′P8
= 3 reP8 = re′P8

= 0

V ′′′ = 2 and V = 1
x = 1
b = 2

b = 2
x = 1; χx = 7

1. 7 ∈ B; x = x + 1 = 2
x = 2; χx = 4

1. 4 /∈ B
2. Activity 4 has no predecessor call activities
3. V ′ = V − rσ

4 = 1− 1 = 0
V ′′ = 1− 1 + 0 = 0
nc′P3

= 1
Activity 4 precedes release activities 6 and 8: nc′P6

= 3−1 = 2
and nc′P8

= 3− 1 = 2
nc′P3

, nc′P6
, nc′P8

> V ′′; x = x + 1 = 3
x = 3; χx = 2

1. 2 /∈ B
2. Activity 2 has no predecessor call activities
3. V ′ = 1− 1 = 0

Activity 2 precedes activities 3, 6 and 8: nc′P3
= 1− 1 = 0,

nc′P6
= 3− 1 = 2 and nc′P8

= 3− 1 = 2
nc′P3

= 0 and P3\(B∪χx) = 0: re′P3
= reP3−rσ

3 = 0−(−1) = 1
V ′′ = 1− 1 + 1 = 1
nc′P6

, nc′P8
> V ′′; x = x + 1 = 4

x = 4; χx = 5
1. 5 /∈ B
2. Activity 5 has no predecessor call activities
3. V ′ = 1− 1 = 0

nc′P3
= 1, nc′P6

= 2 and nc′P8
= 2

V ′′ = 1− 1 + 0 = 0
nc′P3

= 1
Activity 5 precedes activities 6 and 8: nc′P6

= 3− 1 = 2

19

and nc′P8
= 3− 1 = 2

nc′P3
, nc′P6

, nc′P8
> V ′′; x = x + 1 = 5

x = 5
5. Backtrack

b = b− 1 = 1
b 6= 0:

B = ∅
ncP3 = nc′′′P3

= 1 reP3 = re′′′P3
= 0

ncP6 = nc′′′P6
= 3 reP6 = re′′′P6

= 0
ncP8 = nc′′′P8

= 4 reP8 = re′′′P8
= 0

V = V ′′′ = 2
x = χ(βb) + 1 = 1 + 1 = 2

b = 1
x = 2; χx = 4

1. 4 /∈ B
2. Activity 4 has no predecessor call activities
3. V ′ = 2− 1 = 1

nc′P3
= 1 and nc′P6

= 2 and nc′P8
= 3

V ′′ = 2− 1 + 0 = 1
nc′P3

≤ V ′′

4. β1 = 4
B = {4}
nc′′′P3

= ncP3 = 1 re′′′P3
= reP3 = 0

nc′′′P6
= ncP6 = 3 re′′′P6

= reP6 = 0
nc′′′P8

= ncP8 = 4 re′′′P8
= reP8 = 0

ncP3 = nc′P3
= 1 reP3 = re′P3

= 0
ncP6 = nc′P6

= 2 reP6 = re′P6
= 0

ncP8 = nc′P8
= 3 reP8 = re′P8

= 0

V ′′′ = 2 and V = 1
x = 1
b = 2

b = 2
x = 1; χx = 7

1. 7 /∈ B
2. Activity 7 has no predecessor call activities
3. V ′ = 1− 1 = 0

nc′P3
= 1 and nc′P6

= 2 and nc′P8
= 2

V ′′ = 1− 1 + 0 = 0
nc′P3

, nc′P6
, nc′P8

> V ′′; x = x + 1 = 2
x = 2; χx = 4

20

1. 4 ∈ B; x = x + 1 = 3
x = 3; χx = 2

1. 2 /∈ B
2. Activity 2 has no predecessor call activities
3. V ′ = 1− 1 = 0

nc′P3
= 0 and nc′P6

= 1 and nc′P8
= 2

nc′P3
= 0 and P3\(B∪χx) = 0: re′P3

= reP3−rσ
3 = 0−(−1) = 1

V ′′ = 1− 1 + 1 = 1
nc′P6

≤ V ′′

4. β2 = 2
B = {2, 4}
nc′′′P3

= ncP3 = 1 re′′′P3
= reP3 = 0

nc′′′P6
= ncP6 = 2 re′′′P6

= reP6 = 0
nc′′′P8

= ncP8 = 3 re′′′P8
= reP8 = 0

ncP3 = nc′P3
= 0 reP3 = re′P3

= 1
ncP6 = nc′P6

= 1 reP6 = re′P6
= 0

ncP8 = nc′P8
= 2 reP8 = re′P8

= 0

V ′′′ = 1 and V = 1
x = 1
b = 3

b = 3
x = 1; χx = 7

1. 7 /∈ B
2. Activity 7 has no predecessor call activities
3. V ′ = 1− 1 = 0

nc′P6
= 1 and nc′P8

= 1
V ′′ = 1− 1 + 0 = 0
nc′P6

, nc′P8
> V ′′; x = x + 1 = 2

x = 2; χx = 4
1. 4 ∈ B; x = x + 1 = 3

x = 3; χx = 2
1. 2 ∈ B; x = x + 1 = 4

x = 4; χx = 5
1. 5 /∈ B
2. Activity 5 has no predecessor call activities
3. V ′ = 1− 1 = 0

nc′P6
= 0 and nc′P8

= 1
nc′P6

= 0 and P6\(B∪χx) = 0: re′P6
= reP6−rσ

6 = 0−(−2) = 2
V ′′ = 1− 1 + 2 = 2
nc′P8

≤ V ′′

21

4. β3 = 5
B = {2, 4, 5}
nc′′′P3

= ncP3 = 0 re′′′P3
= reP3 = 1

nc′′′P6
= ncP6 = 1 re′′′P6

= reP6 = 0
nc′′′P8

= ncP8 = 2 re′′′P8
= reP8 = 0

ncP3 = nc′P3
= 0 reP3 = re′P3

= 1
ncP6 = nc′P6

= 0 reP6 = re′P6
= 2

ncP8 = nc′P8
= 1 reP8 = re′P8

= 0

V ′′′ = 1 and V = 2
x = 1
b = 4

b = 4
x = 1; χx = 7

1. 7 /∈ B
2. Activity 7 has no predecessor call activities
3. V ′ = 2− 1 = 1

nc′P8
= 0

re′P8
= reP8 − rσ

8 = 0− (−1) = 1
V ′′ = 2− 1 + 1 = 2

4. β4 = 7
B = {2, 4, 5, 7}
nc′′′P3

= ncP3 = 0 re′′′P3
= reP3 = 1

nc′′′P6
= ncP6 = 0 re′′′P6

= reP6 = 2
nc′′′P8

= ncP8 = 1 re′′′P8
= reP8 = 0

ncP3 = nc′P3
= 0 reP3 = re′P3

= 1
ncP6 = nc′P6

= 0 reP6 = re′P6
= 2

ncP8 = nc′P8
= 0 reP8 = re′P8

= 1

V ′′′ = 2 and V = 2
x = 1
b = 5

b = (cardx + 1) = 4 + 1 = 5. The algorithm stops with the precedence
and spatial resource call activity feasible list β = (4, 2, 5, 7).

Now we use this feasible call activity list to determine µ, the precedence
and spatial resource feasible priority list. We hereby start from our original
priority list λ = (7, 4, 2, 1, 5, 3, 8, 6, 9). We initialize M = {0}, m = 1, l = 1,
b = 1 and V = 2.

m = 1
m 6= n
l = 1; λl = 7

22

1. 7 /∈ M
2. V ′ = 2− 1 = 1 ≥ 0
3a. All predecessors of activity 7 are in M
3b. Activity 7 belongs to X and is different from β1 = 4;

l = l + 1 = 2
l = 2; λl = 4

1. 4 /∈ M
2. V ′ = 2− 1 = 1 ≥ 0
3a. All predecessors of activity 4 are in M
3b. Activity 4 belongs to X and equals β1 = 4, so activity 4

will be added to list µ
4. µ1 = 4

M = {0, 4}
V = 1
Activity 4 belongs to X thus b = b + 1 = 2
l = 1
m = m + 1 = 2

m = 2
l = 1; λl = 7

1. 7 /∈ M
2. V ′ = 1− 1 = 0 ≥ 0
3a. All predecessors of activity 7 are in M
3b. Activity 7 belongs to X and is different from

β2 = 2; l = l + 1 = 2
l = 2; λl = 4

1. 4 ∈ M ; l = l + 1 = 3
l = 3; λl = 2

1. 2 /∈ M
2. V ′ = 1− 1 = 0 ≥ 0
3a. Not all predecessors of activity 2 are in M ; l = l + 1 = 4

l = 4; λl = 1
1. 1 /∈ M
2. V ′ = 1− 0 = 1 ≥ 0
3a. All predecessors of activity 1 are in M
3b. Activity 1 does not belong to X
4. µ2 = 1

M = {0, 1, 4}
V = 1
l = 1
m = m + 1 = 3

m = 3

23

l = 1; λl = 7
Activity 7 remains ineligible

l = 2; λl = 4
1. 4 ∈ M ; l = l + 1 = 3

l = 3; λl = 2
1. 2 /∈ M
2. V ′ = 1− 1 = 0 ≥ 0
3a. All predecessors of activity 2 are in M
3b. Activity 2 belongs to X and equals β2 = 2
4. µ3 = 1

M = {0, 1, 2, 4}
V = 0
Activity 2 belongs to X thus b = b + 1 = 3
l = 1
m = m + 1 = 4

m = 4
l = 1; λl = 7

Activity 7 remains ineligible
l = 2; λl = 4 and l = 3; λl = 2 and l = 4; λl = 1

1. 4, 2, 1 ∈ M
l = 5; λl = 5

1. 5 /∈ M
2. V ′ = 0− 1 = −1 < 0; l = l + 1 = 6

l = 6; λl = 3
1. 3 /∈ M
2. V ′ = 0− (−1) = 1 ≥ 0
3a. All predecessors of activity 3 are in M
3b. Activity 3 does not belong to X
4. µ4 = 3

M = {0, 1, 2, 3, 4}
V = 1
l = 1
m = m + 1 = 5

m = 5
Activity 7 remains ineligible
Activities 4, 2 and 1 already belong to M
l = 5; λl = 5

1. 5 /∈ M
2. V ′ = 1− 1 = 0 ≥ 0
3a. All predecessors of activity 5 are in M
3b. Activity 5 belongs to X and equals β3 = 5

24

4. µ5 = 5
M = {0, 1, 2, 3, 4, 5}
V = 0
Activity 5 belongs to X thus b = b + 1 = 4
l = 1
m = m + 1 = 6

m = 6
l = 1; λl = 7

1. 7 /∈ M
2. V ′ = 0− 1 = −1 < 0; l = l + 1 = 2

Activities 4, 2, 1, 5 and 3 already belong to M
l = 7; λl = 8

1. 8 /∈ M
2. V ′ = 0− (−1) = 1 ≥ 0
3a. Not all predecessors of activity 8 are in M ; l = l + 1 = 8

l = 8; λl = 6
1. 6 /∈ M
2. V ′ = 0− (−2) = 2 ≥ 0
3a. All predecessors of activity 6 are in M
3b. Activity 6 does not belong to X
4. µ6 = 6

M = {0, 1, 2, 3, 4, 5, 6}
V = 2
l = 1
m = m + 1 = 7

Continuing the procedure results in the precedence and spatial resource
feasible list µ = (4, 1, 2, 3, 5, 6, 7, 8, 9).

5.4 The schedule generation scheme

In project scheduling literature, two basic schedule generation schemes are
often used: the parallel schedule generation scheme (parallel SGS) and the
serial schedule generation scheme (serial SGS). Both can be applied to a pri-
ority list in order to build a resource and precedence feasible project schedule.
We will illustrate both schemes on the project network of Figure 10. For illus-
trative purposes, we assume that no other renewable resources are required
and that all activities have a single unit duration.

The parallel SGS iterates over time and starts at each decision time t as
many unscheduled activities as possible in accordance with the precedence
and resource constraints. The priority list dictates the order in which the
activities are considered.

25

If we apply the parallel SGS to the list µ = (4, 1, 2, 3, 5, 6, 7, 8, 9) for the
example project, we start by scheduling activities 4 and 1 at time 0. The
next two activities in µ, activities 2 and 3, cannot be scheduled at time 0,
because activity 1 has not been finished. Activity 5 is the next activity to be
started at time 0. The remaining activities in µ cannot be started because
either a predecessor has not yet finished (activities 6, 8 an 9 are in this case)
or the required resources are not available (activity 7). Despite the feasible
priority list, a deadlock still occurs. We are in a situation in which activity 2
is waiting for activity 6 to release spatial resources and activity 6 is waiting
for activity 2 (and 3) to be scheduled. The parallel SGS is not applicable for
generating spatial resource schedules since it does not guarantee a deadlock-
free schedule.

The serial SGS selects in each iteration the next unscheduled activity in
the priority list and assigns the first possible starting time that satisfies both
the precedence and resource constraints.

When we apply this SGS to µ = (4, 1, 2, 3, 5, 6, 7, 8, 9), we first schedule
activities 4 and 1 to start at time 0. Activity 1 is shown unshaded in Figure 11
because it does not require spatial resources. Activity 4 requests a spatial
resource unit. Activity 2 can be scheduled when its predecessor activity
1 ends, i.e. at time 1. Next, activity 3 starts at time 2 and releases the
spatial resource unit that activity 2 called. The next activity in priority list
µ, activity 5, can only be scheduled at time 3 when activity 3 releases its
spatial resource unit. The schedule is completed as shown in Figure 11.

Figure 11: Resource profile for example project

6 Computational experiment

We extended the J30 and J120 instance sets of PSPLIB (Kolisch and Sprecher
(1997)) to generate networks with spatial resources. For each instance we

26

kept the first two renewable resources - i.e. we preserved the total avail-
ability of the resource and the requirements of the activities - and we added
one or two spatial resources with availability aσ

k and a certain number of call
and release activities. Furthermore, we made a distinction in the spatial re-
source intensity by using 3, 6 or 9 different call activities per spatial resource.
For each J30 and J120 instance, we generated six different spatial resource
networks: three with one spatial resource (setting 1SR) and 3, 6 or 9 call
activities, and three networks with two spatial resources (setting 2SR), each
having 3, 6 or 9 call activities. So for networks with two spatial resources and
9 call activities, there can be in theory 18 call activities in total. However,
this number cannot always be obtained because of two reasons. First of all,
not every network allows to generate 9 different call activities per spatial re-
source because of the inherent structure of the network. Second, an activity
can be a call activity for the first as well as the second spatial resource type.
It is easier to reach the maximum number of call activities for the J120 than
for the J30 instances.

The fifteen priority rules shown in Table 3 are tested in the experiment.
A detailed explanation for each of them can be found in Demeulemeester
and Herroelen (2002). We report on the results obtained on 425 feasible
networks for each combination of the total number of activities (30 or 120),
the number of spatial resources (1SR or 2SR) and the number of call activities
(approximately 3, 6 or 9).

7 Computational results

All computational results have been obtained on a personal computer equipped
with a Pentium D 2.8 GHZ processor. All algorithms have been coded in C.

7.1 Makespan performance of the serial priority rules

The average makespan over six groups of 425 network instances (namely one
spatial resource (1SR) and 3 call activities (3call), 1SR and 6call, 1SR and
9call, 2SR and 3call, 2SR and 6call and 2SR and 9call) obtained by the serial
SGS equipped with each of the 15 priority rules listed in Table 3 are presented
in Figure 12. The latest start time priority rule (LST) - ranking among the
best priority rules for the classical RCPSP - consistently yields the smallest
makespan. It seems fair to conclude that the priority rules which perform
well for the RCPSP also perform well for the spatial RCPSP.

27

Figure 12: Comparison of makespan performance

7.2 CPU time requirements

In the following, we report on the computational requirements of the serial
SGS equipped with the LST rule for the networks with 120 activities and
two spatial resources, the most difficult instances to solve. The results are
given in Table 4 and are plotted in Figure 13. The mentioned times are the
total times (in seconds) needed to solve all 425 networks.

The computational times are very small. The results obtained by the sec-
ond dominance rule (the addition of the extra control array) are much better
than the results obtained by the basic algorithm without the dominance rule.
For instances with three call activities for each spatial resource, the use of
the dominance rule results in an increase of the CPU time needed. For the
networks with the same characteristics, but with approximately 9 call activi-
ties, we observe a very large increase in the computation time needed for the
425 networks by the algorithm when the second dominance rule is not used.

8 Conclusions

In this paper, we developed a solution procedure for solving spatial resource-
constrained project scheduling problems. Our spatial resource setting is dif-
ferent from previous settings described in the literature. We consider project
networks that may require both multiple renewable resources in arbitrary
amounts and an arbitrary number of spatial resources in more than a single

28

SPT Shortest Processing Time
LPT Longest Processing Time
RND Random
MIS Most number of Immediate Successors
MTS Most number of Total Successors
LNRJ Least number of Non-Related Jobs
GRPW Greatest Rank Positional Weight (only immediate

successors taken into account)
GRPW2 Greatest Rank Positional Weight 2 (all successors

taken into account)
EST Earliest Start Time
EFT Earliest Finish Time
LST Latest Start Time
LFT Latest Finish Time

MSLK Minimum Slack
GRD Greatest Resource Demand

GCUMRD Greatest Cumulative Resource Demand

Table 3: Priority Rules

dominance rule no dominance rule
J120 - 2SR - 3st 3.34 3.30
J120 - 2SR - 6st 3.78 3.78
J120 - 2SR - 9st 5.19 7171.96

Table 4: Computation times for LST for solving 425 networks (in seconds)

29

Figure 13: Comparison computation times for LST

unit. Activities within a group of activities that occupy spatial resource unit
types, may serve as call or release activities that reserve, respectively release,
other spatial resource types. We also drop the requirement that the spatial
resources should be adjacent. The objective is to schedule the project ac-
tivities, satisfying both the precedence and resource constraints, under the
minimum makespan objective.

We have demonstrated that spatial resources need special treatment in
that treating them as renewable resources may lead to infeasibilities and/or
low quality schedules. We have presented a new heuristic solution method for
the problem based on the application of a schedule generation scheme that
operates on a priority list of activities. We have developed two algorithms
for transforming a given priority list into a precedence and resource feasible
priority list, that if combined with a serial SGS, avoids the occurrence of
circular waits for the spatial resources. We showed that the parallel SGS is
not applicable for projects with spatial resources because despite the use of
a precedence and resource feasible priority list, deadlocks can still occur.

Our computational experiment with 15 different priority rules on adapted
J30 and J120 PSPLIB instances revealed that the priority rules which per-
form well for the classical RCPSP also do well on the spatial RCPSP in very
small computation times.

References

Blazewicz, J., Lenstra, J. and Kan, A. R. (1983). Scheduling subject to re-
source constraints - classification and complexity. Discrete Applied Math-

30

emetics, 5, pp 11–24.

de Boer, R. (1998). Resource-Constrained Multi-Project Management - A
Hierarchical Decision Support System. PhD thesis. University of Twente,
The Netherlands.

Demeulemeester, E. and Herroelen, W. (2002). Project scheduling - A re-
search handbook. Vol. 49 of International Series in Operations Research &
Management Science. Kluwer Academic Publishers, Boston.

Duin, C. and Van der Sluis, E. (2006). On the complexity of adjacent resource
scheduling. Journal of Scheduling, 9(1), pp 49–62.

Herroelen, W., De Reyck, B. and Demeulemeester, E. (2000). On the paper
”resource-constrained project scheduling: notation, classification, models
and methods” by brucker et al.. European Journal of Operational Research,
128(3), pp 679–688.

Hurink, J., Kok, A. and Paulus, J. (2006). Decomposition method for project
scheduling with spatial resources. Research report. University of Twente,
The Netherlands.

Kolisch, R. (1996a). Efficient priority rules for the resource-
constrained project scheduling problem. Journal of Operations Manage-
ment, 14, pp 179–192.

Kolisch, R. (1996b). Serial and parallel resource-constrained project schedul-
ing methods revisited: Theory and computation. European Journal of Op-
erational Research, 90, pp 320–333.

Kolisch, R. and Drexl, A. (1996). Adaptive search for solving hard project
scheduling problems. Naval Research Logistics, 43(1), pp 23–40.

Kolisch, R. and Sprecher, A. (1997). PSPLIB - a project scheduling library.
European Journal of Operational Research, 96, pp 205–216.

Kolisch, R., Sprecher, A. and Drexl, A. (1995). Characterization and genera-
tion of a general class of resource-constrained project scheduling problems.
Management Science, 41, pp 1693–1703.

Paulus, J. and Hurink, J. (2006). Adjacent-resource scheduling - why spatial
resources are so hard to incorporate. Electronic Notes in Discrete Mathe-
matics, 25, pp 113–116.

31

Schatteman, D., Herroelen, W., Van de Vonder, S. and Boone, A. (2006). A
methodology for integrated risk management and proactive scheduling of
construction projects. Research Report KBI 0622. Department of Decision
Sciences and Information Management, Katholieke Universiteit Leuven,
Belgium.

32

