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Abstract

We develop nonparametric tests for the null hypothesis that a function has a pre-
scribed form, to apply to data sets with missing observations. Omnibus nonparametric
tests do not need to specify a particular alternative parametric form, and have power
against a large range of alternatives, the order selection tests that we study are one ex-
ample. We extend such order selection tests to be applicable in the context of missing
data. In particular, we consider likelihood-based order selection tests for multiply-
imputed data. A simulation study and data analysis illustrate the performance of
the tests. A model selection method in the style of Akaike’s information criterion for
multiply imputed datasets results along the same lines.

Keywords: Akaike information criterion, hypothesis test, multiple imputation, lack-
of-fit test, missing data, omnibus test, order selection.

1 Introduction

Testing the lack-of-fit of a parametric function is well-studied. Several types of tests exist,

ranging from fully parametric tests, to semiparametric and nonparametric omnibus tests.

For an overview of nonparametric tests, see Hart (1997). In the setting of missing data, this
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is more complicated and not much results are known yet. González-Manteiga and Pérez-

González (2006) developed a test based on local linear estimators for a linear regression

model with missing response values but a completely observed covariate. We address in

particular lack-of-fit tests for missing data situations where multiple imputation is applied.

We will focus on a class of smoothing-based tests, that use the idea of order selection. Our

tests are applicable in parametric likelihood models and are not restricted to linear models.

Eubank and Hart (1992) introduced the order selection test in linear regression models.

The idea is to test the shape of a parametric function, most often the mean of the response,

by considering a sequence of alternative models. These alternative models are constructed by

means of a series expansion of the function of interest around the hypothesized null model.

A data-driven method is then applied to select the “order” of the alternative model. That is,

in the sequence of alternative models, a method such as the AIC (Akaike, 1973) will select

the most appropriate one. If the selected model coincides with the null model, the test does

not reject the null hypothesis. However, if a model different from the null model is selected,

the test will reject the null hypothesis. In those instances, the order of the chosen model,

that is, the number of parameters in the model, exceeds that of the null model.

By using such a series expansion the class of alternative models is large, and not restricted

to a single specified alternative. For example, just testing a linear versus a quadratic fit would

miss out on high frequency alternatives for which the quadratic term happens to be zero.

We are interested in the development of tests that are sensitive to essentially any departure

from the null hypothesis.

The original order selection tests are extended towards testing in general likelihood mod-

els by Aerts et al. (1999) and to multiple regression models by Aerts et al. (2000). Recently,

these tests have been studied for inverse regression problems by Bissantz et al. (2009). Test

statistics can be based on likelihood ratio, Wald or score statistics. All this assumes com-

pletely observed data.
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In practice, many data contain one or more missing observations. We refer to Little and

Rubin (2002) for an overview of methods to deal with such data. Most research focusses on

the estimation under missingness. Multiple imputation methods are particularly attractive

since once values are imputed, traditional, complete-case methods can be applied. Single

imputation replaces an unknown observation by a single value. While this is simple, inference

is often improved when imputing values several times, say m times (usually about 5 times),

creating m complete data sets. The main problem then arises in the combination of the

results over the multiple imputed data. Li et al. (1991a) considered hypothesis testing in

this setting. In particular, for a parametric null hypothesis of the form θ = θ0, with an

alternative of the form θ 6= θ0, they construct a Wald test, by combining the results of m

Wald tests, one for each of the m imputed data sets. They show that the distribution of such

test can be approximated by that of an F -distribution with certain degrees of freedom. Meng

and Rubin (1992) extend this idea to combining m likelihood ratio tests. Recently, Reiter

(2007) obtained an alternative approximation to the degrees of freedom for such combined

Wald test statistics, that should work better for small samples.

The main idea of this paper is to use the combined likelihood ratio tests for the m imputed

data sets, in a construction for order selection. In this way we enlarge the testing power

by not considering a single parametric test, since order selection tests are constructed to be

powerful against a wide range of alternative models. This creates an easy to use lack-of-fit

test in the setting of missing data.

Section 2 defines the order selection test first for complete data, and then proposes the

new test for the case of multiply imputed data sets. Sections 3 and 4 apply the test to a data

example and in a simulation study. A version of Akaike’s information criterion that works

with multiply imputed datasets is obtained in Section 5. Section 6 presents some extensions

of the proposed method.
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2 The order selection test

2.1 A model sequence for order selection

We consider a set of data Zi = (Yi, xi), i = 1, . . . , n with joint density depending on a

function γ(·) of interest (most often this is the mean response, conditional on covariates)

and on some other nuisance parameters η (such as an unknown variance). We wish to test

the hypothesis

H0 : γ(·) ∈ G = {γ(·,βp) : βp = (β1, . . . , βp) ∈ Θ}, (1)

where the parameter space Θ ⊂ Rp. A simple example is to test for linearity of the mean

response, that is, E(Y |x) = γ(x) = β1+β2x. In a parametric hypothesis testing procedure, a

specific parametric model would be stated for the alternative hypothesis. In nonparametric

or omnibus testing, this is avoided by constructing a sequence of alternative models. These

approximations could be quite general. For regression models, we mainly consider additive

series expansions of the true underlying function γ(·) around the null model. We here mainly

follow the approach of Aerts et al. (1999). In particular, we define for r = 0, 1, 2, . . .,

γ(x; β1, . . . , βp+r) = γ(x; β1, . . . , βp) +
r∑

j=1

βp+jψj(x), (2)

where the basis functions ψj(·) are known functions and r = 0 corresponds to the null

model in (1). Most often these functions are taken to be (orthogonalized) polynomials,

Legendre polynomials, cosine functions, wavelet functions,. . . For all further analysis, we

consider functions ψj that are not of the form of the null model. For example, a polynomial

expansion to test for linearity of the mean starts from (orthogonalized) quadratic functions,

since the constant and linear function are already included in the null model.

The order selection test actively uses a model selection criterion to perform the test.

For each r = 0, 1, 2, . . . , Rn a model with function γ(·; β1, . . . , βp+r) is fit to the data. This

results in a sequence of Rn + 1 fitted models. A model selection criterion such as the AIC

4



(Akaike, 1973) is applied to select one of these models. If a model different from the null

model is selected, in other words, when the selected order r̂ > 0, then the null hypothesis

(1) is rejected. When the selected order r̂ = 0, the null model cannot be rejected.

Asymptotic distribution theory was developed by Eubank and Hart (1992) for linear re-

gression models and with a Mallows Cp type of criterion to select the order. Aerts et al.

(1999, 2000) extended this to likelihood-based regression models, and related the order se-

lection test statistic to a test statistic that is the supremum of a set of weighted likelihood

ratio statistics. Particularly, the null hypothesis (1) is rejected when an AIC-type criterion

of the form

aic(r, Cn) = 2{log L(η̂, β̂1, . . . , β̂p+r)− log L(η̂, β̂1, . . . , β̂p)} − Cnr, r = 0, 1, 2, . . . , Rn,

selects r̂ = arg maxr=0,1,2,...,Rn aic(r, Cn) > 0. Note that aic(r, Cn) is twice the difference

of the maximised log-likelihood value at the model with r additional terms in the series

expansion, and the corresponding value at the null model, with as penalty Cn times the

number of additional terms r. The difference with a traditional AIC difference is that the

penalty constant 2 for the AIC is here replaced by a value Cn, which will determine the

level of the test. This approach is equivalent to rejecting the hypothesis (1) when the order

selection statistic

TOS = max
r=1,...,Rn

2(Lr − L0)

r
> Cn, (3)

where Lr = log L(η̂p+r, β̂p+r). Note that the dimension of the nuisance parameter η stays

the same in all models, though the value of the estimator might be different when different

approximations of γ are used. This is indicated in the notation by adding a subscript to the

estimator. The value Cn is the critical value of the test statistic, which can be chosen to

obtain a certain level for the test. In the setting of completely observed data, the asymptotic

distribution theory (see Aerts et al., 1999) provides a method to compute P -values of the

test. The idea that we work with in this paper is to use similar likelihood-ratio based test
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statistics for the data sets after multiple imputation.

2.2 Likelihood ratio tests after multiple imputation

Multiple imputation is a technique to handle with missing data that inserts values for the

missing observations in order to create complete sets of data to which standard methods can

be applied. The insertion of values is typically repeated a small number of times m (say

3–10) in order to create m sets of completed data. The insertion of multiple values should

help to correct the standard errors of estimators for the additional uncertainty introduced

by replacing the unknown values by numbers. Indeed, pretending the inserted values to be

the true values of the variables would lead to too optimistic inference. In the context of

hypothesis testing, with the availability of m completed sets of data, one could perform m

likelihood ratio tests to test hypothesis (1). Meng and Rubin (1992) proposed a method

to combine the m separate likelihood ratio values into one single test statistic with an

approximate F -distribution. This idea builds on a similar combined testing procedure using

Wald statistics instead of likelihood ratio statistics, see Li et al. (1991b).

To introduce the notation, fix a value r > 0 and consider first the parametric testing

problem of the null hypothesis (1) against the parametric alternative hypothesis

Ha,r : γ(·) ∈ Gr = {γ(·,βp+r) : βp+r = (β1, . . . , βp+r) ∈ Θr}, (4)

where the parameter space Θr ⊂ Rp+r. As a concrete example we could be interested in

testing whether H0 : E(Y |x) = β1 + β2x versus Ha,1 : E(Y |x) = β1 + β2x + β3x
2, which in

this case is equivalent to testing whether β3 = 0 in the quadratic model for the mean. In

the next section we will relax this particular form of the alternative hypothesis to allow for

omnibus testing.

Denote Lr,` the log-likelihood ratio statistic for testing hypothesis (1) against the specific

alternative (4) with r additional parameters for the `th imputed set of data, with ` =
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1, . . . , m. We denote the average of these test statistics as L̄r,• = m−1
∑m

`=1 Lr,`.

We denote the parameter estimators for the `th imputed data set by (η̂p+r,`, β̂p+r,`). The

average of these m parameter estimators is denoted by (η̄p+r,•, β̄p+r,•) under the alternative

model and by (η̄p,•, β̄p,•) under the null model. We now define a ‘log likelihood ratio’ value

for each of the m imputed data sets that is based on the average parameter value over the

m sets of completed data, but using the completed data Zi,`, i = 1, . . . , n for the `th round

of imputation. This leads to

L̃r,` = log L(η̄p+r,•, β̄p+r,•; Z1,`, . . . , Zn,`),

and their average

L̃r,• =
1

m

m∑

`=1

L̃r,`.

Meng and Rubin (1992) define the combined test statistic for a parametric testing problem

Dr =
L̃r,•

r{1 + m+1
r(m−1)

(L̄r,• − L̃r,•)}
(5)

and argue that this statistic has an approximate F distribution with degrees of freedom r

and ν where

ν =





4 + (t− 4){1 + (1− 2t−1)D−1}2 if t = r(m− 1) > 4

t(1 + r−1)(1 + D−1)2/2 otherwise,
(6)

with D = m+1
r(m−1)

(L̄r,• − L̃r,•). We refer to Reiter (2007) for an alternative approximation to

the denominator degrees of freedom that should work better for small sample sizes and is

defined to not exceed the denominator degrees of freedom for the complete data.

2.3 Combining the test statistics

Instead of assuming a particular alternative model such as in the alternative hypothesis (4),

we construct an order selection test to test H0 against a broad class of alternative models,

similar to the order selection idea in complete data cases as described in section 2.1. Again
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we consider a sequence of approximations to the function of interest γ(·) as in (2). Each such

approximation leads to a maximized log likelihood value, and to a statistic Dr as in (10).

Similar to combining the log likelihood ratio test statistics 2(Lr −L0) in the order selection

statistic TOS in (3), our new test statistic combines the log likelihood ratio statistics Dr that

are obtained after multiple imputation. We define

DOS = max
r=1,...,Rn

Dr.

Note that the statistic Dr already contains the number of additional parameters r in its

denominator. In the complete data case the likelihood ratio statistic 2(Lr −L0) has asymp-

totically a χ2
r distribution, and under some assumptions on the likelihood, Aerts et al. (1999)

obtained that the asymptotic distribution of TOS is given by

P (TOS ≤ x) = exp

[
−

∞∑
r=1

P (χ2
r > rx)

r

]
.

Since for the case of missing data Dr follows only an approximate asymptotic distribution

that is Fr,ν , with ν depending on the data (Meng and Rubin, 1992), we do not obtain the

limiting distribution for DOS. However, by similarity we investigate by simulation whether

the approximation

P (DOS ≤ x) ≈ exp

[
−

∞∑
r=1

P (Fr,ν > x)

r

]
(7)

holds in practice. This limiting distribution can be used to obtain approximate P -values, as

well as to define the appropriate critical value Cn for a given level for the test. Following

the same idea of the order selection test when complete data are exploited, the test rejects

the hypothesis (1) when the order selection statistic

DOS = max
r=1,...,Rn

Dr > Cn. (8)

To obtain simulated critical values or P -values, we approximate the infinite series in (7) by

a finite sum

P (DOS ≤ x) ≈ exp

[
−

Rn∑
r=1

P (Fr,ν > x)

r

]
, (9)
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for a large value of Rn, see Table 1 for values of Cn for several choices of ν.

As an alternative to using this approximation one could use a bootstrap approach. For

hypothesis testing, data should be generated under the null hypothesis (Hall and Wilson,

1991).

Note that for ν tending to infinity, it holds that for Fr,ν following a F distribution with

r and ν degrees of freedom,

lim
ν→∞

rFr,ν ∼ χ2
r.

Therefore, for ν large, P (Fr,ν > x) ≈ P (χ2
r > rx). Hence, for ν large, the distribution in

(7) can be further well approximated by the standard distribution for order selection tests

in complete data. That is, for ν large,

P (DOS ≤ x) ≈ exp

[
−

∞∑
r=1

P (χ2
r > rx)

r

]
.

This form of the distribution is free of data-dependent values. For most of the simulated

datasets (see Section 3) it turned out that the degree of freedom ν computed as in (6)

is sufficiently large for the approximation to hold. Under conditions on the imputation

scheme which would guarantee that D, defined below (6), converges to zero, the asymptotic

distribution of DOS would be the same as that of TOS. However, we do not impose such

conditions and allow also for small values of ν by using the form of the distribution in terms

of Fr,ν statistics.

3 Simulations

3.1 Simulation settings and methods

We investigate the quality of the approximation to the asymptotic distribution by means

of a simulation study. All calculations have been performed using the statistical software

package R. We consider different simulation settings, related with different sample sizes
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and different percentages of missingness. We simulated independent normally distributed

response variables Yi, i = 1, . . . , n with mean µ=1, standard deviation σ = 1, and a covariate

Xi that is equally spaced in [0, 1]. The covariate is fully observed, while the response vector

Y = (Y1, . . . , Yn) contains missing observations. We want to test the null hypothesis H0 :

E(Y |X) = β0. The missingness in the response variable is introduced by generating a

missing data mechanism that depends on the fully observed variable Xi, leading to the

MAR condition, in which the missingness depends only on the observed part of the data.

Independent standard normal errors εij are generated, and a data value yi is set to be missing

when a(yi − y•) + εij ≤ zτ where y• is the sample mean of (y1, . . . , yn) and zτ is the (1− τ)-

quantile of N(0, a2/12 + 1) with τ the chosen percentage of missingness and a = −1. This

scenario is the same for all the different simulation settings used. Two different sample

sizes, n = 30 and n = 50, are considered and for each of them three different percentages

of missingness are taken into consideration, 5%, 15%, and 30%. For each setting we run

N = 2000 simulations. For the order selection test we take an expansion via orthogonal

polynomials (using the function poly in R) and a cosine basis with ψj(x) = cos(jπx) with j =

1, . . . , Rn = 15. additional terms. We have tried with different orders, but this did not change

the results significantly. The number of imputations equals 5 for each situation. For the

imputation we have used a method that is available in the R library mice, short for “multiple

imputation by chained equations”. We have considered a regression method (norm); in this

method the missing data variables are regressed on the complete data variables in order to

estimate the unknown parameters, we then draw values from the posterior distribution of

the parameters. These estimated parameters are used with the complete data variable in a

linear regression and the fitted values serve as imputations for the missing observations. An

overview of imputation methods and available software for multiple imputation is given by

Horton and Lipsitz (2001) and Horton and Kleinman (2007).
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3.2 Critical values and the null distribution of the test

To start the analysis we calculate the theoretical values of the critical point Cn for various

values of the type I error α of the test, under the approximate asymptotic distribution in (7).

Table 1 shows these values when the second degree of freedom ν increases from 6 to infinity,

for different selected choices of α, when using Rn = 200. We want to stress that changes

in the upper bound for the first degree of freedom do not affect the values of Cn, when the

second degree of freedom is bigger than 20. For instance for α = 0.01, the second degree of

freedom equal to 20 and the first degree of freedom going from 1 to Rn = 20 the cut-off point

is again 8.502. If the second degree of freedom is between 6 and 20, then small differences

can be found; for α = 0.01, the second degree of freedom equal to 6 and the first degree of

freedom going from 1 to Rn = 20, the critical value Cn is 17.7591, which is slightly smaller

than the value in Table 1. Furthermore, values of the critical value Cn are not calculated

when the second degree of freedom ν is below 6 because such values have never occurred

in any of our simulation studies. The critical values decrease when the second degree of

freedom increases; for α = 0.01 the drop of Cn is more sensitive than for the other selected

α’s, which show more stable values. For all the chosen nominal levels α the higher is the

degree of freedom the more stable is the value of Cn. Furthermore when the second degree

of freedom is close to infinity the critical values are similar to the ones computed using the

χ2 distribution. This table is important to have an idea about which value of Cn should be

considered to perform the order selection test for hypothesis (1), as shown by formula (3).

For the theoretical values of Cn for fully observed data we refer to Hart (1997).

The theoretical values of Cn are used to obtain the simulation results shown in Table 2,

using test (8), rejecting the null hypothesis when the observed value of DOS > Cn. We here

test the null hypothesis H0 : E(Y |X) = β0. The table shows the simulated significance level

of the test, under different choices of α and different bases, when the two different methods

for imputing the missing values are used. We observe that the test performs well, with the
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Table 1: Simulated critical values Cn using the distribution in (9), for various values of the second

degree of freedom of the F distributions, for a given nominal level α and for Rn = 200.

Degree of freedom ν α = 0.01 0.05 0.10

6 17.7592 8.8685 6.3072

7 14.9495 7.8246 5.6748

8 13.2251 7.1435 5.2499

9 12.0745 6.6676 4.9460

10 11.2590 6.3180 4.7186

20 8.5020 5.0560 3.8790

30 7.8327 4.7200 3.6217

40 7.5327 4.5710 3.5096

50 7.3624 4.4865 3.4467

60 7.2526 4.4320 3.4064

70 7.1759 4.3940 3.3783

80 7.1193 4.3659 3.3577

90 7.0759 4.3443 3.3418

100 7.0414 4.3272 3.3292

200 6.8900 4.2519 3.2740

300 6.8408 4.2274 3.2560

400 6.8164 4.2153 3.2471

500 6.8019 4.2081 3.2418

600 6.7922 4.2032 3.2383

700 6.7853 4.1998 3.2358

800 6.7801 4.1972 3.2339

900 6.7761 4.1952 3.2325

1000 6.7729 4.1936 3.2313

∞ 6.7442 4.1793 3.2208
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significance levels close to the nominal levels, when the data are imputed using the regression

method (norm), this for both sample sizes 30 and 50 and for all the different percentages of

missingness. The results in the table also show that the complete cases method, where cases

with missing observations are completely left out for performing the test, performs badly,

especially for a small sample size, independently of the percentage of missingness. Hence,

discarding the missing observations leads to biased results for estimation, and to a too high

simulated value for the significance level of the test. For instance when sample size equals

30 and the percentage of missingness is 30, at the nominal level of α = 0.05, the simulated

significance level for the test we propose is 0.0575, while under the complete cases the level

is 0.1685. There is, however, an improvement when the sample size increases to 50.

In addition to the previous analyses we investigate the approximation of the asymptotic

distribution of DOS by using the bootstrap, as in (7). We consider B = 1000 bootstrap

replicates by resampling with replacement the pairs (Yi, Xi), for data sets with sample size

n = 30 and percentage of missingness equal to 30%. Note that the bootstrap data might

contain a different percentage of missingness due to the resampling. For each of the B

bootstrap data sets, we compute the test statistic DOS in precisely the same way as for

the original data. Those 1000 bootstrap values of DOS are used to construct a bootstrap

density plot. We also generate data from the approximate asymptotic distribution (9) using,

as second degree of freedom in the F -distributions, the degree obtained by performing the

order selection test to the original dataset. Figure 1 displays the bootstrap density function

of DOS and the density of the distribution of (9) for the different settings. The shape of the

distributions is quite similar, even with large percentages of missing values.

3.3 Simulated power of the tests

To evaluate the performance of the test, we now investigate the power of the order selection

test using multiple imputation. We considered four different settings: the sample size is

13



Table 2: Results of a simulation study. The table shows, based on cosine and polynomial basis,

simulated significance levels of the test DOS when the theoretical critical values Cn are used, for

different values of the nominal level α. The imputation methods is ‘norm’, also a complete case

analysis (CC) using TOS is performed. The original data analysis (before introducing missingness)

is shown in the last line.

n = 30 n = 50

% missing Method α = 0.01 0.05 0.10 α = 0.01 0.05 0.10

Cosine basis

5%
Misnorm 0.0115 0.0545 0.0985 0.0090 0.0430 0.0920

CC 0.0175 0.0810 0.1630 0.0135 0.0565 0.1195

15%
Misnorm 0.0065 0.0305 0.0660 0.0055 0.0400 0.0820

CC 0.0215 0.0940 0.1900 0.0105 0.0585 0.1210

30%
Misnorm 0.0055 0.0335 0.0585 0.0090 0.0535 0.0875

CC 0.0790 0.1905 0.3470 0.0165 0.0645 0.1365

Orig 0.0135 0.0835 0.1655 0.0150 0.0595 0.1285

Polynomial basis

5%
Misnorm 0.0130 0.0540 0.1040 0.0090 0.0460 0.0995

CC 0.0160 0.0795 0.1585 0.0115 0.0595 0.1260

15%
Misnorm 0.0140 0.0475 0.0900 0.0085 0.0450 0.0915

CC 0.0195 0.0880 0.1885 0.0105 0.0590 0.1150

30%
Misnorm 0.0165 0.0575 0.1000 0.0105 0.0470 0.0765

CC 0.0600 0.1685 0.3260 0.0160 0.0650 0.1385

Orig 0.0140 0.0790 0.1610 0.0130 0.0620 0.1295

equal to 30 or 50, and two different percentages of missingness 5% and 30%. We generate

normal data Y with E(Y |X) = 1 + β1X, where X is a equally spaced variable in [0, 1]

and β1 takes values in a grid (0, 0.2, 0.5, 0.7, 1, 1.2, 1.5, 1.7, 2) . We performed the order

selection test DOS, using cosine and polynomial bases, for testing the no effect null hypothesis

H0 : E(Y |X) = β0.

To calculate the power we consider the theoretical values of Cn as shown in Table 1. Fig-

ure 2 shows good results also when the sample size is small (equal to 30) and the percentage

of missingness is large (30%). The order selection test DOS that uses imputation, is able to
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Figure 1: Density plots under H0 of DOS for testing the no-effect null hypothesis for a data set

with missing observations for the responses and sample size equal to 30. The density obtained

by bootstrap resampling is shown with the solid line, while the dashed line displays the density

when data are simulated from the approximate asymptotic distribution (9). Plots (a) displays the

distribution under cosine basis, while (b) uses a polynomial basis, with percentage of missingness

equal to 30%.
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detect departures from the null hypothesis, also for small values of β1, while the complete

cases order selection test does not work well. Performing a size adjustment for the power, we

can see how low the real power is when the complete cases analysis is performed, compared

with the order selection test after imputation. The proposed test DOS is performing nicely,

also for large percentages of missingness. When the percentage of missing observations is

small, then the two tests show the same performance. When the sample size increases to 50,

there is an increase in power, and a better behaviour of the test TOS for the complete cases

when the percentage of missingness is not severe, due to the larger sample size.

Next, we consider a more complicated true alternative model for investigating the power

of the test. We used again two different sample sizes (n = 30 and n = 50) and two different

percentages of missingness (5% and 30%). The response variable Y is now generated from a
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Figure 2: Power curves for testing no effect with a true linear alternative at the 5% level. In each

plot the power curve of DOS for the missing data and of TOS for the complete cases are displayed.

We used a cosine basis with (a) n = 30 and (b) n = 50 and a polynomial basis with (c) n = 30 and

(d) n = 50. Simulated power curves are shown of TOS for the complete cases with 5% missingness

(solid line) and with 30% missingness (dotted line). The proposed test DOS with 5% missingness

(dashed line), and with 30% missingness (dot-dashed line).

(a) (b)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

Coefficient

P
ow

er

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

Coefficient

P
ow

er

(c) (d)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

Coefficient

P
ow

er

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

Coefficient

P
ow

er

16



normal distribution with E(Y |X) = exp(−2+β1X), where X is a equally spaced variable in

[0, 1]; β1 belongs to the grid (0, 1, 2, 3, 4, 5). We performed the order selection test DOS, using

polynomial and cosine bases, for testing the no effect null hypothesis H0 : E(Y |X) = β0.

Again, when the sample size equals 50 the order selection test DOS using multiple impu-

tation and the complete case order selection test TOS have similar power curves. When the

sample size is smaller, then the TOS test based on the complete cases only is not working well

due to discarding the missing observations, and a too large rejection probability under the

null hypothesis, while the DOS test is making a correct decision more often. In fact using a

corrected size the power for the complete cases is low compared to the one of the test after

imputation.

3.4 Sensitivity analysis

The above sections showed that the order selection test when missing data are present works

quite properly; which means that the imputation is done properly as well. In the above

simulation the model for performing the imputation is correct; in this section we want to

perform a sensitivity analysis in order to verify if a misspecification problem could arise in the

multiple imputation method. We start considering the same simulation setting described in

section 3.1, where Yi, i = 1, . . . , n are independent normally distributed response variables

with mean µ=1, standard deviation σ = 1, and a covariate Xi that is equally spaced in

[0, 1]. The covariate is fully observed, while the response vector Y = (Y1, . . . , Yn) contains

missing observations. We want to test the null hypothesis H0 : E(Y |X) = β0, considering an

orthogonal polynomial expansion. The model used for the multiple imputation is different

from that in the above sections; there we used Xi as a variable in a linear regression model to

perform the imputation, here we consider a variable transformation and use for imputation

a mean model of the form β0 + β1g(X), where g(X) is one of the functions given in the first

column of table 3. Note that poly(X, degree=5) stands for orthogonalized polynomials of
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Figure 3: Power curves for testing no effect with a true exponential alternative at 5% level. In each

plot the power curve of DOS for the missing data and of TOS for the complete cases are displayed.

We used a cosine basis with (a) n = 30 and (b) n = 50 and a polynomial basis with (c) n = 30 and

(d) n = 50. Simulated power curves are shown of TOS for the complete cases with 5% missingness

(solid line) and with 30% missingness (dotted line). The proposed test DOS with 5% missingness

(dashed line), and with 30% missingness (dot-dashed line).
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Table 3: Results of a simulation study. The table shows, based on polynomial basis, simulated

significance levels of the test DOS when the theoretical critical values Cn are used, for different

values of the nominal level α, performing a sensitivity analysis. The imputation methods is ‘norm’.

The null hypothesis is H0 : E(Y |X) = β0. Different variable transformations have been used for

imputation.

Var in imputed n = 30

Model % missing α = 0.01 0.05 0.10

Polynomial basis

log(X + 10)

5% 0.0135 0.0555 0.1070

15% 0.0110 0.0460 0.0880

30% 0.0110 0.0435 0.0755

X2

5% 0.0135 0.0535 0.1060

15% 0.0125 0.0430 0.0850

30% 0.0155 0.0610 0.1045

cos(6πX)

5% 0.0060 0.0370 0.0775

15% 0.0015 0.0090 0.0285

30% 0.0000 0.0025 0.0110

poly(X, degree=5)

5% 0.0110 0.0530 0.1095

15% 0.0100 0.0445 0.0910

30% 0.0065 0.0520 0.0960

degree 5. Hence this last model is the only one that contains structures as used in fitting

the alternative models for the construction of the order selection test.

Table 3 displays some nice results about the sensitivity of the imputation model. The or-

der selection test is working fine for all the settings except for the usage of the high frequency

cosine function which results in too small simulated type I errors when the percentage of

missingness is large.

We deepen the question by analyzing a different setting; Yi, i = 1, . . . , n are independent

normally distributed response variables with mean µ = E(Y |X) as specified below, standard

deviation σ = 1, and a covariate Xi that is equally spaced in [0, 1]. The covariate is fully

observed, while the response vector Y = (Y1, . . . , Yn) contains missing observations. We want
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to test the null hypothesis H0 : E(Y |X) = β0 + β1X, considering an orthogonal polynomial

expansion. The model used for the multiple imputation is summarized in Table 4, by showing

the variable g(X) that is used in a model for the mean of the form β0 + β1g(X). Unlike

the previous setting where all models contained the model under the null hypothesis (which

was there a constant function), in this setting this is only true for the first two models.

The first setting gives the correct imputation model (a linear model for the mean), in the

second setting, the model used for imputation is richer than necessary (it contains a fifth

degree orthogonal polynomial in X). We see that this only slightly reduces the observed

significance levels in our simulation study. For the other three models, the model that is

used for imputation does not contain the null model, and is hence misspecified. For a small

percentage of missingness, all imputation methods are still doing reasonably well, even the

high frequency cosine model. When the missingness increases, this particular model has

problems in keeping the level, but the other misspecified imputation models are still giving

reasonable results.

While these simulation results show that it is not really crucial to know the correct model

for imputations, it is still advised to pay attention to this part of the modeling process. It

might be interesting to further search for methods that are robust against misspecification

of the imputation model.

4 Data analysis

Climate change is having a large impact in political decisions and and it is nowadays one of

the most serious challenges to face. Climate change may result from both natural factors and

human activities. Environmental agencies play an important role in measuring the effects

of climate change in our daily life and in different economic sectors. An important effect of

climate change is the global warming, which represents the increase in the temperature of the

atmosphere near the earth’s surface. Temperature change may occur because of the increase
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Table 4: Results of a simulation study. The table shows, based on polynomial basis, simulated

significance levels of the test DOS when the theoretical critical values Cn are used, for different

values of the nominal level α, performing a sensitivity analysis. The imputation methods is ‘norm’.

The null hypothesis is H0 : E(Y |X) = β0 + β1X, with β0 = 1 and β1 = 2.

Var in imputed n = 30

model % missing α = 0.01 0.05 0.10

Polynomial basis

X

5% 0.0080 0.0470 0.0945

15% 0.0080 0.0370 0.0680

30% 0.0090 0.0400 0.0700

poly(X, degree=5)

5% 0.0065 0.0440 0.0835

15% 0.0050 0.0285 0.0545

30% 0.0030 0.0320 0.0605

log(X + 10)

5% 0.0070 0.0435 0.0940

15% 0.0060 0.0285 0.0685

30% 0.0025 0.0300 0.0600

X2

5% 0.0055 0.0385 0.0805

15% 0.0025 0.0160 0.0445

30% 0.0020 0.0170 0.0390

cos(6πX)

5% 0.0050 0.0335 0.0780

15% 0.0015 0.0130 0.0345

30% 0.0000 0.0080 0.0270

of the emission of greenhouse gasses, due to human activities. Greenhouse gasses are found

in the atmosphere and are emitted through natural or artificial processes; for this reason

they represent a strategic aspect to measure and control. Among the economic sectors that

contribute to global warming, agriculture is an important one, since it is highly sensitive

to climate change, because its activities depend directly on climate conditions, and because

of its greenhouse gasses release. Crop and meat production, milk products, livestock, are

some of the agricultural activities that contribute to the global warning. The European

Union has developed climate change policies to reduce the emission of greenhouse gases
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by agricultural activities, following the guidelines of the Kyoto Protocol. For instance the

Common Agricultural Policy (CAP) is used to regulate the production, trade, and processing

of agricultural products in the EU. Several factors directly connect climate change and

agricultural productivity, such as average temperature increase, change in rainfall amount,

atmospheric concentrations of CO2, etc.

We want to investigate the relationship between the emission of greenhouse gasses and the

production of wheat. The data come from Eurostat, the Statistical Office of the European

Communities, which gathers and analyses figures from the national statistical offices across

Europe and provides statistical information. Data to be analyzed are (Yi, Xi), i = 1, . . . , 33,

where the response variable Yi is the total greenhouse gas (GHG) emissions in thousands of

tons, for the agricultural sector, and Xi is the yield (100kg/ha) of wheat in 33 European

countries for the year 2006; the response variable contains 7 missing observations. For the

analysis we rescale the explicative variable to the interval [0,1]. We want to analyze the

relationship between the yield and the emission of greenhouse gas; we consider a linear

regression model. We test two different null hypotheses

H0 : E(Y |X) = β0

and

H0 : E(Y |X) = β0 + β1X

We consider again the polynomial and the cosine bases used in the simulation study, with

Rn = 15.

Table (5) displays the results when the order selection test is performed. At the 10%

level, the test DOS rejects the null hypothesis that the expected value of the conditional

distribution of Y given X is constant, which is expected since the wheat production has an

impact in the total emission of greenhouse gases; on the contrary, the null hypothesis that

the expected value of (Y |X) is linear, at the 10% level, is not rejected.

22



Table 5: Results for the climate data. The table shows critical values of the test DOS , the P -value

and, for the missing data approach, the second degree of freedom used to calculate the corresponding

P -value.

Cosine basis Polynomial basis

Method Cn P -value df ν Cn P -value df ν

µ constant

Missing 3.943 0.061 300.92 3.353 0.083 138.24

CC 4.159 0.051 – 4.329 0.045 -

µ linear

Missing 0.826 0.797 197.20 0.898 0.767 243.24

CC 1.874 0.323 – 1.916 0.310 -

Furthermore we want to check whether the distribution of the test DOS, applied to the

dataset resembles the asymptotic distribution of (9). We drew 2000 bootstrap for the dataset,

using the cosine and the polynomial bases, to estimated the distribution. We carried out

the analysis testing the null hypothesis H0 : E(Y |X) = β0 + β1X. To approximate the

asymptotic distribution (9) we use as second degree of freedom ν=197.20 for the test with

cosine basis and ν=243.24 when using an orthogonal polynomial basis. Figure 4 displays the

result, where we can see that the shape of the bootstrap distribution is quite similar to the

approximated asymptotic distribution.

5 Model selection via AIC for multiply imputed data

In the previous sections we discussed a nonparametric testing method that works with miss-

ing data. We here use the obtained results to develop a version of Akaike’s information

criterion to handle multiple imputations. While it is straightforward to apply any tradi-

tional variable selection criterion such as the AIC to the separate imputed sets of data, the

biggest question is how the results of those separate AIC selections should be combined?

In a Bayesian setting Yang et al. (2005) compute for each imputed dataset separately the
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Figure 4: Density plots of DOS for testing the null hypothesis of linearity for the data set. The

density obtained by bootstrap resampling is shown with the solid line, while the dashed line displays

the density when data are simulated from the approximate asymptotic distribution (9). Plot (a)

displays the distribution using a cosine basis, while for (b) a polynomial basis is used.
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posterior for each of the candidate models and then take for each model separately the av-

erage of the posterior probabilities over the different imputed data sets. Schomaker et al.

(2007) work with the AIC and imputation. They mention two approaches. A first one is

to compute the classical AIC for each imputed dataset separately and then compute the

average of the AIC values to make a ranking of the candidate models. Their second method

is the one that they actually apply in their paper. This consists of computing an averaged

dataset that consists of the average of each data value after imputation. Now they have a

single dataset to which the classical AIC can be applied. We here propose a theoretically

solid version of the AIC that is related though different from the two mentioned proposals.

We will see that actually a combination of the two proposals is required.

Multiple imputation for a model S leads to m different datasets, each with its own

maximized log likelihood function. Often the candidate models are nested, in which case
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we denote by S0 the smallest model under consideration. If we were in a testing setting

to compare a model S (under the alternative hypothesis) with a simpler model S0 (under

the null hypothesis) we could apply the results of Meng and Rubin (1992) who proposed

to combine the m separate likelihood ratio values into one single test statistic with an

approximate F -distribution, as in Section 2.2. Denote the number of parameters in model S

by |S|, and the difference in numbers of parameters of the two models by pS = |S|− |S0|. By

the results in Meng and Rubin (1992), we obtain that the combined test statistic for testing

model S0 versus model S is

D̃S

pS

=
L̃S,•

pS{1 + m+1
pS(m−1)

(L̄S,• − L̃S,•)}
. (10)

This statistic has an approximate F distribution with degrees of freedom pS and ν where ν

is as in (6). The second degree of freedom ν is expected to be large under a good imputation

scheme where D will be small. Therefore we can work with pS only as a penalty term in the

AIC difference for model S compared to model S0, see also Section 2.3. Thus we arrive at

the definition of the AIC difference for model S compared to model S0 as

aic(S, S0) = −D̃S + 2 pS. (11)

Note that the constant 2 is already absorbed in the notation for the log likelihood ratio

statistics. These differences can be computed for all models S under consideration, with

aic(S0, S0) = 0. The model with the smallest AIC difference is considered the best one.

Criterion (11) is generally applicable for use with multiple imputation for likelihood models.

6 Discussion and extensions

We introduced an order selection test to apply to data with missing observations. In the

simulations we have considered the situation of a missing response variable with a completely

observed covariate. Since the likelihood ratio test on which the order selection test is based,
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can also be applied to data sets with missing covariates, the tests are equally well applicable

to data with missing covariates. One requirement is that a proper imputation method should

be used to lead to a valid asymptotic distribution of the, for imputation combined, likelihood

ratio test. In cases where the approximate asymptotic distribution is not expected to work

well, a bootstrap procedure can be used to provide P -values.

While the illustrations in this paper are restricted to the case of a simple regression model,

the order selection testing idea is readily extended to be applicable to multiple regression.

We refer to Aerts et al. (2000) and Bissantz et al. (2009) for examples and the construction

of a series expansion in more than one variable.

Since the Wald test is asymptotically equivalent to the likelihood ratio test, one could

modify the proposed test statistic DOS to use the Wald statistics instead of the likelihood

ratio statistics. This test is expected to have similar power behaviour. One other related

construction that could be of particular interest would be to combine score statistics instead.

However, we are not aware of results on the construction and asymptotic distribution of

score tests, combined after multiple imputation. This seems an interesting topic for further

research since such score tests could be applied to models that are not likelihood based (for

example based on generalized estimating equations, or quasi-likelihood), and can be made

robust for model misspecification.

Other related test statistics following the order selection idea could be constructed for

the situation of missing data, following their equivalent ideas for complete sets of data. In

particular, one could consider the Bayesian information criterion BIC for order selection,

hereby leaving out the order zero as a possibility, due to the consistency of the BIC as a

model selection method. Such test was first considered for goodness-of-fit testing by Ledwina

(1994). Claeskens and Hjort (2004) discuss some alternative schemes based on both BIC

and AIC that have better power properties. Such tests could be of interest to investigate in

the missing data setting as well.
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González-Manteiga, W. and Pérez-González, A. (2006). Goodness-of-fit tests for linear re-

gression models with missing response data. Canad. J. Statist., 34(1):149–170.

Hall, P. and Wilson, S. R. (1991). Two guidelines for bootstrap hypothesis testing. Biomet-

rics, 47(2):757–762.

Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-fit Tests. Springer-Verlag, New

York.

Horton, N. J. and Kleinman, K. P. (2007). Much ado about nothing: a comparison of missing

data methods and software to fit incomplete data regression models. Amer. Statist.,

61(1):79–90.

Horton, N. J. and Lipsitz, S. R. (2001). Multipe imputation in practice: Comparison of

software packages for regression models with missing variables. Amer. Statist., 55(3):244–

254.

27



Ledwina, T. (1994). Data-driven version of Neyman’s smooth test of fit. Journal of the

American Statistical Association, 89:1000–1005.

Li, K. H., Meng, X.-L., Raghunathan, T. E., and Rubin, D. B. (1991a). Significance levels

from repeated p-values with multiply-imputed data. Statist. Sinica, 1(1):65–92.

Li, K. H., Raghunathan, T. E., and Rubin, D. B. (1991b). Large-sample significance levels

from multiply imputed data using moment-based statistics and an F reference distribution.

J. Amer. Statist. Assoc., 86(416):1065–1073.

Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis with missing data. Wiley

Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken,

NJ, second edition.

Meng, X.-L. and Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-

imputed data sets. Biometrika, 79(1):103–111.

Reiter, J. P. (2007). Small-sample degrees of freedom for multi-component significance tests

for multiple imputation for missing data. Biometrika, 94(2):502–508.

Schomaker, M., Heumann, C., and Toutenburg, H. (2007). New approaches for model selec-

tion under missing data. Technical report, Department of Statistics, Ludwig-Maximilians-

Universität München.

Yang, X., Belin, T. R., and Boscardin, W. J. (2005). Imputation and variable selection in

linear regression models with missing covariates. Biometrics, 61(2):498–506.

28


