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THE MINIMAL DOMINANT SET IS A NON-EMPTY
CORE-EXTENSION

LÁSZLÓ Á. KÓCZY, LUC LAUWERS

Abstract. A set of outcomes for a TU-game in characteristic function form is dominant
if it is, with respect to an outsider-independent dominance relation, accessible (or admis-
sible) and closed. This outsider-independent dominance relation is restrictive in the sense
that a deviating coalition cannot determine the payoffs of those coalitions that are not
involved in the deviation. The minimal (for inclusion) dominant set is non-empty and for
a game with a non-empty coalition structure core, the minimal dominant set returns this
core.

1. Introduction

For a TU-game in coalitional form, there are two fundamental and strongly linked prob-
lems: (i) what coalitions will form, and (ii) how will the members of these coalitions
distribute their total coalitional worth. We attempt to answer these questions. Following
Harsányi (1974), we presuppose some bargaining process among the players. At first, one
of the players proposes some outcome (a payoff vector augmented with a coalition struc-
ture). In case some coalition could gain by acting for themselves, it can reject this initial
outcome and propose a second outcome. Of course, in order to be able to make a counter-
proposal, the deviating coalition is a member of the new coalition structure and none of
the players in the deviating coalition looses and some win when moving towards the new
outcome. We impose an additional condition that we call outsider-independence: a coali-
tion C that belongs to the initial coalition structure and that does not contain a deviating
player survives the deviation; the players in C stay together and keep their pre-deviation
payoffs. This contrasts with, for example, the approach by Sengupta and Sengupta (1994)
and Shenoy (1980, Section 5). They also study coalition formation in a TU-framework,
but their domination relation does not incorporate such an outsider-independence condi-
tion: the deviating coalition is allowed to determine the payoffs and the structure of all
players. This seems unrealistic to us. In contrast, our approach is based on the observa-
tion that outsiders’ payoffs are unaffected by the formation of the deviating coalition and
hence outsiders do not necessarily notice the deviation until the new coalition structure is
announced.
Once such a counter-proposal has popped up, another coalition may reject this counter-
proposal in favor of a third outcome, and so forth. This bargaining process generates a
dominating chain of outcomes. In case the game has a non-empty coalition structure core
(Greenberg, 1994, Section 6), the bargaining process enters this core after a finite number
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of steps (this is shown in Kóczy and Lauwers, 2001). Conclusion: the coalition structure
core, if non-empty, is accessible.

Similarly to the core, the coalition structure core has an important shortcoming: non-
emptiness is far from being guaranteed. The present paper tackles games with an empty
set of undominated outcomes.

We impose three conditions upon a solution concept. First, we insist on accessibility: from
each outcome there is a dominating chain that enters the solution. Second, the solution
is closed for domination: each outcome that dominates an outcome in the solution also
belongs to the solution. The intuition behind this axiom is straightforward. In case there
are no “undominated outcomes”, there might exist “undominated sets” of outcomes. Such
a set must be closed for outsider-independent domination. A collection of outcomes that
combines accessibility and closedness is said to be a dominant set. And, third, from all the
dominant sets, we only retain the minimal (with respect to inclusion) ones.
The following observation provides a further argument in favor of these three conditions:
in case the game generates undominated outcomes, then the accessibility of the coalition
structure core implies that this core is the unique minimal dominant set. Uniqueness and
non-emptiness extends to arbitrary games:

Theorem A. Let (N, v) be a TU-game. Then, there is exactly one minimal
dominant set. Moreover, this minimal dominant set is non-empty.

In other words, the minimal dominant set is a non-empty coalition structure core extension.
On the one hand, the three conditions we impose upon a solution concept are strong enough
to filter out the coalition structure core (in case it is non-empty), and on the other hand
these conditions are weak enough to return a non-empty set of outcomes in case the game
has an empty coalition structure core. As a matter of fact, the minimal dominant set meets
Zhou’s (1994) minimal qualifications for a solution concept: non-imposition with respect
to the coalition structure1 and non-emptiness.

We close the discussion on Theorem A with an example. Consider a three player game with
an empty core: singletons have a zero value, pairs have a value equal to 8, and the grand
coalition has a value 9. The payoff vector (4, 4, 0) supported by the coalition structure
({1, 2}, {3}) belongs to the minimal dominant set. However, this outcome is not efficient:
the total payoff in this vector amounts to 8, where the value 9 is obtainable. On the other
hand, the efficient outcome (3, 3, 3; {1, 2, 3}) does not belong to the minimal dominant set.
Hence, the minimal dominant set might contain inefficient outcomes and at the same time
there might be efficient outcomes outside the minimal dominant set. While the core selects
those outcomes that satisfy efficiency and stability, these two properties are not so well
linked as soon the core is empty (Section 5 returns to this issue).

1In the framework of endogenous coalition formation, a solution concept “is not a priori defined for
payoff vectors of a particular coalition structure, and it does not always contain payoff vectors of every
coalition structure,” (Zhou, 1994, p513).
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Along the proof of Theorem A we come across the following properties of the outsider-
independent domination relation. First, the set of outcomes that indirectly dominate an
(initial) outcome is closed in the Euclidean topology. And, second:

Theorem B. Let (N, v) be a game. Then there exists a natural number
τ = τ(N, v) such that for all outcomes a and b we have that a indirectly
dominates b if and only if there exists a dominating chain from b to a of
length at most τ .

As a consequence, the accessibility axiom can be sharpened: for each game (N, v) the
minimal dominant set can be reached via τ = τ(N, v) subsequent counter-proposals. This
number τ can be imposed as a time-limit for the completion of the bargaining process.

Theorem B dramatically improves previous results on the accessibility of the core. We
mention two of them. First, Wu (1977) showed the existence of a bargaining scheme that
converges to the core and rephrased this result as “the core is globally stable”. Second,
Sengupta and Sengupta (1996) construct for each imputation a sequence of dominating
imputations that enters the core in finitely many steps. We extend these results to the
coalition structure core (and to the minimal dominant set); in addition, here we provide
an upper bound for the length of the dominating chains.

The next section collects notation and definitions. Section 3 considers dominating chains,
the length of such chains, and proves Theorem B. Section 4 defines the minimal dominant
set and proves Theorem A. Section 5 lists some deficiencies and some properties of the
minimal dominant set. An example indicates that the outsider-independency-condition
rightly prevents some outcomes (that belong to the solution of Sengupta and Sengupta,
1994) from entering the minimal dominant set.

2. Preliminaries

Let N = {1, 2, . . . , n} be a set of n players. Non-empty subsets of N are called coalitions.
A coalition structure is a set of pairwise disjoint coalitions so that their union is N and
represents the breaking up of the grand coalition N . Let P and Q be two coalition struc-
tures such that for each coalition C in Q we have that either C belongs to P or there exists
a coalition in P that includes C, then Q is finer than P (and P is coarser than Q). For
a coalition structure P = {C1, C2, . . . , Cm} and a coalition C, the partners’ set P (C,P) of
C in P is defined as the union of those coalitions in P that have a non-empty intersection
with C:

P (C,P) = {i |i ∈ Cj with j such that Cj ∩ C 6= ∅} =
⋃

Cj ∩C 6= ∅
Cj.

Its complement O(C,P) = N \P (C,P) is said to be the set of outsiders.

A characteristic function v : 2N \{∅} → R assigns a real value to each coalition. The pair
(N, v) is said to be a transferable utility game in characteristic function form, in short, a
game.
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An outcome of a game (N, v) is a pair (x,P) with x in Rn and P a coalition structure of
N . The vector x = (x1, x2, . . . , xn) lists the payoffs of each player and satisfies

∀i ∈ N : xi ≥ v({i}) and ∀C ∈ P : x(C) = v(C),

with x(C) =
∑

j∈C xj. The first condition is known as individual rationality: player i will
cooperate to form a coalition only if his payoff xi exceeds the amount he obtains on his own.
The second condition combines feasibility and the myopic behavior of the players, it states
that each coalition in the coalition structure P allocates its value among its members.
Outcomes with the same payoff vector are said to be payoff equivalent.

The set of all outcomes is denoted by Ω(N, v). The set Ω(N, v) is non-empty: it contains
the outcome in which the grand coalition is split up in singletons.

In case the grand coalition forms, then an outcome is a pair (x,P) with P = {N}, xi ≥
v({i}), and x(N) =

∑
i∈N xi = v(N). As such, outcomes generalize imputations.

Now, we define the outsider-independent dominance relation. An interpretation and a dis-
cussion follows. Later on, we use the shorthand o-i-domination. We keep domination as a
reference to the concept of Sengupta and Sengupta (1994).2

Definition 2.1. Let x, y ∈ Rn and let C be a coalition. Then x ≥C y if xi ≥ yi for each
player i in C. And, x >C y (vector x dominates y by C) if x ≥C y and x(C) > y(C).

Let (N, v) be a game and let a = (x,P) and b = (y,Q) be two outcomes. Then, outcome

a outsider-independent dominates b by C, denoted by b
C−→ a, if

- P contains C,
- P contains all coalitions in Q that do not intersect C,
- in P the players in P (C,Q) \ C form singletons,3

- x >C y, and
- the restrictions of x and y to O(C,Q) coincide.

Furthermore, we hold on the next terminology:

- C is called the deviating coalition, its members are deviators.

Finally, outcome a outsider-independent dominates b, denoted by b −→ a, if P contains a

coalition C such that b
C−→ a.

This o-i-domination relation can be interpreted in a dynamic way. Let (y,Q)
C−→ (x,P)

and consider (y,Q) as the initial outcome. Note that the initial partition Q and the deviat-
ing coalition C completely determine the new partition P . Also, the deviating coalition C
enforces the new outcome (x,P). Indeed, in order to obtain a higher total payoff, coalition
C separates from its partners (and at least one member of C is strictly better off). The
players in P (C,Q) \ C become ex-partners of C and fall apart in singletons. Finally, the
outsiders, i.e. the players not in P (C,Q), are left untouched.
The new outcome is achieved independently of the outsiders. This is in strong contrast

2Outcome (x,P) dominates outcome (y,Q), if P contains a coalition C such that x(C) = v(C) > y(C)
and for each j in C one has xj ≥ yj (Sengupta and Sengupta, 1994, p349).

3This condition can be relaxed.
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to the “classical” domination relation where the deviating coalition dictates the payoffs
and the coalition structure for the whole set of players. Hence, in employing this classical
domination relation one implicitly assumes the cooperation of the outsiders even in case
the proposed outcome is less favorable for them.

Definition 2.1 also models a merger: the deviating coalition is the union of some of the
coalitions in the initial coalition structure.

In case one is concerned with coalition formation processes, o-i-dominance seems to be a
natural and a straightforward extension of the domination relation at the level of payoff
vectors. On the other hand, if outcome b is dominated by a at the level of payoff vectors,
then there exists an outcome a′ that o-i-dominates b. Therefore, the set of o-i-undominated
outcomes coincides with the set of undominated outcomes.

Definition 2.2. Let (N, v) be a game. The coalition structure core C(N, v) is the set of
outcomes that are not o-i-dominated.
Equivalently, the pair (x,P) is in the coalition structure core if and only if it satisfies
feasibility and coalitional rationality:

- for each coalition C in P we have x(C) ≤ v(C), and
- for each coalition S we have x(S) ≥ v(S).

The coalition structure core might contain payoff equivalent outcomes; and in case “the”
core is non-empty (i.e. in case the grand coalition forms), then the coalition structure core
includes the core.

3. Dominating chains

We introduce sequential o-i-domination and we show that in order to check for this, one
can concentrate on chains the length of which does not exceed some upper bound.

Definition 3.1. Let a, b ∈ Ω. Outcome a is said to be accessible from b (denoted by b →̂ a
or a ←̂ b), if one of the following conditions holds

- a and b are payoff equivalent, or
- a sequentially o-i-dominates b, i.e. there exists a natural number T and a sequence

of outcomes

a0 = b, a1, . . . , aT−1, aT = a

such that at o-i-dominates at−1 for t = 1, 2, . . . , T . The sequence

a0 = b −→ a1 −→ . . . −→ aT−1 −→ aT = a

is called an o-i-dominating chain of length T .

This accessibility relation −̂→ is the transitive and reflexive closure of the o-i-domination
relation −→.
Two different outcomes might be accessible from each other. E.g. payoff equivalent out-
comes are accessible from each other; this boils down to the implicit assumption that
repartitioning involves no costs in case the payoff vector does not change.
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The accessibility relation describes a possible succession of transitions from one outcome
to another. An initial outcome is proposed and the players are allowed to deviate from it.
We are interested in the outcomes that will appear at the end of a sequence of transitions.
Some of the outcomes will definitely disappear, while others show up again and again. As
such, the game is absorbed in (hopefully) a small set of outcomes. The following result
gives a precise content to the expression “end of an o-i-dominating chain”.

Theorem 3.2. Let (N, v) be a game. Then there exists a natural number τ such that for
all outcomes a and b in Ω(N, v) we have that a is accessible from b if and only if there
exists an o-i-dominating chain from a to b of length at most τ .

The if-part in the above statement (accessibility if there is a chain) is immediate. In order
to prove the only-if-part, we need some additional preparations.

• First, the set Ω(N, v) of outcomes is partitioned such that two outcomes of the
same class induce similar deviations,

• Second, the set N is partitioned according to the behavior of the players in an
o-i-dominating chain.

The finiteness of these operations is crucial in the proof of Theorem 3.2. We start the
discussion with the partitioning of the set of outcomes.

Definition 3.3. Let (N, v) be a game. Two outcomes (x,P) and (y,Q) are similar if they
satisfy the following list of conditions:

• P = Q,
• for each coalition C we have, x(C) ≥ v(C) if and only if y(C) ≥ v(C), and
• for each coalition C, for each coalition structure C of C, and for each D in C, we

have

x(D)− v(D) ≥ v(C)− v(C) iff y(D)− v(D) ≥ v(C)− v(C), (∗)
where v(C) = ΣE ∈C v(E).

In this way the set Ω(N, v) of outcomes is partitioned into a finite number of classes. The
number of classes in this partition depends upon the cardinality of N .

Definition 3.4. Let (N, v) be a game and let

b = (x0,P0)
D1−→ (x1,P1)

D2−→ . . .
Dt−→ (xt,Pt)

Dt+1−→ . . .
DT−→ (xT ,PT ) = a,

be a o-i-dominating chain from b to a. We interpret t as a time index.
For each t = 0, 1, . . . , T − 1 we divide the set of players into two subsets:

• The set Wt of winning players collects those players who, from t onwards, are either
outsiders or deviators. Formally: i belongs to Wt if

i ∈ O(Ds,Ps−1) ∪Ds, for all s = t + 1, . . . , T.

From t onwards the payoff of a winning player cannot decrease.
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• The set Lt of losing players collects those players who, at a certain point in time,
are left behind as singletons. Formally: i belongs to Lt if

there exists s ≥ t + 1 such that i ∈ P (Ds,Ps−1) \Ds.

Let `(t, i) ≥ t + 1 denote the first time (after t) that player i is standing alone,
i.e. {i} ∈ Q`(t,i).

Obviously, along the o-i-dominating chain we have

W0 ⊆ W1 ⊆ . . . ⊆ WT−1 = O(DT ,PT−1) ∪DT .

Indeed, once a player is winning, his status cannot change. As a consequence we obtain

L0 ⊇ L1 ⊇ . . . ⊇ LT−1 = P (DT ,PT−1) \DT .

Furthermore, at each moment t a losing player i with `(t− 1, i) = t might move up to the
class Wt of winning players.
Since winners and losers are completely determined by the coalition structures and the
deviating coalitions, this division of N into winning and losing players does not depend
upon the individual payoffs.

Proof of Theorem 3.2 (Only-if part).

The key idea is that any chain from b to a longer than τ can be made shorter. We construct
such a shorter chain. First, we locate two compatible outcomes c and c′. Next, we trisect
the chain (b→̂c, c→̂c′, c′→̂a), we remove the middle part, and we reattach the head and
the tail. Since the outcomes c and c′ are not likely to be identical the tail of the chain must
be modified; we keep the deviating coalitions and we adjust the outcomes along the tail.

We proceed in four steps. The first step is the surgical one: we locate two compatible
outcomes and we make the cuts; here we implicitly define the value of τ . In Step 2 we
show that the first deviation in the tail of the original chain can be attached to the head.
Then, the second deviation is attached (Step 3) and so forth (Step 4).

Step 1. Starting up the proof.
If the length of the o-i-dominating chain from b to a is large enough (larger than τ), then
there exist two outcomes c = (y0,Q0) and c′ = (z0,Q) in the o-i-dominating chain that (i)
are similar and (ii) partition the players (winning versus losing) in the same way. Indeed,
there are only a finite number of different classes of similar outcomes and there are only
a finite number of ways to split up the finite set N of players into two subsets. We write
Q0 instead of Q and we assume that (y0,Q0) comes later than (z0,Q0). Denote the sets of
winning and losing players for the outcomes (y0,Q0) and (z0,Q0) by W0 and L0. In sum,
we have the following o-i-dominating chain

b = (x0,P0) −→ . . . −→
W0,L0︷ ︸︸ ︷

(z0,Q0) −→ . . . −→
W0,L0︷ ︸︸ ︷

(y0,Q0) −→ . . . −→ (xm,Pm) = a.

We rename the last part in this original o-i-dominating chain and we indicate the deviating
coalitions:



8 LÁSZLÓ Á. KÓCZY, LUC LAUWERS

(x0,P0) −→ . . . −→
W0,L0︷ ︸︸ ︷

(z0,Q0)−→ . . . −→
W0,L0︷ ︸︸ ︷

(y0,Q0)︸ ︷︷ ︸
middle part

C1−→ (y1,Q1)
C2−→ . . .

CT−→ (yT ,QT )︸ ︷︷ ︸
y−chain

.

We show the existence of payoff vectors z1, z2, . . . , zT such that this initial chain from b to
a (of length m) can be shortened to

(x0,P0) −→ . . . −→
W0,L0︷ ︸︸ ︷

(z0,Q0)
C1−→ (z1,Q1)

C2−→ . . .
CT−→ (zT ,QT ) = a︸ ︷︷ ︸

z−chain

.

Since the coalition structure Q0 and the deviating coalitions C1, C2, . . . , CT coincide along
the initial y-chain and the new z-chain, both chains generate the same sets Ws and Ls of
winning and of losing players, s = 1, 2, . . . , T − 1.

Along the z-chain, the payoffs of certain players are straightforward. Indeed, in the step

Qs
Cs+1−→ Qs+1, each player i in P (Cs+1,Qs) \ Cs+1 drops off as a singleton and obtains his

stand alone value. Furthermore, the post-deviation payoff of an outsider (i.e. a player in
O(Cs+1,Qs)) is equal to his pre-deviation payoff. Hence, it is sufficient to concentrate on
the payoffs of the deviators.

Step 2. The first deviation: Q0
C1−→ Q1.

The similarity of (z0,Q0) and (y0,Q0) implies that z0(C1) < v(C1). Hence coalition C1 has
an incentive to deviate. The payoff of a deviator depends upon the status of the deviating
coalition:

1. C1 is a subset of W0.
Then we define z1,k = y1,k for each k in C1. This can be done because (i) player k
in C1 is winning (from (z0,Q0) onwards) such that z0,k ≤ y1,k and (ii) coalition C1

is deviating such that y1(C1) = v(C1).
Also, the inclusion C1 ⊂ W0 implies that the players in C1 glue together and will
not be separated in subsequent steps.

2. C1 intersects L0.
Then we allocate the surplus v(C1) − z0(C1) to those players who are the first to
drop off as singletons in subsequent deviations (i.e. losing players k in C1 with the
smallest `(1, k)-value). In other words, the payoff of such a player is temporarily
increased and will fall back on his stand alone value later on.
The payoffs of the remaining players in C1 stay at the pre-deviation level.

We close this step with the following observations. If player i moves up from L0 to W1,
then the singleton coalition {i} belongs to Q1 and z1,i = y1,i = v({i}). Players in W0 either
have their initial z0-payoff or obtained a y1-payoff.

Step 3. The second deviation: Q1
C2−→ Q2.

Let us investigate the composition of the deviating coalition C2. We regard this deviation
as a merger of a set C of (possibly singleton) coalitions in Q1 that pick up further players
from other coalitions. Let D denote the set of these picked-up players.
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We have to check whether coalition C2 can improve upon (z1,Q1) by standing alone,
i.e. v(C2) > z1(C2). In the above notation we have C ⊂ Q1, and hence

z1(C2) = ΣC v(C) + z1(D).

We investigate the nature of a player in D. Such a player in D cannot have a temporarily
high payoff. We show this by contradiction and we assume that a player j in D has a
temporarily high payoff. Player j is, by construction, a future loser that belonged to C1.
Since the surplus v(C1) − z0(C1) of the previous deviation was allocated to those losers
that are the first to drop off, coalition C2 can only contain player i in case C2 includes C1.
Therefore, j ∈ C1 ∈ C and j is not in D. A contradiction.
Conclude that each player in D was, in the previous step, either an outsider or a deviator.
Now, we are able to specify the pre-deviation payoff z1,i of a player i in D:

• The payoff z1,i of an outsider is still at the z0-level.
• The payoff z1,i of a deviator also is at the z0-level. Indeed, in this case the deviating

coalition C1 is not included in C2. Only the payoffs of those players that are the
first to left behind as singletons were temporarily increased. Obviously, player i
belongs to C1 ∩ C2 and his payoff is equal to z0,i.

Therefore, we can rewrite the previous equality:

z1(C2) = ΣC v(C) + z0(D).

Next, we look at the y-chain. In the step Q1
C2−→ Q2 the same decomposition of C2 appears.

Because C2 improves upon y1 and because players in D are either outsiders or deviators
when moving from y0 to y1 we have

v(C2) = y2(C2) > y1(C2) = ΣC v(C) + y1(D) ≥ ΣC v(C) + y0(D);

Now use the similarity of the outcomes (y0,Q0) and (z0,Q0) (Condition (∗) in Def 3.3)
and conclude that C2 indeed has an incentive to deviate:

v(C2) > z1(C2) = ΣC v(C) + z0(D).

The payoff vector z2 is defined in the same way as z1. The payoff of a deviator depends
upon the status of C2.

1. C2 is a subset of W1.
Then a deviator either already belonged to W0 or obtained in the previous step
his stand alone value; in both cases the payoff of the deviator can be lifted to the
y2-level.

2. C2 intersects L1.
Then the payoff of a deviator is either equal to his pre-deviation payoff or is tem-
porarily increased.

Step 4. The t-th deviation: Qt−1
Ct−→ Qt.

The subsequent deviations by the coalitions C1, C2, . . . , Ct−1 are all executed and the payoff
vectors z1, z2, . . . , zt−1 are all defined. Again, we start with the decomposition of the
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deviating coalition Ct. Since players now have a longer history, the decomposition of Ct is
more complicated.

In the outcome (zt−1,Qt−1) we distinguish four types of players: players with a temporarily
high payoff, players (that do not form a singleton coalition) with a payoff at the yk-level
with k ≤ t−1, players having their stand alone payoff, and untouched players with a payoff
still at the z0-level. By construction, these four types exhaust the set N of players. Indeed,
when a player leaves his z0-level, he either enters the y-level, or obtains a temporarily high
payoff, or obtains his stand alone value.

Consider a player in Ct with a payoff at the yk-level with k ≤ t − 1. By construction, a
player can move up to the yt−1-level only after joining a deviating coalition Cj that enters
the set Wj of winners. Such a coalition Cj never breaks up. However, the coalition Cj

can be picked up as a whole by a later deviating coalition. Let Ck be the latest deviating
coalition that includes Cj and that is a subset of Ct (i.e. Cj ⊂ Ck ⊂ Ct). Let C1 collect
these coalitions Ck. Note that two different coalitions in C1 must be disjoint.
Hence each player in Ct with a payoff at the y-level is sheltered in some coalition in C1.

Now, consider a player in Ct, not yet sheltered by C1, with a temporarily high payoff. Then
Ct must include the entire deviating coalition Cj (with j < t) which was at the basis of this
temporarily high payoff. Indeed, the surplus of a deviation was (in case Cj contains future
losers) allocated to those players that are the first to drop off. Hence, if such a future loser
is present in Ct, then the drop off has not yet happened. The coalition Cj is still together
and is included in some deviating coalition Ck which is a subset of Ct (again let k be as
large as possible, j ≤ k < t− 1)). Let C2 collect these coalitions Ck. Different coalitions in
C1 ∪ C2 are disjoint.
Now, each player with a payoff at the y-level or with a temporarily high payoff is sheltered
in some coalition in C1 ∪ C2.

Let S collect the remaining players in Ct with a payoff equal to their stand alone value.
Such a player is been dropped off as a singleton coalition; later on such a player might
become a winner in a deviating coalition that also contained losers.

Finally, let the coalition D collect the remaining players in Ct. They have a payoff at the
z0-level.

In contrast to Step 3, the coalitions in C1, C2 need not be present as coalitions in Qt−1, they
are included in one of the coalitions in Qt−1.

In conclusion:

zt−1(Ct) = ΣC1 v(C) + ΣC2 v(C) + ΣS v({i}) + z0(D).

We have to check whether v(Ct) > zt−1(Ct).

Consider the same decomposition in the step (yt−1,Qt−1)
Ct−→ (yt,Qt). Since coalition Ct

can improve upon yt−1, we know

v(Ct) > ΣC1 v(C) + ΣC2 v(C) + yt−1(S) + yt−1(D).
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For each player k in D we have yt−1,k ≥ y0,k. For each player k in S we have yt−1,k ≥ v({k}).
Hence,

v(Ct) > ΣC1 v(C) + ΣC2 v(C) + ΣS v({k}) + y0(D).

Use the similarity of the outcomes (y0,Q0) and (z0,Q0) (Condition (∗) in Def 3.3) and
conclude that Ct indeed has an incentive to deviate.

The payoff zt,k with k in Ct depends upon the status of Ct and is lifted to the yt-level
(Ct ⊆ Wt−1), or is either equal to the pre-deviation payoff or is temporarily increased
(Ct ∩ Lt−1 6= ∅). 2

4. The minimal dominant set

Here we introduce dominant sets and show that the minimal dominant set is non-empty.
Let (N, v) be a game and let Ω = Ω(N, v) be the set of all outcomes.

Definition 4.1. A set ∆ ⊆ Ω of outcomes is said to be dominant if it satisfies

accessibility: the set ∆ is accessible from Ω, i.e. for each b in Ω there exists an a in ∆
such that b →̂ a, and

closure: the set ∆ is closed for o-i-domination, i.e. for each a in Ω and each b in ∆, if
b →̂ a then a ∈ ∆.

For example, the set Ω of all outcomes is dominant. Furthermore, the complement Ω \∆
of a dominant set ∆ is not dominant. The non-emptiness of the minimal dominant set will
follow from the existence of outcomes that are maximal for the sequential o-i-dominance
relation −̂→.

Definition 4.2. Outcome a is maximal for →̂ if for each outcome b in Ω that sequentially
o-i-dominates a, we have that a sequentially o-i-dominates b.

In order to show the existence of a maximal outcome, we follow Kalai and Schmeidler
(1977, Theorem 3) and use some standard arguments from topology. We embed the set
Ω in the Euclidean space Rn by neglecting the coalition structures behind the outcomes.
Formally, we study outcome vectors x, y, . . . instead of outcomes (x,P), (y,Q), . . .. Observe
that the set of all outcome vectors (i.e. the set Ω after neglecting the coalition structures)
is compact. Furthermore, within the universe Ω we consider the relativization of the
Euclidean topology to Ω. Theorem 3.2 implies the next continuity property.

Lemma 4.3. Let a, b ∈ Ω. The set â = {c ∈ Ω : a →̂ c} of outcomes that sequentially

o-i-dominate a is closed (in the Euclidean topology). In addition, if a →̂ b, then â ⊃ b̂.

Proof. First, let A ⊂ Ω be a closed set of outcomes. Observe that the set A1 of outcomes
that outsider-independent o-i-dominate A (in one step) also is a closed set. According to
Theorem 3.2 there exists a natural number τ such that

â = {c ∈ Ω : there is a chain from a to c of length smaller than τ}.
Hence, â is the union of τ closed sets, and is therefore closed. The second statement (the
finite intersection property along a chain) is obvious. ¤
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Lemma 4.4. The set Ω, equipped with the sequential o-i-dominance relation, has at least
one maximal outcome.

Proof. By Zorn’s lemma it is sufficient to show that each chain in (Ω, →̂) has an upper
bound. Hence, let A be a chain in Ω. In case the chain contains an outcome a such that
â = {a}, then a is a maximal element. Otherwise, the intersection ∩a∈A â of closed sets is
non-empty (use the finite intersection property of closed sets in the compact set Ω). Each
outcome in this intersection is an upper bound for the chain A. ¤
Now, we identify the minimal dominant set with the set of maximal outcomes.

Theorem 4.5. Let (N, v) be a game and let Ω be the set of outcomes. Then, the minimal
dominant set coincides with the set of maximal outcomes and is therefore non-empty.

Proof. Let ∆ be a minimal dominant set and let M collect the maximal outcomes.

First, let a be a maximal outcome. Because ∆ satisfies accessibility, it contains an outcome
b such that a →̂ b. The maximality of a implies that b →̂ a. Since ∆ satisfies closure, a
belongs to ∆. Conclusion: M ⊆ ∆ and ∆ is non-empty.

Next, suppose that a belongs to ∆ and that b sequentially o-i-dominates a. Then, either a
sequentially o-i-dominates b, or ∆ is not a minimal o-i-dominant set: outcome a and each
outcome that is sequentially o-i-dominated by a can be left out. Since ∆ is assumed to be
minimal, the outcome a must be maximal. Hence, ∆ ⊆ M . ¤
Finally, consider a game (N, v) with a non-empty coalition structure core C(N, v). As the
coalition structure core collects the o-i-undominated outcomes, it follows that the minimal
dominant set ∆ includes C(N, v). As a matter of fact the equality C(N, v) = ∆ holds:

Corollary 4.6. Let (N, v) be a game. Then, the minimal dominant set is a non-empty
coalition structure core extension.

Proof. First, the minimal dominant set is non-empty (Theorem 4.5). Second, consider a
game with a non-empty coalition structure core. The accessibility of the coalition structure
core is proven in Kóczy and Lauwers (2001). Hence, the minimal dominant set coincides
with the coalition structure core. ¤

5. Properties

We discuss some deficiencies and we list some properties of the minimal dominant set.
Consider a game (N, v). Let Ω be the set of outcomes and let ∆ be the minimal dominant
set.

5.1. We start with the observation that an outcome in ∆ might assign a positive payoff
to a dummy player, i.e. a player i for which v({i}) = 0 and v(C ∪ {i}) = v(C) for each
coalition C. Indeed, consider a three player majority game augmented with two dummy
players: N = {1, 2, 3, 4, 5}, v(C) = 2 if the intersection C ∩ {1, 2, 3} contains at least two
players, all other coalitions have a value equal to 0.
The outcome (1, 1, 0, 0, 0; {1, 2} , {3} , {4} , {5}) belongs to ∆ and is o-i-dominated by the
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outcome a = (0, 1.2, 0.4, 0.4, 0; {1} , {2, 3, 4} , {5}) which allocates a positive amount to
player 4. Since ∆ is closed for o-i-domination, outcome a belongs to ∆.

Sengupta and Sengupta (1994, Section 3.2) observe that this affliction is common to many
solution concepts: the Aumann-Maschler set, the Mas-Collel bargaining set, the consistent
bargaining set of Dutta et al., and the set of viable proposals by Sengupta and Sengupta
all generate solutions for this game with a positive payoff for the dummy players.

An artificial way to circumvent this problem is to impose a stability condition upon the
deviating coalitions. Call a coalition S stable against splitting up in case each proper
partitioning D of S has a value that is strictly smaller than the worth of S, i.e. v(D) < v(S).
In other words, a coalition will split up in case it can be partitioned without lowering its
total worth. As such, a deviating coalition will never contain a dummy player and dummy
players will end up in their stand alone position.

5.2. Next, we observe that the shortsightedness or myopia of the players may lead to
inefficient coalition structures.

Definition 5.1. Let (N, v) be a game and let S be some coalition. A coalition structure C
of S is said to be efficient if the total payoff v(C) = ΣE ∈C v(E) decreases when the coalition
structure C is made finer or coarser.

Efficiency combines stability against splitting up with stability against mergers, i.e. C does
not contain coalitions A and B such that v(A ∪ B) > v(A) + v(B). The next example
indicates that inefficient coalition structures might enter the minimal dominant set.

Example 5.2. Repeat the three player game (N, v) with v({i}) = 0, v({i, j}) = 8, and
v(N) = 9. The minimal dominant set is the union of two sets. The first one is the
boundary of a triangle spanned by (8, 0, 0), (0, 8, 0), (0, 0, 8):

∆1 = { (x1, x2, x3; {i, j} , {k}) | {i, j, k} = {1, 2, 3} and xi + xj = 8, xk = 0 } .

The second one is a part of a triangle spanned by (9, 0, 0), (0, 9, 0), (0, 0, 9):

∆2 = { (x1, x2, x3; N) | x1 + x2 + x3 = 9 and ∃ k ∈ N : xk ≤ 1 } .

The outcomes in ∆1 are inefficient. Coarsening the coalition structure ({i, j} , {k}) to N
improves the value from 8 to 9. Furthermore, the efficient outcome (3, 3, 3; N) does not
belong to the minimal dominant set.

These observations raise a rather fundamental issue: the conflict between efficiency and
undomination. Here we insisted on undomination. As a consequence, inefficient outcomes
might enter and some efficient outcomes might leave the solution.

We do not regard this as a serious conceptual problem: we view the minimal dominant
set as a first solution concept. In other words, outcomes outside the minimal dominant
set certainly will not survive.4 Hence, if one insists on efficiency, then one can select the

4The literature on tournaments provides an analogue (Laslier, 1997). The top-cycle gathers the maximal
elements of a tournament, and the top-cycle is considered as a starting point for further investigations:
most tournament solutions are top-cycle selections.
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efficient outcomes out of the minimal dominant set. Since (i) each inefficient outcome
is o-i-dominated by an efficient outcome and (ii) the minimal dominant set is closed for
o-i-domination, this restriction is non-empty. In addition, this restricted set of efficient
outcomes still satisfies accessibility. In the example, ∆2 collects the efficient outcomes.

Analogously, if one insists on the dummy player axiom (i.e. dummy players obtain a zero
payoff), then one can impose the above mentioned stability axiom on the deviating coali-
tion.

5.3. Finally, we study the behavior of the minimal dominant set in composed games. Let
(N1, v1) and (N2, v2) be two games, with N1 and N2 disjoint. The juxtaposition of these
games is the game (N, v), with N = N1 ∪N2 and

v : 2N \ {∅} −→ R : S 7−→ v(S) =





v1(S) if S ⊆ N1,

v2(S) if S ⊆ N2,

0 otherwise.

In such a juxtaposition the restriction to one of the initial sets of players coincides with
the corresponding initial game. On the other hand, cross-coalitions have a zero worth.
Furthermore, in case ai = (xi,Pi) is an outcome of the game (Ni, vi), i = 1, 2, then the
juxtaposition a1 × a2 = (x1, x2 ;P1 ∪ P2) is an outcome of the game (N, v).
The next proposition indicates that the minimal dominant set behaves well with respect
to such composed games.

Proposition 5.3. The minimal dominant set of the juxtaposition of two games coincides
with the juxtaposition of the two minimal dominant sets.

Proof. Let (N, v) be the juxtaposition of the games (N1, v1) and (N2, v2). Let (xi,Pi) be
an outcome of the game (Ni, vi) that is maximal for the sequential o-i-domination relation,
i = 1, 2. In other words, let (xi,Pi) belong to ∆(Ni, vi).
Obviously, the juxtaposition (x1, x2 ;P1 ∪ P2) is maximal. Hence, ∆(N, v) includes the
juxtaposition of ∆(N1, v1) and ∆(N2, v2).
The inclusion ∆(N, v) ⊆ ∆(N1, v1)×∆(N2, v2) also is immediate. ¤

Although this property seems natural, it illuminates some advantages of the minimal dom-
inant set above other solution concepts. Consider the juxtaposition of a small game with
an empty and a large game with a non-empty core. As each outcome of this game is dom-
inated, the coalition structure core is empty. Nevertheless, the composed game contains
almost stable outcomes. The minimal dominant set is able to trace this locally stable
behavior.

Furthermore, this property illustrates the implications of the outsider-independence as-
sumption in the o-i-dominance relation. Consider the following juxtaposition.

Let N = {1, 2, 3, 4, 5} and let

v({1, 2}) = v({1, 3}) = v({2, 3}) = v({4, 5}) = 2,
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all other coalitions have a zero value. The minimal dominant set of this game is equal to

∆ = {(x ; {i, j} , {k} , {4, 5}) | {i, j, k} = {1, 2, 3} , xi + xj = x4 + x5 = 2, xk = 0} .

When the deviating coalition is allowed to intervene in the structure of the outsiders, the
set of maximal elements does contain outcomes that are not plausible. For example, the
outcome a = (1, 1, 0, 0, 0 ; {1, 2} , {3} , {4} , {5}) dominates in the sense of Sengupta and
Sengupta (1994) the outcome b = (1, 1, 0, 1, 1 ; {1, 2} , {3} , {4, 5}). Indeed, start from b
and consider a deviation by {2, 3} that separates players 4 and 5, next consider a deviation
by {1, 2}. This example shows that the set of viable proposals (i.e. the solution of Sengupta
and Sengupta, 1994) does not satisfy the juxtaposition property.
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