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Abstract 

In this paper, we consider different approximations for computing the 
distribution function or risk measures related to a sum of non-independent 
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1 Introduction 

In this paper we will consider and compare the performance of approximations 
for the distribution function (dJ.) and risk measures related to a random vari
able (r.v.) S given by 

n 

S= Lai eZ'. 

i=1 

(1) 

Here, the ai are non-negative real numbers and (Z1' Z2, ... , Zn) is a multivariate 
normal distributed random vector. 

The accumulated value at time n of a series of future deterministic saving 
amounts ai can be written in the form (1), where Zi denotes the random accu
mulation factor over the period [i, n]. Also the present value of a series of future 
deterministic payments ai can be written in the form (1), where now Zi denotes 
the random discount factor over the period [0, i]. For more details, see Dhaene, 
Vanduffel, Goovaerts, Kaas & Vyncke (2004). The valuation of Asian or basket 
options in a Black & Scholes model and the setting of provisions and required 
capitals in an insurance context boils down to the evaluation of risk measures 
related to the distribution function of a random variable S as defined in (1). 

We will investigate how to (approximately) compute risk measures such as 
quantiles (Q) and conditional tail expections (CTE) of the r.v. S defined in (1). 
These risk measures are defined by 

Qp[S] = inf{s E RJFs(s) ~ p}, pE(O,l) (2) 

and 
CTEp[S] = E[SJS > Qp[X]], pE(O,l), (3) 

where Fs(s) = Pr[S S s] and by convention, inf{<fJ} = +00. Notice that 
the quantile risk measure is often called the Value-at-Risk, whereas the condi
tional tail expectation coincides with the Tail-Value-at-Risk. The latter holds 
true because S is a continuous r.v., see for instance Dhaene, Vanduffel, Tang, 
Goovaerts, Kaas & Vyncke (2004). 

The r.v. S defined in (1) will in general be a sum of non-independent log
normal r.v.'s. Its dJ. cannot be determined analytically and is too cumbersome 
to work with. In the literature, a variety of approximation techniques for this 
dJ. has been proposed. 

Practioners often use a moment matching lognormal approximation for the 
distribution of S. The lognormal approximation is chosen such that its first two 
moments are equal to the corresponding moments of S. 

The present value of a continuous perpetuity with lognormal return process 
has a reciprocal Gamma distribution, see for instance Milevsky (1997). This 
present value can be considered as the limiting case of a random variable S as 
defined above. Motivated by this observation, Milevsky & Posner (1998) and 
Milevsky & Robinson (2000) propose a moment matching reciprocal Gamma 
approximation for the dJ. of S such that the first two moments match. They 
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use this technique for deriving closed form approximations for the price of Asian 
and basket options. 

Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b) derive comonotonic 
upperbound and lowerbound approximations (in the convex order sense) for the 
d.f. of S. Especially the lower bound approximation, which is given by E[S I A] 
for an appropriate choice of the conditioning r.v. A is extremely accurate, see 
for instance Vanduffel, Dhaene, Goovaerts & Kaas (2003). 

Huang, Milevsky & Wang (2004) compare the performance of different ap
proximations for the probability that a person outlives his money in case of a 
lifelong contineous consumption pattern. As a special case, they also consider 
approximations for such a probability when the consumption period is fixed. 

Our paper is related to Huang, Milevsky and Wang (2004). However, we 
will only consider deterministic sums. Furthermore, instead of comparing the 
approximations of the ruin probabilities, we will evaluate the performance of the 
above mentioned techniques by comparing the approximated values of quantiles 
and conditional tail expectations of r.v.'s S as defined in (1). 

The paper is organized as follows. In Section 2, we present the comonotonic 
. approximations. In that section, we also focus on the optimal choice of the 

conditioning r.v. A of the comonotonic lower bound E[S I A]. We propose a new 
conditioning r.v. which is likely to make the variance of the approximation 'as 
close as possible' to the exact variance. In Section 3 we will briefly recall the 
mathematical techniques behind the reciprocal Gamma and lognormal moment 
matching techniques. Finally, in Section 4 we compare the comontonic approxi
mations with the moment matching techniques, using an extensive Monte Carlo 
simulation as the benchmark. 

2 Comonotonic approximations 

2.1 General results 

In this section, we briefly repeat some results related to the comonotonic lower 
and upper bounds for the d.f. of the r.v. S defined in (1). For proofs and more 
details, we refer to Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b). 

A central concept in the the theory on comonotonic r.v.'s is the concept of 
convex order. A r. v. X is said to preceede a r. v. Y in the convex order sense, 
notation X :Sex Y, if their means are equal and if their corresponding stop-loss 
premia are ordered uniformly for all retentions d, i.e. E[(X -d)+] :s E[(Y -d)+] 
for all d. 

Replacing the copula describing the dependency structure of the terms in 
the sum (1) by the comonotonic copula yields an convex order upper bound for 
S. On the other hand, applying Jensen's inequality to S provides us with a 
lower bound. These results are formalized in the following theorem, which is 
taken from Kaas, Dhaene & Goovaerts (2000). 

Theorem 1 Let the r.v. S be given by (1), where the Qi are non-negative 
real numbers and the random vector (Zb Z2, ... , Zn) has a multivariate normal 
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distribution. Consider the conditioning r.v. A, given by 

n 

A = LliZi. (4) 
i=l 

Also consider r.v. 's Sl and se defined by 

n 
Sl = Lai eE[Zi]+H1-rna~i+riazi.p-1(U) (5) 

i=l 

and 
n 

se = L ai eE[Zi]+aZi .p-1(U), (6) 
i=l 

respectively. Here U is a Uniform(O,I) r.v. and 1? is the cumulative d.f. of the 
N(O,I) distribution. Further, the coefficients ri are defined by 

cov [Zi' A] 
ri = . 

aZi aA 
(7) 

For the r.v. 's S, Sl and se, the following convex order relations hold: 

(8) 

The theorem states that (the d.f. of) Sl is a convex order lower bound for 
(the d.f. of) S, whereas (the d.f. of) se is a convex order upper bound for (the 
d.f. of) S. 

The upper bound se is obtained by replacing the original copula between the 
marginals of the sum S by the comonotonic copula, but keeping the marginal 
distributions unchanged. 

One can prove that the d.f. of the lower bound Sl corresponds with the d.f. 
of E[S I A]. The lower bound is obtained by changing both the copula and the 
marginals of the original sum. Intuitively, one can expect that an appropriate 
choice of the conditioning variable A will lead to much better approximations 
than the the upper bound approximations. 

A random vector is said to be comonotonic if all its components are non
decreasing functions of the same r.v. Notice that all terms in the sum se are 
non-decreasing functions of the r.v. U. This means that se is a comonotonic 
sum. It implies that the quantiles and conditional tail expectations of se are 
given by the sum of the corresponding risk measures for the marginals involved, 
see for instance Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004) : 

n 

Qp [se] = L ai e E [Zi]+a Zi .p-1(p) , (9) 
i=l 

P E (0,1) . (10) 
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Provided all coefficients ri are positive, the terms in 8 l are also non-decreasing 
functions of the same r.v. U. Hence, 8l will also be a comonotonic sum in this 
case. This implies that the quantiles and conditional tail expectations related to 
8 l can be computed by summing the corresponding risk measures for the mar
ginals involved. Hence, assuming that all ri are positive, we find the following 
expressions for quantiles and conditional tail expectations of 8 l : 

pE(O,I), (11) 
i=l 

P E (0,1) .(12) 

Finally, notice that the expected values of the r.v.'s 8, 8 cand 8 l are all equal: 

n 

E(8) = E(8l ) = E(8C) = L Cti eE[z;]+!Q"~i, (13) 
i=l 

whereas their variances are given by 

n n 

Var(8) = LLCtiCtj eE[Zil+E[Zj]+!(Q"~i+Q"~j)(eCOV(Zi,Zj) -1), (14) 
i=l j=l 

n n 

Var(8l ) = LLCtiCtj eE[Z;]+E[Zj]+!(Q"~i+Q"~j)(erirjQ"ZiQ"Zj -1) (15) 
i=l j=l 

and 
n n 

Var(8C) = L L CtiCtj eE[Zi]+E[Zj]+! (Q"~i +Q"~j) (eQ" ZiQ"Zj - 1), (16) 
i=l j=l 

respectively. 

2.2 The 'maximal variance' lower bound approach 

If X Scx Y and X and Y are not equal in distribution, then Var[X] < Var[Y] 

must hold. An equality in variance would imply that X ~ Y. This indicates 
that if we want to replace 8 by the less convex 8 l , the best approximations 
probably will be the ones where the variance of 8 l is 'as close as possible' to 
the variance of 8. In other words, we should try to choose the coefficients "Ii 
of the conditioning variable A defined in (4) such that the variance of 8l is 
maximized. 

We will now prove that the first order approximation of the variance of 8 l 

will be maximized for the following choice of the parameters "Ii: 

(17) 
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Indeed, from (15) we find that 

Var(A) 
n n 

= (Corr(~::~>~i eE[Z;]+~<T~i Zi, A))2 Var(I>~i eE[Zil+~<T~i Zi)' (18) 
i=l i=l 

Hence, the first order approximation of Var(SI) is maximized when A is given 
by 

n 

A = L O!i eE[Zil+~<T~i Zi' (19) 
i=l 

In the remainder of this paper, we will always assume that the conditioning 
LV. A is given by (19). Notice that this optimal choice for A is slightly different 
from the choice that was made for this r.v. in Dhaene, Denuit, Kaas, Goovaerts 
& Vyncke (2002b). Numerical comparisons reveal that the choice proposed here 
leads to more accurate approximations. 

One can easily prove that the first order approximation for V ar(SI) with A 
given by (19) is equal to the first order aproximation of Var(S). This observation 
gives an additional indication that this particular choice for A will provide a good 
fit. 

We emphasize that the conditioning r.v. A defined in (19) does not necessar
ily maximize the variance of Sl, but has to be understood as an approximation 
for the optimal A. Theoretically, one could use numerical procedures to de
termine the optimal A, but this would outweigh one of the main features of 
the convex bounds, namely that the quantiles and conditional tail expectations 
(and also other actuarial quantities such as stop-loss premiums) can easily be 
determined analytically. Having a ready-to-use approximation that can be im
plemented easily is important from a practical point of view. 

3 Two well-known moment matching approxi
mations 

It belongs to the toolkit of any actuary to approximate the d.f. of an unknown 
LV. by a known dJ. in such a way that the first moments are preserved. In 
this section we will briefly describe the reciprocal Gamma and the lognormal 
moment matching approximations. These two methods are frequently used to 
approximate the d.f. of the LV. S defined by (1). 
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3.1 The Reciprocal Gamma approximation 

The r.v. X is said to be Gamma distributed when its probability density func
tion (p.d.f.) is given by 

. _ 1 ",-1 -x/(3 
fx(x,a,(3) - (3"'r(a)x e , x> 0, (20) 

where a > 0, (3 > 0 and r(.) denotes the Gamma function: 

(21) 

Consider now the r.v. Y = 1jX. This r.v. is said to be reciprocal Gamma 
distributed. Its p.d.f. is given by 

Jy(y;a,(3) = fx(1/y;a,(3)/y2, y > o. (22) 

It is straightforward to prove that the quantiles and conditional tail expectations 
of Yare given by 

Qp [Y] = F- 1(1 ~. (3) , x p,a, 
P E (0,1) (23) 

and 
aTE [Y]_ Fx (Fi 1 (1-p;a,(3);a-1,(3) 

p - (1-p)(a-1)(3 , P E (0,1) , (24) 

where Fx(.;a,(3) is the cumulative d.f. of the Gamma distribution with pa
rameters a and (3. Since the Gamma distribution is readily available in many 
statistical software packages, these risk measures can easily be determined. 

The first two moments of the reciprocal Gamma distributed r.v. Yare given 
by 

1 
E[Y] = (3(a - 1) 

and 
E[y2] = 1 . 

(32(a - l)(a - 2) 

Expressing the parameters a and (3 in terms of E[Y] and E[y2] gives 

and 

2E[y2] - E[y]2 
a = E[y2] - E[Y]2 

(3 = E[y2] - E[YJ2 
E[Y]E[y2] 

(25) 

(26) 

(27) 

(28) 

The d.f. of the r.v. defined in (1) is now approximated by a reciprocal 
Gamma distribution with first two moments (13) and (14), respectively. The 
coefficients a and (3 of the reciprocal Gamma approximation follow from (27) 
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and (28). The reciprocal Gamma approximations for the quantiles and the 
conditional tail expectations are then given by (23) and (24). 

Dufresne (1990) proves that the present value of a continuous perpetuity 
with a Wiener logreturn process is reciprocal Gamma distributed, under suitable 
parameter restrictions. An elegant proof for this result can be found in Milevsky 
(1997). 

Intuitively, one expects that the present value of a finite discrete annuity with 
a normal logreturn process with independent periodic returns, can be approxi
mated by a reciprocal Gamma distribution, provided the time period involved 
is long enough. This idea was set forward and explored in Milevsky & Posner 
(1998), Milevsky & Robinson (2000) and Huang, Milevsky & Wang (2004). 

3.2 The lognormal approximation 

The r.v. X is said to be lognormal distributed if its p.d.f. is given by 

2 1 -(Jog "'_1')2 

ix(x;J.L,a)= J21fe 2<7 2 

xa 27r 
x> 0, (29) 

where u > O. 
The quantiles and conditional tail expectations of X are given by 

P E (0,1) (30) 

and 
eTE [X] = el-'+t0"2 ~ (a - ~-l(p)) 

P 1- p , P E(O, 1). (31) 

The first two moments of X are given by 

(32) 

and 
(33) 

Expressing the parameters J.L and a2 of the lognormal distribution in terms 
of E[X] and E[X2] leads to 

and 

-10 ( E[X]2 ) 
J.L - g J E[X2] 

2 (E[X 2]) 
a = log E[X]2 . 

(34) 

(35) 

The same procedure as the one explained in the previous subsection can be 
followed in order to obtain a lognormal approximation for S, with the first two 
moments matched. Dufresne (2002) obtains a lognormal limit distribution for S 
as volatility a tends to zero and this provides a theoretical justification for the 
use of the lognormal approximation. 
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4 Comparing the approximations 

In order to compare the performance of the different approximations presented 
above, we consider the LV. Sn which is defined as the random present value 
of a series of n deterministic unit payment obligations due at times 1, 2, ... , n, 
respectively: 

n n 

S "" -YI-Y.2-···-Y not"" z· n=L.... e '= L.... e '. (36) 
i=l i=l 

where the r.v. Yi is the random return over the year [i-I, i] and e-(Y1+Y2 +··+Yi ) 

is the random discount factor over the period [0, i]. 
We will assume that the yearly returns Yi are i.i.d. normal distributed with 

mean (0.075 - 0"22 ) and variance a 2 • Notice that Sn is a LV. of the general 

type defined in (1). 
The provision or reserve to set up at time 0 for these future unit payment 

obligations can be determined as Qp[Sn] or CTEp[Sn], with p sufficiently large. 
A provision equal to QO.95[Sn] for instance, will guarantee that all payments 
can be made with a probability of 0.95, see for instance Dhaene, Vanduffel, 
Goovaerts, Kaas & Vyncke (2004). 

As the time unit that we consider is long (1 year), assuming a Gaussian 
model for the returns seems to be appropriate, at least approximately, by the 
Central Limit Theorem. In order to verify whether our theoretical setup can be 
approximately compared with the data generating mechanism of real situations, 
we refer to Cesari & Cremonini (2003). They investigate four well-known stock 
market indices in US dollars, from Morgan Stanley: MSCI World, North Amer
ica, Europe and Pacific, covering all major stock markets in industrial as well as 
emerging countries. For the period 1997-1999, the authors conclude that weekly 
(and longer period) returns can be considered as normal and independent. Daily 
returns on the other hand are both non-normal and autocorrelated. 

In order to compute the comonotonic approximations for quantiles and con
ditional tail expectations, notice that E[Zi], a1i and Ti are given by 

and 

with 'Yk given by 

2 
aZi 

= 
a 2 

-i(0.075 - 2")' 

i a2 

'Yk = eE[ZkJ+!O"~k, k = 1, ... ,n. 

(37) 

(38) 

(39) 

Notice that the correlation coefficients Ti are positive, so that the formulae (11) 
and (12) can be applied. 
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n Method a = 0.05 a = 0.15 a = 0.25 a = 0.35 
UB +3.24% +8.02% +9.36% +7.50% 

20 LB -0.01% +0.02% +0.00% +0.35% 
RECG +0.07% -0.15% -4.28% -14.27% 
LN -0.16% -0.06% +2.99% +9.04% 

MC (±s.e) 
12.1957 20.4592 41.5854 106.1389 
(0.04%) (0.10%) (0.25%) (0.30%) 

UB +4.39% +10.26% +9.42% +1.47% 
40 LB +0.00% -0.06% +0.06% -0.83% 

RECG +0.06% -0.55% -8.52% -19.70% 
LN -0.23% +0.58% +9.73% +9.96% 

MC (±s.e) 
15.4733 30.4033 87.7482 427.0793 
(0.04%) (0.16%) (0.32) (0.49) 

Table 1: Approximations for the 0.95-quantile of Sn for different horizons and 
volatilities. 

Now we will compare the performance of the different approximation meth
ods that were presented in Sections 2 and 3: the comonotonic upper bound 
method (UB), the comonotonic 'maximal variance' lowerbound method (LB), 
the reciprocal Gamma method (RG) and the lognormal method (LN). 

We will compare the different approximations for quantiles and conditional 
tail expectations with the values obtained by Monte-Carlo simulation. The 
simulation results are based on generating 500.000 random paths. The estimates 
obtained from this time-consuming simulation will serve as benchmark. The 
random paths are based on antithetic variables in order to reduce the variance 
of the Monte-Carlo estimates. 

The tables that we will present display the Monte Carlo simulation result 
(MC) for the risk measure at hand, as well as the procentual deviations of 
the different approximation methods, relative to the Monte-Carlo result. For 
the quantiles and conditional tail expectations, these procentual deviations are 
defined as follows: 

and 
CTE [sapprox]_ CTE [SMC] 

p TVaRp[S,¥C] p n X 100%, 

where s~pprox corresponds to one of the approximation methods and S!;:!c de
notes the Monte Carlo simulation result. The figures displayed in bold in the 
tables correspond to the best approximations, this means the ones with the 
smallest procentual deviation compared to the Monte-Carlo results. In the ta
bles, we also present the standard errors of the Monte Carlo estimates. Note 
that these standard errors are also expressed as a procentual deviation from the 
Monte Carlo estimate. 
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Method p=0.995 p=0.90 p=0.75 p=0.50 p=0.25 
VB +17.41% +6.11% +0.32% -6.15% -12.55% 
LBv -0.65% +0.12% -0.03% -0.10% +0.13% 

RECG +0.73% -4.19% -2.52% +1.20% +6.18% 
LN -3.76% +4.19% +3.81% +0.25% -6.36% 

MC (±s.e) 
84.0466 32.0758 21.2666 13.8933 9.3833 
(0.51%) (0.25%) (0.12%) (0.04%) (0.09%) 

Table 2: Approximations for some selected quantiles of S20. The yearly volatility 
equals 0.25. 

n Method a = 0.05 a = 0.15 a = 0.25 a = 0.35 
VB +4.19% +10.98% +14.17% +12.98% 

20 LB -0.02% -0.14% -0.36% -0.59% 
RECG +0.21% +1.18% -0.98% -15.41 % 
LN -0.38% -1.88% -0.94% +4.56% 

MC (±s.e) 
12.8231 24.4591 59.6646 198.0164 
(1.04%) (2.16%) (2.90%) (3.27%) 

VB +5.86% +15.11% +16.87% +10.45% 
40 LB +0.09% -0.25% -0.59% -0.84% 

RECG +0.28% +0.87% -7.49% -40.77% 
LN -0.48% -2.38% +4.18% +12.77% 

MC (±s.e) 
16.3994 38.2515 149.8569 1206.0858 
(1.55%) (2.61%) (3.25%) (3.59%) 

Table 3: Approximations for the 0.95-quantile of Sn for different horizon and 
volatility levels. 

Table 1 summarizes the results for the 0.95-quantiles for different yearly 
volatilities a and for a time horizon of n = 20 and n = 40, respectively. The 
maximum variance lowerbound approach (LB) turns out to fit the quantiles the 
best for all values of the parameters. Its approximated quantiles fall almost al
ways in the confidence interval Qp[S:rC ] ±s.e .. It appears that the performance 
of the reciprocal Gamma approximations is worse for higher levels of volatility 
and for longer time horizons. This latter result is surprising, given the con
vergence of the d.f. of Sn to the reciprocal Gamma distribution. The results 
indicate that this convergence occurs very slowly. 

Table 2 compares the different approximations for some selected quantiles 
of S20, with a fixed yearly volatility of 25% . The results are in line with the 
previous ones. The lower bound approach outperforms all the others, for high 
as well as for low values of p. 

Table 3 displays the approximated and simulated 95% conditional tail ex
pectations for the same set of parameters as in Table 1. Again the lowerbound 
approach approximates the exact conditional tail expectations extremely well. 

The same conclusions can be drawn from the results in Table 4. This ta-
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Method p=0.995 p=0.90 p=0.75 p=0.50 p=0.25 
VB +21.00% +11.71% +7.87% +4.34% +1.89% 
LB -0.99% -0.21% -0.11% -0.09% -0.10% 

RECG +7.82% -2.25% -2.82% -2.16% -1.17% 
LN -7.97% +0.80% +2.31% +2.33% +1.44% 

MC (±s.e) 
111.5457 47.9276 34.6099 25.8692 21.0969 
(3.24%) (2.77%) (2.52%) (2.23%) (1.96%) 

Table 4: Approximations for CTEp [820J. The yearly volatility equals 0.25. 

ble reports the different approximations for CT Ep [820 J for different probability 
levels p and a fixed yearly volatility 0' = 0.25. 

From the 4 tables, one can observe that both moment matching techniques 
perform poorly for high levels of p and/or 0'. The comonotonic lower bound 
approach however, remains to produce accurate approximations, also in these 
extreme cases. 

Finally, remark that in general the procentual deviation of the comonotonic 
upper bound compared to the MC-simulation is relatively high. From the Ta
bles 1 and 3, however, we can conclude that for high volatility levels, the crude 
comonotonic upper bound approximation often performs better than the recip
rocal Gamma approximation. 

5 Conel usion 

In this paper, we compared some approximation methods for a standard ac
tuarial and financial problem: the determination of quantiles and conditional 
tail expectations of the present value of a series of cash-flows, when discounting 
is performed by a Brownian motion process. We tested the accuracy of the 
comontonic lower and upper bound approximations and two moment matching 
approximations by comparing these approximations with the estimates obtained 
from extensive Monte Carlo simulations. 

Overall, the recently developed comononotonic maximal variance lower bound 
approach provides the best fit and leads to accurate approximations under vary
ing parameter assumptions, which are in line with realistic market values. 

The comonotonic approach has the additional advantage that it gives rise 
to easy computable approximations for any risk measure that is additive for 
comonotonic risks. Examples of such risk measures are the distortion risk mea
sures which were introduced in the actuarial literature by Wang (2000). 

Finally notice that the comonotonic lower bound approximation that we 
presented here can easily be transformed to the case when accumulating saving 
amounts to a final value, and also to the case where the cash flow payments 
vary from period to period, see Dhaene, Vanduffel, Goovaerts, Kaas & Vyncke 
(2004). 

11 



Acknowledgements 

The authors acknowledge the financial support by the Onderzoeksfonds K.U.Leuven 
(GOAj02: Actuariele, financiele en statistische aspecten van afhankelijkheden 
in verzekerings- en financiele portefeuilles). 

References 

[lJ Cesari, R. and Cremonini, D. (2003). Benchmarking, portfolio insurance 
and technical analysis: a Monte Carlo comparison of dynamic strategies of 
asset allocation. Journal of Economic Dynamics and Control, 27, 987-101l. 

[2J Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D., 2002(a). 
The concept of comonotonicity in actuarial science and finance: Theory. 
Insurance: Mathematics and Economics, 31(1), 3-33. 

[3J Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D., 2002(b). 
The concept of comonotonicity in actuarial science and finance: Applica
tions. Insurance: Mathematics and Economics, 31(2), 133-16l. 

[4J Dhaene, J., Vanduffel, S., Goovaerts, M.J., Kaas, R. and Vyncke, D. 
(2004). Comonotonic approximations for optimal portfolio selection prob
lems. www.kuleuven.ac.be/insurance. publications. 

[5J Dhaene, J., Vanduffel, S., Tang, Q., Goovaerts, M.J., Kaas, R. and Vyncke, 
D. (2004). Solvency capital, risk measures and comonotonicity: a review. 
www.kuleuven.ac.be/insurance. publications. 

[6J Dufresne, D. (1990). The distribution of a perpetuity with applications to 
risk theory and pension funding. Scandinavian Actuarial Journal, 9, 39-79. 

[7J Dufresne, D. (2002). Asian and Basket Asymptotics. Research Paper No. 
100, Centre for Actuarial Studies, University of Melbourne. 

[8J Huang, H., Milevsky, M. and Wang, J., 2004. Ruined Moments in Your 
Life: How Good Are the Approximations? Insurance: Mathematics and 
Economics, forthcoming. 

[9J Kaas, R., Dhaene, J. and Goovaerts, M. (2000). Upper and lower bounds 
for sums of random variables. Insurance: Mathematics and Economics, 27, 
151-168. 

[lOJ Milevsky, M. (1997). The present value of a stochastic perpetuity and the 
Gamma distribution. Insurance: Mathematics and Economics, 20(3), 243-
250. 

[l1J Milevsky, M.A. and Posner, S.E. (1998). Asian Options, the Sum of Log
normals, and the Reciprocal Gamma Distribution. Journal of financial and 
quantitative analysis, 33(3), 409-422. 

12 



[12J Milevsky, M.A. and Robinson C. (2000). Self-Annuitization and Ruin in 
Retirement. North American Actuarial Journal, 4(4), 112-124. 

[13J Vanduffel, S., Dhaene, J., Goovaerts, M. and Kaas, R. (2003). The hurdle
race problem. Insurance: Mathematics and Economics, 33(2),405-413. 

[14J Wang, S. (2000). A class of distortion operators for pricing financial and 
insurance risks. Journal of Risk and Insurance, 67(1), 15-36. 

13 






