
Information Systems Frontiers 4:3, 331–342, 2002
C© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Domain Modelling and the Co-Design of Business Rules
in the Telecommunication Business Area

Monique Snoeck∗ and Cindy Michiels
Management Information Systems Group, K.U. Leuven,
Naamsestraat 69, B-3000 Leuven, Belgium
E-mail: monique.snoeck@econ.kuleuven.ac.be
E-mail: cindy.michiels@econ.kuleuven.ac.be

Abstract. This paper discusses the development of an enterprise
domain model in an environment where part of the domain knowl-
edge is vague and not yet formalised in company-wide business
rules. The domain model was developed for a young company
starting in the telecommunications sector. The company relied
on a number of stand-alone business support systems and sought
for a manner to integrate them. There was opted for the devel-
opment of an enterprise-wide domain model that had to serve as
an integration layer to coordinate the stand-alone applications.
A specific feature of the company was that it could build up its
information infrastructure form scratch, so that many aspects of
its business were still in the process of being defined. The paper
will highlight parts of the Enterprise Model where there was a
need for co-designing business rules together with the domain
model. A result of this whole effort was that the company got
more insight into important domain knowledge and developed
a common understanding across functional areas of the way of
doing business.

Key Words. domain modelling, business rules, object-oriented
analysis, business process modelling

1. Introduction

The paper presents an enterprise and business mod-
elling project for a young company starting in the
telecommunications area. The company positions it-
self as a broadband application provider and is specif-
ically tailored towards the SME market. The company
relies on a number of stand-alone business and oper-
ational support systems (BSS/OSS). A key factor in
focusing on the SME market is the ability to handle
large volumes of small orders. The company recognises
that the integration of its stand-alone support systems
can significantly improve the transaction processing
volume.

There was opted for the development of an
enterprise-wide domain layer, from now on called En-
terprise Layer, that will serve as an integration layer to
co-ordinate the previously stand-alone business appli-
cations. The Enterprise Layer will prevent redundancy
in data storage and data processing, thereby improving
the transaction processing volume.

A particular feature of working with a young com-
pany was that the Enterprise Layer could be build from
scratch, there was no need for re-engineering an ex-
isting legacy infrastructure. The major advantage were
the degrees of freedom in developing the Enterprise
Layer, there was no “history” to be taken into account.
The major difficulty was that many work procedures
were still under construction and had to be figured out
during the modelling of the Enterprise Layer. Although
the top-level business processes had already been de-
fined, the business rules still remained in the process
of being defined.

During the specification phase it became very
soon apparent that there was not a well-defined and
company-wide understanding of important concepts
such as PRODUCT and SALES ORDER. Because of the use
of stand-alone BSS/OSS, each functional area had its
own definition of domain concepts and business rules.
Many of the low-level business processes were not for-
malised yet. Existing work procedures were often de-
signed as solutions to day-to-day problems, lacking the
genericity to scale up to larger transaction volumes and
to introduce new product types.

The development of the Enterprise Layer has forced
the company into a common understanding across

∗To whom correspondence should be addressed.

331

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


332 Snoeck and Michiels

functional areas of the way of doing business, of
important domain knowledge and of business rules that
govern business objects and business events.

The rest of the paper will be organised as follows:
Section 2 describes the set-up of the project. The in-
tegration strategy of the company is summarised in 4
steps. The focus of this paper will be on step 2, the
modelling of an Enterprise Layer. The next two sec-
tions both illustrate how a specific modelling problem
could be solved by designing a number of business rules
as part of the Enterprise Layer: Section 3 describes
how an integrated view on PRODUCT could be main-
tained across different business units, Section 4 deals
with the managing of sequences of business activities.
The diagrams are presented using standard UML nota-
tions, but in practice the modelling method MERODE
(Snoeck and Dedene, 1998; Snoeck et al., 1999) was
used, as this method is specifically tailored to the devel-
opment of enterprise models. In a modelling environ-
ment where a large part of the domain knowledge and
business rules are still vague at the start of the project,
prototyping can be useful as a technique to gain more
confidence in the specified model and chosen options.
Section 5 deals with prototyping the Enterprise Layer.
To conclude, Section 6 presents a number of insights
gained from the project.

2. Enterprise Layer to Co-Ordinate
Stand-Alone BSS/OSS

2.1. Integration approach in 4 steps
The automation strategy of the company is summarised
by the following four steps:

Step 1: Roll out of industry proven BSS/OSS with out
of the box functionality. Each application is treated
in isolation (total lack of integration).

Sales Service
Provisioning

Customer
Support

Billing

Ordered
Product

Product
ReadyFor
Service

Installed
Configuration

Fig. 1. Main business process.

Step 2: Specification and development of an Enterprise
Layer that will support all applications and user in-
terfaces. The Enterprise layer is by definition passive
and not aware of its users.

Step 3: Integration of the existing BSS/OSS by plug-
ging them in on the Enterprise Layer. The interface
between these applications and the Enterprise Layer
will be realised by designing agents, responsible for
co-ordinating the information exchange.

Step 4: Development of user interfaces on top of the
BSS/OSS applications or directly on top of the En-
terprise Layer.

At the start of the project, step 1 had been realised:
three out of the four main functional domains were sup-
ported by a standalone software package. The top-level
business processes of the company are represented in
Fig. 1. There exists no automated support for the sales
domain: sales business processes are mainly paper-
based or use standard office software such as word
processors and spreadsheets. The Service Provision-
ing domain is supported by the software package TBS
Metasolv©R,1 the Billing domain by the package Geneva
(now Convergys)2 and the Customer Support domain
by the Clarify software3 .

The development of the Enterprise Layer and the
subsequent steps eventually lead to the layered infras-
tructure depicted in Fig. 2. The previously stand-alone
BSS/OSS constitute now the middle layer. The En-
terprise Layer serves as a foundation layer for them.
Co-ordination agents realise the information exchange
between the business applications and the inherently
passive Enterprise Layer. Together, the Enterprise
Layer and the co-ordination agents constitute the In-
tegration scope. The top layer is established by the de-
velopment of user interfaces that offer a Web interface
to both the business applications and to parts of the
Enterprise Layer.



Domain Modeling and Co-Design of Business Rules 333

People
Domain

Orders
Domain

Products
Domain

Configuration
Domain

Enterprise Layer

BSS/OSS
applications

C
ustom

er S
upport

C
larify

B
illing

G
eneva

S
ervice P

rovisioning
T

B
S

 M
etasolv

User Interface

Co-ordination agents

E
ntering S

ervice O
rder F

orm
s

C
ustom

er S
elf C

are functions

Web interface scope

Integration scopee

S

-o s

Fig. 2. Overview of company automation.

2.2. Step 2—developing an Enterprise Layer
The focus of this paper will be on Step 2 of the automa-
tion approach: the definition of an Enterprise Layer.
This layer covers the company’s four main business
domains: People, Products, Orders and Configuration.
A short overview of each business domain is presented
below.

The People domain concerns both the customers and
the sales persons. Information about people is found in
all four business processes. The sales process stores
data on sales people (both in-house and distributors)
and on commercial contacts for customers. The Service
Provisioning application and the Customer Support ap-
plication both maintain data on technical contacts. Fi-
nally, the Billing application keeps track of data about
financial contacts. Since the company mainly deals
with SME, a single person often takes several roles
simultaneously, so that information about the same per-
son can be distributed and replicated across several
business processes. The Enterprise Layer will ensure
that information about an individual person is stored
and maintained in a single place.

The Product domain maintains all information re-
lated to products sold by the company. Depending on
the business process, a different view on products is
needed. Formerly, each BSS/OSS maintained its own
product catalogue. The Enterprise Layer will be re-
sponsible for tying together the description of prod-
ucts. Therefore, a distinction had to be made between a
commercial product view and a technical product view
in the Product Domain.

The Orders domain handles the registration of sales
orders. A sales order can contain multiple order lines,
one for each ordered product. Business rules will guard
the mapping between orders in the Order Domain
and commercial product descriptions in the Product
Domain.

The Configuration domain keeps track of the tech-
nical configuration that is build at a customer’s site
during the provisioning activities. It is information
that is produced by the Service Provisioning appli-
cation and is used by the Customer Support applica-
tion. Business rules will guard the mapping between
installation activities in the Configuration Domain



334 Snoeck and Michiels

and technical product descriptions in the Product
Domain.

The example presented in Section 3, will explain
in more detail how both perspectives are maintained
in the Enterprise Layer. A solution was found in the
adoption of the TypeObject Pattern4 together with
the design of mapping business rules. Together they
will give a formal structure to key business con-
cepts such as PRODUCT, INSTALLATION ORDER and
PART.

Section 4 will demonstrate how the adoption of
company-wide business rules in the Enterprise Layer
can formalise existing work procedures. Whereas
Section 3 is in essence an example of informa-
tion structure, Section 4 relates to the behavioural
perspective.

2.3. Methodology
The diagrams in Sections 3 and 4 are presented us-
ing standard UML notations, but in practice the mod-
elling method MERODE (Snoeck and Dedene, 1998;
Snoeck et al., 1999) was used, as this method is specifi-
cally tailored to the development of enterprise models.
MERODE advocates a clear separation of concerns, in
particular a separation between the information sys-
tems services and the enterprise model. The informa-
tion systems services are defined as a layer on top of
the enterprise model, what perfectly fits with the set-up
of the project.

A second interesting feature of MERODE is that
it does not rely on message passing to model inter-
action between domain object classes. Instead, busi-
ness events are identified as independent concepts. An
object-event table allows defining which types of events
affect which types of objects. When an object type
is involved in an event, a method is required to im-
plement the effect of the event on instances of this
class. Whenever an event actually occurs, it is broad-
casted to all involved domain objects. This broad-
casting paradigm requires the implementation of an
event-handling layer between the information system
services and the enterprise layer. This approach al-
lows implementing the Enterprise Layer (together with
the event-handling layer) both by means of an object-
oriented implementation technology as a relational or
object-relational technology. Since not all BSS/OSS
were object-oriented, there was still enough free-
dom to choose the most appropriate implementation
technology for the Enterprise Layer, without danger

for a paradigm mismatch between specification and
implementation.

3. Example 1: Defining an Integrated
View on Products

3.1. The unfeasibility of a single product catalogue
Product developers are responsible for the definition of
new sellable products. Specific for the telecommuni-
cations business area is that the selling of a product is
a long-lived transaction with the customer and that it
involves a large number of configuration activities at
the customer site. For example, the ordering of a point-
to-point connection from site A to site B involves the
installation of an unbundled line at both sites, the con-
figuration of a router for each unbundled line and the
configuration of a virtual circuit offering the required
bandwidth.

Usually, an integrated approach tries to achieve the
definition of a single product catalogue. However, peo-
ple from different business area have a different view
on products and have different needs. In an attempt to
keep a unified view on products while accommodat-
ing for their different needs, people tend to twist prod-
uct definitions in their respective software packages.
By abusing attributes and fields for cross-referencing
purposes, they try to maintain a more or less inte-
grated approach. However, as the set of products in
the product catalogue will increase, a unified view is
no longer sustainable. Also in an international set-
up with multiple business units a unified view can
be held no longer: what is a single product from a
sales point of view requires different technical con-
figuration activities depending on the business unit.
For example, Internet Access can be implemented by
means of an unbundled line in the Netherlands and the
UK, but must be provided with a leased line in Bel-
gium, where unbundling of the local loop is not (yet)
possible.

A scalable design must find a way to reconcile the
differences between the technical and the commercial
perspectives that can be taken on a product.

Since it must be possible for marketing people to de-
fine new products at any time, the product domain has
been modelled by making use of the TypeObject Pat-
tern, rather than by using generalisation/specialisation
hierarchies. The TypeObject Pattern splits a class in a
Type Class and an Instance Class and replaces subtypes
of the original class by instances of the Type Class. For



Domain Modeling and Co-Design of Business Rules 335

Product Product
Type

is_of

0..* 1...1
 

Fig. 3. Type object pattern for products.

products this means that rather than making a subclass
of Product for each new type of product, it suffices to
create an instance of Product Type that represents the
new type of product (see Fig. 3).

The Product Domain is constituted entirely of Type
Object Classes. Business rules were introduced to
guard the mapping of the Type Object Classes with the
Object Classes in the Order and in the Configuration
Domain. As mentioned before, the Product Domain
can be observed both from a commercial and a tech-
nical perspective. First the commercial perspective is
presented.

3.2. Commercial perspective of the product domain
The formerly ad hoc composition of products in
bundles, (sub)packages and options, is now formalised
in the Enterprise Layer by means of a Product
Composition Tree (depicted in Fig. 4). The leaf nodes
of the product composition tree consist of installation
orders, which are units of configuration. One level up,
installation orders can be grouped into sub-packages.
A grouping of sub-packages can constitute together
a main package. Finally, at the highest level a number
of main packages can be bundled together. Installation
orders thus represent units of service provisioning and
are the basic building blocks for marketing to compose
new products.

The corresponding class diagram is given in Fig. 5.
Customers can order an instance of a PackageType,

Bundle 

Main Package 

Sub Package 

Installation 
Order 

Fig. 4. Product composition tree.

in which case an object PackageOrderLine is
created. By means of the association class Composi-
tionType, the product composition tree can be mod-
elled: PackageType is composed in a recursive way
of other Package Types (lower level packages). At the
lowest level they are composed of elementary Installa-
tionOrderTypes. The following class constraint on ob-
ject class PackageType prevents that a package could
be composed of itself.

self.giveAllChildren.includes(self) = false
with
giveAllChildren: set[PackageType]
postcondition

result = union(self.BundlePT.SubPT.
giveAllChildren) ∪ {self}

By means of the association class OptionType, the
options of a package are specified. Packages can be
ordered as lower price options to other packages, re-
sulting in the creation of objects of class OptionOrder-
Line. When a package is actually ordered as an option
to a previously ordered package, a business rule has
to verify whether the former is indeed modelled as an
option to the latter in the corresponding Type Classes
OptionType and PackageType. The following class
constraint on OptionOrderLine enforces this business
rule:

self.OptionType.MainPT
= self.PackageOrderLine.PackageType

3.3. Technical perspective of product domain
The technical perspective maintains for each type of
installation order the parts to install and the parameters
to configure. As depicted in Fig. 5, the association class
PartTypeUse relates an InstallationOrderType with a
PartType. A part type is an atomic installation unit,
which can be described by a number of configuration
parameters. An unbundled line, a router and a virtual
circuit are all examples of part types. Some part types
need the installation of other part types before they can
be installed. For example, a virtual circuit requires the
installation of two unbundled lines and an unbundled
line requires in its turn the configuration of a router.
To specify this hierarchical dependency the association
class PartPrerequisiteType is introduced.

From these Type classes, a real configuration can
be derived by instantiation of the classes Installa-
tionOrder, PartUse, Part and PartPrerequisite. The us-
age relationship allows a Part to be (re)used by many



336 Snoeck and Michiels

Package TypeOrder Line

Sales Order

Package
OrderLine

Option
OrderLine

0..*

0..*

0..*

0..*

0..*

Installation
OrderType

0..*

0..*

PartType

PartPrerequisite
Type

Installation
Order

PartUse

PartPrerequisite

0..*

0..*

0..*

0..*

0..*

0..*

0..*0..*

0..*

0..*

0..*

0..*

 requiring_ part

requiring_parttype

 r
eq

ui
re

d_
pa

rt

 r
eq

ui
re

d_
pa

rt
ty

pe

Product Domain
Order Domain

Configuration Domain

0..*

OptionType

1..1

1..1

1..1

1..1

PartTypeUse1..1

0..* 1..1

1..1

1..1

1..1

Commercial
Perspective

Technical
Perspective

Composition
Type

0..*

0..*

SubPT

MainPT OptionPT

Part

BundlePT

 

Fig. 5. Class diagram covering the product, the order and the configuration domain.

InstallationOrders. For example, a physical line can
be used to implement many virtual circuits, e.g. one
for Internet Access and one for a point-to-point con-
nection to another customer site. The following class
constraints on PartUse enforce that parts attached to
an installation order during configuration activities,
correspond to the configuration defined in the Type

classes:

self.InstallationOrder.InstallationOrderType
= self.PartTypeUse.InstallationOrderType

self.Part.PartType = self.PartTypeUse.PartType

Finally, the Enterprise Layer has to ensure that the
part prerequisite hierarchy imposed by object class



Domain Modeling and Co-Design of Business Rules 337

PartPrerequisiteType is accomplished during config-
uration activities. Therefore, the following class con-
straints on PartPrerequisite were included:

self.requiring part.PartType
= self.PartPrerequisiteType.requiring parttype

self.required part.PartType
= self.PartPrerequisiteType.required parttype

3.4. Positive effects on business processes support
The development of the Enterprise Layer and the re-
sulting definition of the concept of PRODUCT have had
a major impact on the product development process.
A product has become more than the definition of
hardware and how to configure it. In addition to the
definition of hardware and configuration parameters,
product developers must now fully elaborate the com-
mercial perspective and the technical perspective on a
product. By allowing two perspectives on products, the
technical world and the commercial world have been
separated. At the same time, the relationship between
both worlds has been formalised. Product developers
are now able to define the “translation” of a commercial
product into a technical view by linking installation or-
ders to packages. In this way, the structure of a package
now clearly reflects the amount of work that is required
to install a particular product. Since the introduction
of this product structure, the company has observed a
more transparent structuring of products: the existing
product definitions have been restructured in order to
better conform to the required installation steps.

The Enterprise Layer is also an important tool in
passing information from one business area to another.
The integrated approach makes information available
for all applications and prevents the re-entering of the
same data more than once. For example, information
on customer configuration is built in the TBS Meta-
Solv application during service provisioning activities.
This information must be available (at the right level of
detail) for the Customer Support application. The En-
terprise Layer and the respective co-ordination agents
enable this. In addition, the Enterprise Layer also al-
lows consolidating data that is present in different busi-
ness areas, such as ordering information and configura-
tion information for a single customer. For example, in
the Enterprise Layer configuration information is di-
rectly linked to sales information. For each part at a
customer site the corresponding installation orders can
be traced. At their turn, installation orders are always
related to an order line that gives the reason for the

installation. In this way, the intermediary of installation
orders translates order lines to activities on a customer
configuration.

4. Example 2: Managing Sequences
of Business Activities

4.1. Full processing of orders
Whereas the first example was in essence an example
of information structure, the second example illustrates
the behavioural perspective. In adopting company-
wide business rules, the Enterprise Layer can also for-
malise existing work procedures. To illustrate this, the
full process of ordering a product will be discussed (see
Fig. 6).

A sales person has a lead, visits the customer, con-
sults technical people for the optimal choice of prod-
ucts, reaches an agreement on what the customer wants
to buy, registers the sales order, prints it and has it
signed by the customer. The Sales Order is then passed
on to the Service Provisioning Department. They reg-
ister the sales order in their planning and install the
products at the customer’s site. At the end of the instal-
lation process, the customer signs for the acceptation of
the products and from then on the billing of the installed
services is started.

As can be seen from the description of the business
process, activities of the different departments must
be co-ordinated in a proper way. However, there is a
total lack of integration between the billing applica-
tion Geneva and the customer configuration applica-
tion Metasolv. Integration between Metasolv and sales
activities is also not formalised since there is no sup-
porting software for Sales. As a result, human operators
have to act as an intermediary, causing delays and inef-
ficiencies in the transaction processing. The temptation
to build ad hoc bridges between Geneva and Metasolv
was substantial and has been reduced by building a pro-
visional prototype of the Enterprise Layer in MsAccess
(see Section 5 on prototyping).

The definition of the behavioural aspects of classes
in the Enterprise Layer has allowed formalising
the co-ordination of activities between the different
departments. The Type classes in the Enterprise Layer
define the relationship between order lines, installation
orders, part uses and parts. When a customer orders a
package, a new order line is created. In terms of enter-
prise modelling, this requires the following business
events: create SO (Sales Order), modify SO, create OL



338 Snoeck and Michiels

Input
 sales order

Print
 sales order

Bill
Services

Sales

Take
 sales order

Plan
installation
of services

Install
Services

Solve
Installation
Problems

Service
Provisioning

Sign
 sales order

Review
Installation

accept

refuse

Customer Billing

Sell Product
to Customer

 

Fig. 6. Full business process for ordering products.

(Order Line), modify OL, and end OL. The customer-
sign event models the fact that a final agreement with
the customer has been reached (signature of sales order
form by the customer). At the same time this event
signals that installation activities can be started. In the
same way, when all the parts of an installation order
are configured, an event has to be generated signalling
the completion of the installation order. The Enterprise
Layer is a passive layer, and thus not capable of gener-
ating events. This is the responsibility of the user inter-
faces and of the so-called co-ordination agents build
on top of the Enterprise Layer. They ensure by gener-
ating the appropriate events that state changes of the
business classes are always reflected in the Enterprise
Model.

The Finite State Machines of the object classes
SalesOrder, OrderLine and InstallationOrder are now
discussed. Also, the responsibility of the MetaSolv
agent in generating the appropriate events will be
indicated.

4.2. Finite state machine of SalesOrder
(order domain)
A new sales order can be entered by means of a so-
called Service Order Form (SOF) in the user interface
(Fig. 7). As long as it is not signed, the sales order
stays in the state “existing”. The customer sign event
moves the sales order into the state “registered”. From
then on the sales order has the status of a contract with
the customer and it cannot be modified any more. This
means that the events create OL, mod OL and end OL
are no longer possible for this sales order.

4.3. Finite state machine of OrderLine
(order domain)
By listening to the customer sign event, the MetaSolv
agent knows when a sales order is ready for processing
for Service Provisioning. In accordance with the Type
business classes, the MetaSolv agent creates for each
order line on the sales order, the corresponding instal-
lation orders. Now, Service Provisioning has to check



Domain Modeling and Co-Design of Business Rules 339

ended
registered existing 

create SO customer_sign end SO

end SO

modify SO 
create OL 
modify OL 
end OL 

operations accept 
set_completed 
cancel 
start_billing 

Fig. 7. State machine for sales order.

whether these installation orders are configurable. If
so, an operations accept event is generated for the or-
der line, altering the order line from state “existing”
to state “in progress” (see Fig. 8). The installation or-
ders can now be configured. Meanwhile, the MetaSolv
agent tries to generate a set complete event for the order
line. However, a business rule in the Enterprise Layer
will prevent the completion of an order line if not all
the corresponding installation orders are completed:

Class OrderLine
...
set complete (...) is

Precondition
∀ Self.InstallationOrder :

InstallationOrder.state
= completed”...

do
...
end

existing
in progress

completed ended

create OL
operations accept

cancel

set_complete

end OL

cancelled end OL

modify OL
create IO complete IO

in billing
end OL

start_billing

cancel

Fig. 8. Finite state machine of orderline.

4.4. Finite state machine of InstallationOrder
(configuration domain)
By creating an installation order, it enters the state “ex-
isting”: the corresponding part uses can be created and
configured (Fig. 9). When an installation order is regis-
tered as completed in the Metasolv software, the Meta-
Solv agent sends a complete IO event to the Enterprise
Layer, thereby altering the state of the installation order
from “existing” to “completed”.

4.5. Effects on the business processes
Before the Enterprise Modelling effort, the sales pro-
cess was not supported by a BSS/OSS and it was mostly
paper-based. Initially, it was assumed that a sales or-
der would be registered in the Enterprise Layer once
agreement has been reached with the customer. The first
part of the business process is then still a paper-based
process until the paper SOF has been signed. Regis-
tered sales orders are immediately passed on to Cus-
tomer Operations. However, it frequently happens that



340 Snoeck and Michiels

existing completed ended 

create IO complete IO end IO 

create part use 
modify part use 

Fig. 9. Finite state machine for installation order.

customers change their mind. In the past, sales orders
were changed even when installation was already in
progress. This was however only possible for “minor”
changes, such as a change of line speed from 256 kb to
512 kb, because this only requires a different configura-
tion of an installed part. “Major” changes, such as those
that require the installation of other parts, were avoided
as much as possible. Whether or not the customer had
to sign a new SOF was not clear. As it turned out to be
too complex to formalise the difference between “mi-
nor” and “major” changes, the new automated business
process forbids the modification of a sales order once it
has been accepted by Customer Operations. Since not
all orders in the state “modifiable” can be accepted by
Customer Operations, but only those that are “ready”,
an additional business event type customer sign was
introduced that “freezes” a sales order. Modifications
are forbidden after the customer sign event. If a mod-
ification is required, this must be registered as a new
order that replaces the old one. The effect on the tech-
nical side will be different whether installation orders
are completed or not.

In analogy with the modelling of the structural as-
pects, also the modelling of behavioural aspects of do-
main objects requires well-defined business processes.
And also during this phase of the enterprise-modelling
project, the relationship between different business ar-
eas had to be clarified. For example, the Enterprise
Layer now allows monitoring signals from the Service
Provisioning area (such as the completion of installa-
tion orders) and using these signals to steer the com-
pletion of sales orders. At its turn, the billing agent will
use the completion of a sales order to start the billing
process. In this way, the Enterprise Layer allows for
an automated co-ordination of behavioural aspects of
different business areas.

5. Prototyping

In the Enterprise Layer, products are defined as pack-
age types with a tree-structure. In order to gain more

confidence with the dual view on products (commercial
versus technical), paper and blackboard simulations of
possible uses of the Enterprise Layer were made. Later
on, a provisional version of the Enterprise Layer was
built in MsAccess.

As the Enterprise Layer takes more than one-year
time to be specified and developed, there was a lot of
pressure to develop ad-hoc bridges between the existing
BSS/OSS. People don’t want to enter the same informa-
tion more than once. The prototype has released some
of this pressure. Sales information is now entered in the
provisional Enterprise Layer and human co-ordination
agents copy information manually to the BSS/OSS in
a well-structured way.

During the prototyping of the Enterprise Layer it
appeared that current products have only 2 levels: the
level of installation order type and one package type
level (see Fig. 4). Hence, at present the product com-
position tree offers more possibilities than required. It
was however decided to keep the tree structure to have
sufficient degrees of freedom for the definition of future
products.

Prototyping also revealed difficulties in usage of
the Enterprise Layer. Product developers need to build
some expertise in deciding what to group in a single
installation order type and what to split into several in-
stallation order types. Also the rules for deciding what
to consider as an option of a package or as a different
package have to be elaborated by experience. For exam-
ple, Internet Access can be offered at different speeds
(256 KBit, 512 KBit,...). Is speed an option of a sin-
gle product “Internet Access” or is it better to consider
Internet Access 256 as a first product and Internet Ac-
cess 512 as a second product? Prototyping has allowed
defining guidelines that help people use the Enterprise
Layer in the best possible way.

Another goal of the prototyping effort was the pre-
vention of the registration of too much badly structured
information in the existing applications. Prototyping al-
lowed people to register information in the right way
in the existing applications, what substantially reduces
conversion problems when the final Enterprise Layer
is taken into production.

6. Conclusions

The paper discussed the specification of an Enterprise
Layer for a young company starting in the telecommu-
nications sector. This specification was a non-trivial



Domain Modeling and Co-Design of Business Rules 341

project for two main reasons. On the one hand, as
Novaxess is a new company building everything from
scratch, work procedures were not always precisely
defined: in practice many different scenarios were ap-
plied in very similar situations. Since there is a strong
interplay between the domain model and the work pro-
cedures, this forced us to constantly monitor the effect
of the particular choices in the design of the Enterprise
Layer on work procedures. Defining which procedure
to use in what situation, and formalising the appropriate
business rules was a time consuming task.

On the other hand, the installed BSS/OSS are tai-
lored to their specific business area. Hence, they have
very specific and different views on the domain, both
from a structural and a behavioural perspective. Each
software package had its own particular definitions of
concepts and ways of working. Defining a generic view
that can accommodate for the specific needs of each
business area was a major challenge.

The project has lead to some useful lessons in do-
main modelling. For a full coverage description of the
business at least three dimensions can be identified: the
intentional dimension describing goals and strategy, the
dimension of the domain model modelling all relevant
domain concepts and the organisational dimension
treating the different ways of working (Nellborn, 1999;
Nilsson, 1999). The method that was used (MERODE)
is a domain modelling method with no support for
business process modelling. But the same remark
holds for other well-known object-oriented analysis
methods (Booch, Rumbaugh, and Jacobson, 1999;
Coleman et al., 1994; Cook and Daniels, 1994;
D’Souza and Wills, 1999)5 . Although Use cases
and Activity Diagrams are sometimes advocated as
more process oriented techniques, they are not meant
nor adequate for business process modelling (Snoeck,
Poelmans, and Dedene, 2000).

A positive aspect of the method is the recognition
of business events as independent concepts (which is
a particular feature of MERODE). This facilitates the
link between the business process model and the En-
terprise Model. A future project will define business
processes in terms of sequences of business events
and develop monitoring facilities that allow follow-
ing up the progress of a given process. A classical
approach where behaviour is modelled as methods of
domain object classes and interaction is modelled by
means of message passing would have made such a link
more difficult. In addition it would also have made a
clear separation between business process aspects and

domain model aspects more difficult (Lindström,
1999).

Domain modelling is definitely an iterative process.
The first approach was an area-by-area analysis, but
soon it became clear that the co-ordination of these ar-
eas has a substantial influence on the overall domain
structure. As a result, an enterprise-wide approach with
iterative refinements is to be advocated as the best ap-
proach. An in-depth study of only one business area,
followed by the in-depth study of the next-area would
lead over and over to major changes of the previously
obtained results.

The definition of the behaviour of domain object
types is strongly related to the business process as-
pects. Designing the behaviour of domain classes can-
not be done in isolation: co-design or at least analysis
of the low-level business processes is a necessity. One
of the difficulties with this is that it is not always clear
when sequence constraints on business events result
from essential business rules and when they are (only)
the result of a particular way of working. A well-done
separation of business process aspects versus domain
aspects is however essential for the construction of flex-
ible, adaptable systems. More research is required to
find modelling guidelines to assist analysts in achieving
the “perfect” separation of concerns.

A final remark is that there are left a number of
degrees of freedom in the Enterprise Model. Business
rules that would pose too strong restrictions on busi-
ness processes were not included in the model, and
some object classes were introduced that are currently
redundant but could be useful in the future. The model
developed so far is also extensible, meaning that next
versions will be evolutions and not complete replace-
ments of the current model.

Enterprise Modelling has helped a lot in the discov-
ery of business rules. These experiences confirm other
people’s findings that the gap between the perceived
business realities versus what can be represented in a
computerised way is usually wider and deeper than ini-
tially thought. Business modelling is a way to bridge
that gap and at the same time it helps constructing a
better understanding of what the business really is like
(Lindström, 1999). In addition, the automated world
has more possibilities than a manual world. As a con-
sequence it is not sufficient to automate what people
would do manually. Work procedures that are much too
cumbersome for people are perfectly feasible in an au-
tomated world (computers never complain). Moreover,
Enterprise Modelling is a way to achieve good solutions



342 Snoeck and Michiels

that go beyond the day-to-day problems. The elabora-
tion of business rules raises questions that would not
be considered if the focus was only on solving today’s
problems. Finally, these experiences also confirm that
the use of an object-oriented modelling approach is an
important factor for the success of the project (Galfione
et al., 2000): the analysis of the behavioural aspects
of domain classes raised a lot of questions that would
have remained unanswered in case of a purely structural
approach.

Acknowledgment

The work described in this paper is the result from a
project executed with the company NOVAXESS based
in Amsterdam, the Netherlands.

Notes

1. MetaSolv©R. Available at http://www.MetaSolv.com (MetaSolv©R

is a registered trademark, www.metasolv.com).
2. Geneva. Available at http://www.genevatechnology.com/.
3. Clarify. Available at http://www.nortelnetworks.com/products/

04/cefo/.
4. Johnson Ralph. Dynamic Object Model, ObjectiveView, Issue 5,

Ratio, available at www.ratio.co.uk.
5. Rational Software Corporation. The Unified Modelling Lan-

guage. Available at http://www.rational.com/.

References

Booch G, Rumbaugh J, Jacobson I. The Unified Modeling Language
User Guide. Reading, MA: Addison Wesley, 1999.

Coleman D, et al. Object-oriented development: The FUSION
method, Prentice Hall, 1994.

Cook S, Daniels J. Designing Object Systems: Object-Oriented Mod-
eling with Syntropy, New York: Prentice Hall, 1994.

D’Souza DF, Wills AC. Objects, Components and Frameworks with
UML, The Catalysis Approach. Reading, MA: Addison-Wesley,
1999:785.

Galfione P, Galdiolo A, Valerio A, Cardino G. Exploiting enterprise
knowledge through domain analysis and frameworks: An experi-
mental work. Proceedings of the Eleventh International Workshop
on Database and Expert Systems Application, DomE 2000, 4–8
September, Greenwich, London, UK, IEEE Computer Societey,
2000:813–822.

Lindström C. Lessons learned from applying business modelling: Ex-
ploring opportunities and avoiding pitfalls. In: Nilsson AG, Tolis

C, Nellborn C, eds., Perspectives on Business Modelling, Under-
standing and Changing Organisations, Berlin: Springer-Verlag,
1999.

Nellborn C. Business and systems development: Opportunities for
an integrated way of working. In: Nilsson AG, Tolis C, Nellborn
C, eds., Perspectives on Business Modelling, Understanding and
Changing Organisations, Berlin: Springer-Verlag, 1999.

Nilsson AG. The business developer’s toolbox: Chains and alliances
between established methods. In: Nilsson AG, Tolis C, Nellborn
C, eds., Perspectives on Business Modelling, Understanding and
Changing Organisations, Berlin: Springer-Verlag, 1999.

Snoeck M, Dedene G. Existence Dependency: The key to seman-
tic integrity between structural and behavioral aspects of object
types. IEEE Transactions on Software Engineering 1998;24:233–
251.

Snoeck M, Dedene G, Verhelst M, Depuydt AM. Object-Oriented
Enterprise Modeling with MERODE. Leuven University Press,
1999.

Snoeck M, Poelmans S, Dedene G. A layered software specifi-
cation architecture. In: Laendler AHF, Liddle SW, Storey VC,
eds., Conceptual Modeling-ER2000, 19th International Confer-
ence on Conceptual Modeling, Salt Lake City, UTAH, USA, Lec-
ture Notes In Computer Science, Vol. 1920, Berlin: Springer-
Verlag, 2000:454–469.

Monique Snoeck obtained her Ph.D. in May 1995
from Computer Science Department of the Katholieke
Universiteit Leuven with a thesis that lays the for-
mal foundations of MERODE. Since then she has
done further research in the area of formal meth-
ods for object-oriented conceptual modelling. She
now is Associate Professor with the Management
Information Systems Group of the Department of Ap-
plied Economic Sciences at the Katholieke Universiteit
Leuven in Belgium. In addition, she is invited lecturer
at the Université Catholique de Louvain-la-Neuve since
1997.

She is and has been involved in several industrial
conceptual modeling projects. Her research interest are
object oriented modelling, software architecture and
gender aspects of ICT.

Cindy Michiels is a Ph.D. student at the Katholieke Uni-
versiteit Leuven (KUL), Belgium. She holds a bache-
lor degree in Applied Economics and a master degree
in Management Informatics (2000). Since 2001 she
is working at the Management Information Systems
Group of the department of Applied Economics of the
KUL as a doctoral researcher. Her research interests
are related to domain modelling, software analysis and
design, and automatic code generation.


