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Transition probabilities for diffusion equations 
by means of path integrals 

Marc Goovaerts1,2, Ann De Schepper3, Marc Decampsl 

Abstract 

In this paper, we investigate the transition probabilities for diffusion processes. In a first 
part, we show how transition probabilities for rather general diffusion processes can always 
be expressed by means of a path integral. For several classical models, an exact calculation 
is possible, leading to analytical expressions for the transition probabilities and for the 
maximum probability paths. A second part consists of the derivation of an analytical 
approximation for the transition probability, which is useful in case the path integral is too 
complex to be calculated. The approximation we present, is based on a convex combination 
of a new analytical upper and lower bound for the transition probabilities. The fact that 
the approximation is analytical has some important advantages, e.g. for the investigation 
of Asian options. Finally, we demonstrate the accuracy of the approximation by means of 
a few graphical illustrations. 

Keywords: diffusion processes, transition probability, path integral, comonotonicity. 

1 Introduction 

Dynamic models, and more specifically continuous-time models, are widely used and 
studied nowadays in pricing and investment theories. Most of the existing one-factor 
models refer to the general diffusion equations, which are stochastic differential 
equations in the form 

dY(t) = tt(Y(t), t) dt + CJ(Y(t), t) dW(t) . 

1 University of Leuven, Belgium 
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3 University of Antwerp, Belgium 

1 

(1) 



This equation defines a stochastic process Y = {Y(s), s E [0, t]}, reflecting e.g. 
the price process in time. In this equation, W = {W(s), s E [0, t]} is a standard 
Brownian motion, p(y, t) is the drift of the process Y, and (J2(y, t) is the diffusion 
of Y. Both /-l and (J can contain one or more parameters. 

In this contribution, we will assume that the drift /-l and the diffusion (J2 do not 
depend explicitly on time t. Thus, we consider stochastic differential equations of 
the form 

dY(t) = A(Y(t)) dt + B(Y(t)) dW(t) , (2) 

where as in the general diffusion model, the functions A(y) and B(y) can contain 
parameters. Fortunately, this time-independence is only a minor restriction, since 
most of the classical models e.g. for interest rates are members of this class of 
processes (see also section 8). 

One of the questions in this context is to find a closed-form expression for the 
probability of the process Y reaching the value Yt at time t given the value Ys at a 
former point in time s :::; t. We will use the notation 

d 
p(to,Yo;te,Ye) = -d Prob[Y(te):::; YeIY(ta) = Yo] 

Ye 
for the transition density of the process Y. The knowledge of this density is im
portant for instance in the framework of derivative pricing, where the stochastic 
process Y then reflects the price process. 
Contrary to the rather simple form of the diffusion equation (2), such a closed-form 
is only known for a few cases, e.g. the Wiener model, the geometric Wiener model, 
the Vasicek model and the Cox-Ingersol-Ross model. 

In a paper of 1999 (see [1]), Ait-Sahalia presented a method leading to a closed
form approximation for the exact transition density. In this case the advantages 
for derivative pricing remain, be it that the accuracy diminishes. The method 
Ait-Sahalia proposes, converges for !1t = te - to going to zero, but may lead to 
bad approximations when the time horizon increases. For financial applications, 
the author says that !1t is never bigger than three or six months, so this will not 
cause any problems. However, in actuarial applications, we may need a much larger 
horizon. 

In the present paper, we want to give an answer towards the solution of the problems 
sketched above. We show how for general types of diffusion processes, whether the 
time interval is small or big, the transition density p( to, Yo; te, Ye) can be expressed 
by means of a Feynman path integral. This is a powerful concept borrowed from 
quantum mechanics used to describe the amplitude to move between two points if 
each possible path is given a certain probability. 

Making use of specific properties and calculation techniques on path integrals, we 
show that an exact calculation is possible for the four models mentioned earlier, but 
also for some more types of processes. 
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Starting from the path integral expression for the transition density, we also show 
how it is possible to find in any case a closed-form approximation for the transition 
density, with very high accuracy. 

The paper is organized as follows. We start with a brief description of the concepts 
and notations about stochastic differential equations and Feynman path integrals 
in section 2. Section 3 contains the first important result, expressing the transition 
densities for general diffusion processes by means of a path integral. In section 4, 
we show how the modal path or maximum probability path can be determined. 
Section 5 is meant to prove how the famous Ito lemma can be translated into the 
path integral formalism. Afterwards in section 6, we mention the limiting case of 
long term probabilities. Section 7 -together with section 3 of course- constitutes 
the "body" of this paper. Here we show, based on the path integral expression, 
how the transition density for general diffusion processes can be approximated with 
a closed-form formula. In section 8 we present examples of the methodology, for 
common models in the financial theory. We give an expression for the transition 
probability in each case, together with an explicit calculation if possible. Section 9 
demonstrates the accuracy of our new approximation by means of a few graphical 
illustrations. 
The proofs of the theorems and some explicit computational results about path 
integrals are brought together in the appendix. 

2 Definitions 

2.1 Stochastic differential equations 
In order to explain the similarities and dissimilarities between Ito integrals and 
path integrals, we briefly introduce the concept of a general stochastic differential 
equation. 

A O-stochastic differential equation is defined as 

dY(t) = a(Y(t), t)dt + b(Y(t), t)o dW(t) (3) 

with solution 

Y(t) = Y(O) + l a(Y(s),s)ds + fat b(Y(s),s)o dW(s) , (4) 

where W(t) is a standard Brownian motion. 
The first integral in (4) is a Riemann-integral, the second one is a O-stochastic 
integral. 
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If X = {X (s), s E [0, tj} is a process adapted to the natural Brownian filtration, the 
{I-stochastic integral 

(5) 

is defined by 

(6) 

for any partition 
o = to < tl < ... < tn-l < tn = t (7) 

and with tf equal to 
(8) 

We want to draw attention to three special choices of {I. 

• When {I is equal to zero, the values of X are chosen at the left points, and the 
{I-stochastic integral coincides with an Ito stochastic integral. We will use the 
notation 

(9) 

when we use this type of integration. The most important advantage of this 
choice is the fact that Ito stochastic integrals satisfy the martingale property. 
A disadvantage however is that the chain rule of classical calculus is not valid . 

• When {I is equal to 1/2, the values of X are chosen at the mid points, and the 
{I-stochastic integral reduces to a Stratonovich stochastic integral. We will use 
the notation 

(10) 

(without index) when we use this type of integration. The stochastic integral 
no longer satisfies the martingale property, but now the classical chain rule is 
formally satisfied, or 

lot !'(W(S))O=1/2 dW(s) = j(W(t)) - j(W(O)). (11) 

Since stochastic integrals with () = 1/2 behave like Riemann integrals (to a 
certain extent), the omittance of an index seems acceptable. 

• The situation with {I equal to 1 corresponds to a choice for the right points. 
We will denote this kind of integration as 

(12) 
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The following relation between general (i-stochastic integrals and Stratonovich stochas
tic integrals will be very helpful in the development of our methodology : 

rt rt 1 rt 
Jo f(W(s)o) dW(s) = Jo f(W(s)) dW(s) + ({i - 2) Jo f'(W(s)) ds. (13) 

A proof can be found in an easy way using Taylor expansions. 

2.2 Path Integrals 

Feynman path integrals originate from quantum mechanics, where they are used to 
describe the amplitude to go from one point to another point, where each possible 
trajectory is given a certain probability. When using imaginary times, a Feynman 
path integral provides a very efficient tool in the derivation of transition probabili
ties. 

A Feynman path integral 

K(t . t ) _l(te ,xe ) D ( ) - Itte L(±(s),x(s),s) ds o,Xo,e,Xe - xs e ° 
(to,xo) 

(14) 

where L (:i; ( s ) , x ( s ), s) is called the Lagrangian, is defined by 

K(to, Xo; te, xe) = limn-+co J2~E:n ! dXl f dX2 .. · ! dXn-l 

_ ~ L (Xi+! - Xi Xi + Xi+! ti + ti+!) 
E:~ E:' 2 ' 2 

e ,=0 (15) 

for a partition 
(16) 

where E: = (te - to)/n and ti+! = ti + E: and where we used the notation Xi = X(ti). 

It is important to note that in fact this definition makes use of a midpoint choice 
as it was the case for the partition in a Stratonovich stochastic integral. As a 
consequence, one has to be very careful when comparing or mixing Ito calculus and 
Feynman path integrals. 

As an example, we consider a Brownian motion, for which the Lagrangian is equal 
to L (:i;, X, s) = ±22. In that case the multiple integration can be worked out in a 
straightforward way, resulting in 
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= limn--+oo ~ J dXl··· J dXn-l 

(Xe - xo)2 
1 e 2(te - to) . 

y'27r(te - to) 

n-l ( )2 _~ L Xi+! -Xi 

e 2 i=O C 

(17) 

This well known result can be read as the transition probability to go from the 
starting point Xo at time to to the final point Xe at time te when the underlying 
process is a standard Brownian motion. 

A handsome result about Feynman path integrals can be found in the so called 
Kolmogorov property. It shows how to write a path integral as a combination of 
successive events: 

1+00 

K(to, Xo; te, xe) = -00 dxs K(to, Xo; ts, xs) . K(ts, Xs; te, xe), (18) 

where ts is any time between to and teo 

Proofs, applications and more details about this powerful concept can be found e.g. 
in [3, 6, 5]. Important computational results are summarized in appendix A. 

3 Transition Probabilities 
In this section, we show how the transition probability for stochastic processes 
defined by means of a stochastic differential equation, can be expressed by means 
of a Feynman path integral. We start with a diffusion equation with unit diffusion, 
and we generalize the result for equations where the diffusion is a function of the 
stochastic process. Proofs are provided in appendix B. 

Theorem 3.1 Consider a (}-stochastic differential equation 

dY(t) = A(Y(t)) dt + dW(t) (19) 

where W(t) is a standard Brownian motion. 
The transition probability for the stochastic process Y = {Y (s), s E [0, t]} can be 
written by means of a path integral as 

d 
p(O, Yo; t, Yt) = -d Prob [Y(t) ~ YtIY(O) = Yo] (20) 

Yt 

l (t,yt) -~ l iids - ~ rt (A(y)2 + ~A) ds + rt A(y)dy 
= Dy(s) e 0 10 y 10 . 

(O,yo) 

This result is independent of the choice of {} in the definition of the stochastic inte
gral. 
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Remark 1. If the domain of the stochastic process Y is (0, +00) instead of 
(-00,+00), the differential part Dy(s) has to be replaced by D+y(s). 

Remark 2. The last integral in the exponent of (20) behaves as a Stratonovich 
integral. A transformation into an Ito integral as mentioned in (13), enables us to 
write the short time transition probability as 

1 
= e 

V27rb..t 

1 
= e 

V27rb..t 

(Yt::.. - Yo - b..tA(YO))2 
2b..t (21) 

which coincides with the classical expression for measures associated with diffusion 
processes with unit volatility. 

Remark 3. The constitution of the path integral (20) nicely illustrates Girsanov's 
theorem (see e.g. [12]). 

Indeed, the process 

M(t) = exp {t A(W(s)L)dW(s) - ~ lot A2(W(S))dS} (22) 

is the Radon-Nikodym derivative of the measure in (20) to the Wiener measure. 
As a consequence, the diffusion process defined by (19) is a Brownian motion with 
respect to the measure defined by the transition probability in (20). 

Note that in case the stochastic process Y has domain (0, +(0) instead of (-00, +(0), 
the process M(t) of (22) is the Radon-Nikodym like derivative with respect to an 
absorbed Brownian motion. In the latter case, it could be a problem that both 
measures are not equivalent, since the probability of staying in 0 is different from 
zero. 

Proposition 3.1 The transition probability in (20) also satisfies the forward Fokker 
Planck equation 

ap 1 a2p a 
at = "2 ayt - aYt (A(Yt) . p), (23) 

where p is used as a short hand notation for the probability p(O, Yo; t, Yt). 
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Theorem 3.2 Consider a O-stochastic differential equation 

dY(t) = A(Y(t)) dt + B(Y(t))o dW(t) 

where W(t) is a standard Brownian motion. 
A change of variables 

rt dY(s) 
X(t) = io B(Y(S))O=1/2 = 1j;(Y(t)) 

results in the new stochastic differential equation 

( A(1j;-l(X(t))) I aB -1 ) 
dX(t) = B(1j;-l(X(t))) + (0 - 2') ay (1j; (X(t))) dt + dW(t). 

(24) 

(25) 

(26) 

This result is dependent on the choice of 0 in the definition of the stochastic integral. 

Theorem 3.3 Consider an Ito stochastic differential equation 

dY(t) = A(Y(t)) dt + B(Y(t)L) dW(t) (27) 

where W(t) is a standard Brownian motion, and where 

Jy dz 
1j;(y) = B(z) (28) 

defines a non-decreasing function. 
The transition probability for the stochastic process Y = {Y (s), s E [0, t]} can be 
written by means of a path integral as 

d 
p(O, Yo; t, Yt) = -d Prob [Y(t) ::; Yt!Y(O) = yo] 

Yt Ilt '2d I l(t,,p(Yt)) --2 y s 
= -- . Dy(s) e 0 

B(Yt) (O,,p(Yo)) 

I rt ( aT) rt 
. e -2' io T(y)2 + ay ds + io T(y)dy 

where the function T is defined by 
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Remark 1. If the domain of the stochastic process 7jJ(Y) = {7jJ(Y(s», s E [0, t]} 
is (0,+00) instead of (-00,+00), the differential part Dy(s) as before has to be 
replaced by D+y(s). 

Remark 2. For the stochastic process of theorem 3.3, the short time transition 
probability is equal to 

p(O, Yo; ilt, Y2,.) 

1 1 
=-- e 

B(y6.) "hrrilt 

(7jJ(y6.) -7jJ(yo) - ilt T(7jJ(YO)))2 
2ilt 

Since we are dealing with infinitesimal time periods, we can write 

(31) 

7jJ(y6.) -7jJ(yo) = (y6. - Yo) . 7jJ'(yo) = (Y6.. - Yo) . B(~o) , (32) 

and with an explicitation of T, we obtain the classical expression 

(y6. - Yo - iltA(yo) )2 
2f:l.tB2 (Yo) (33) 

Proposition 3.2 The transition probability in (29) now satisfies the forward Fokker 
Planck equation 

ap 102 a 
at = "2 ayt (B(Yt) . p) - aYt (A(Yt) . p) , (34) 

where p is used as a short hand notation for the probability p(O,YO;t,Yt). 

For () = 0, the previous results were already derived by the same authors earlier 
(see [4]) ; however, in that contribution the path integrals were found in a completely 
different way, without making use of Ito calculus. The result of theorem 3.2 for () = ° 
is also mentioned in [1]. 

4 Maximal probability path 

As mentioned before, a Feynman path integral K(to, Xo; te, xe) as in (14) describes 
the amplitude to go from the point Xo at time to to the point Xe at time te, where 
each trajectory is given a certain probability according to the stochastic process 
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related to the Lagrangian. In fact, in the whole set of trajectories connecting the 
two points, only paths in the vicinity of the classical or modal path provide im
portant contributions to K(to, Xo; te, xe). Indeed, for other paths, there are always 
neighbouring trajectories that cancel out their contribution. 

This modal path, or maximum probability path, can be determined (see e.g. [6)) as 
the solution of the ordinary second order differential equation 

d aL aL 
dt ax ax (35) 

subject to the boundary conditions 

(36) 

As an example, if we consider the Brownian motion, the maximum probability path 
is given by 

(37) 

Looking for the modal path for stochastic processes defined by stochastic differential 
equations in a form as in section 3, the following nice result appears. 

Theorem 4.1 Consider a stochastic process Y = {Y(s), s E [0, t]} defined by a 
diffusion equation with unit diffusion (1 g). The maximal probability path Ymod(S) 
for this process when starting at point Yo at time 0 and arriving at Yt at time t, can 
be determined implicitly by 

l Ymod (S) dy 
-r======~========-±s 

Yo V A(y)2 + ~: + C(Yo, Yt) - , 
(38) 

where C(Yo, Yt) is fixed by the condition Ymod(t) = Yt. The sign in the right hand 
side is equal to the sign of the difference Ymod(S) - Yo. 

Theorem 4.2 Consider a stochastic process Y = {Y(s), S E [0, t]} defined by a 
diffusion equation with unit diffusion (27). The maximal probability path Ymod(S) 
for this process when starting at point Yo at time 0 and arriving at Yt at time t, can 
be determined implicitly by 

l 1/J(Ymod(s)) dx 
---,====:::::==== - ±s (39) 

1/J(yo) VT(x)2 + ~; + C(YO, Yt) - , 

where 'ljJ is defined in (28), T is defined in (30), and where C(Yo, Yt) is fixed by the 
condition Ymod(t) = Yt. The sign in the right hand side is equal to the sign of the 
difference 'ljJ(Ymod(S)) - 'ljJ(yo). 
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5 The Ito lemma in the path integral formalism 

Consider again a stochastic process Y = {Y (s), s E [0, t]} determined by the stochas
tic differential equation 

dY(t) = A(Y(t)) dt + dW(t), (40) 

where W(t) is a standard Brownian motion. From theorem 3.1, we know that the 
transition probability can be written by means of the path integral 

py(O, Yo; t, Yt) 

1 lot 1 lot ( 8A) lot l (t,Ytl -"2 iids - - A(y)2 +!:l ds + A(y)dy 
= Dy(s) e 0 2 0 uy 0 . 

(O,Yo) 
(41) 

Following Ito's lemma, the stochastic differential equation for the process X = 
{X(s),s E [O,t]} when 

Y(t) = !(X(t)), (42) 

is given by 

dX(t) 

(43) 

or in the other direction 

1 f"(X(t)L) , 
dY(t) = "2 f'(X(t)L)2 dt +! (X(t)L) dX(t). (44) 

The question that arises is : how can this transformation be extended into the path 
integral (41) ? Note that we have to take into account the difficulty that, contrary 
to the Ito lemma, the integrations in the path integral are of the Stratonovich type. 

Making use of a stochastic time change in the path integral (41), one can prove the 
following result (see appendix B) : 

Theorem 5.1 Consider the stochastic differential equation 

dY(t) = A(Y(t)) dt + dW(t) (45) 

where W(t) is a standard Brownian motion, and a transformation 

Y(t) = !(X(t)), (46) 

for which the inverse function is well-defined. 
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Starting from the path integral expression for the transition probability for the process 
Y = {Y (s), s E [0, tn, the transition probability for the process X = {X (s), s E 
[0, tn can be found as 

px(O,XO = r1(Yo);t,Xt = r1(Yt)) 
1 

/
+00 "(3 roo 

" -00 d{3 eZ t 10 dt* 

1 t< t* 

j (t*,r 1(Yt)) --2 r j;2da - ifJ r j'(x)2da 
" Dx(a) e 10 10 

(O,j-l(yO)) 

" e -~ fat< (A[J(x)]2 + ~~[f(X)]) f'(x)2da 

rt * , 1 r* [f"(X)2 f"'(X)] 
" e + 10 A[J(x)lf (x)dx - "810 3 f'(x)2 - 2 f'(x) da 

As an example, consider the transformation 

Y(t) = f(X(t)) = g-l(X(t)) 

where the function 9 is chosen in such a way that 

-21Y A(z) dz 
g'(y) = e Yo " 

Following Ito's lemma, for this choice we know that 

dX(t) = g'(Y(t)L) dW(t) = f'(;(t)d dW(t) , 

or 
dW(t) = f'(X(t)d dX(t) " 

(47) 

(48) 

(49) 

(50) 

(51) 

If we apply theorem 5.1, due to (49) which enables us to simplify and eliminate the 
integrations over derivatives of f, a straightforward calculation leads to the result 

(52) 

which nicely fits with (51)" 
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6 Long term probabilities 

An interesting limiting case is the long term probability or stationary probability 
for a stochastic process defined by means of a stochastic differential equation (19) 
or (27). 

For the transition probability 

d 
p(O, Yo; t, Yt) = -d Prob [Y(t) ~ YtIY(O) = yo] 

Yt 

we will denote the long term probability as 

p(y) = lim p(O, Yo; t, y), 
t-+oo 

which is independent of the starting point. 

(53) 

(54) 

Theorem 6.1 Consider a stochastic process Y = {Y(s), s E [0, t]} defined by a 
diffusion equation with unit diffusion (19). The long term probability for the process 
Y can be calculated as 

l y 2 A(z)dz 
p(y) = C(Yo) e Yo , (55) 

where the constant C(yo) is determined by the condition of a total mass equal to 
one. 

Theorem 6.2 Consider a stochastic process Y = {Y(s), s E [0, t]} defined by a 
general Ito diffusion equation (27). The long term probability for the process Y can 
be calculated as 

1/Jeij) 
C( ) 2 r T(z)dz 

-(-) = ~ J1jJ(yo) 
p Y B(y) e , (56) 

where 'ljJ is defined in (28), T is defined in (30), and where the constant C(Yo) zs 
determined by the condition of a total mass equal to one. 

Both results immediately follow from the forward Fokker Planck equations when 
h · rtP.0 c oosmg at = . 
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7 Calculation of the Transition Probabilities 

7.1 Exact results for path integrals 

In the previous sections, we showed how to find analytical expressions for the transi
tion probability of diffusion processes by means of path integrals. For the computa
tion of these functional integrations, we can rely on some methods and calculations 
from quantum mechanics. In appendix A we summarize a few important and useful 
exact computational results for common classes of path integrals, some of which 
were derived in the framework of earlier research on annuities with stochastic inter
est rates. 

However, when the Lagrangian appearing in the path integral becomes too compli
cated, we will have to use approximations instead of exact results. In the following 
subsections, we will show how to find an approximation based on properties that 
hold for general path integrals. 

In order to make things clear, we will use the notation K(to,xo;te,xe) for Wiener 
integrals 

l (te'Xe) _~ (te x(s)2 ds 
= Dx(s) e lto 

(to,xo) 

(xe - xo)2 
2(te - to) 

(57) 

and the notation J(to, Xo; te, xe) for path integrals which are related but more general 
than Wiener integrals : 

(58) 

As a consequence, the transition probabilities for stochastic processes as derived in 
section 3 can be expressed as 

(59) 

for adequate choices of the function V. 

Furthermore, we will make use of the expected value over Wiener paths with known 
starting point and known final point, which can be written as 

Ew [e -Jt~ V[X(s)] dS] 

14 

J(to, Xo; te, xe) 
K(to, Xo; te, xe) . 

(60) 



If we are dealing with the absorbed Wiener process due to the restriction of the 
diffusion process to the domain (0, +00), in each of the equations (57) and (58), the 
differential part Dx(s) has to be replaced by D+x(s). More specifically, equation 
(57) has to be changed into (see [17]) 

= 

(61) 

(Xe + xo)2 
2(te - to) 

Note that the expectation in (60) can also easily be extended for path integrals 
different from Wiener path integrals. 

Finally, with the same notations, we will write the distribution for Wiener paths 
with fixed starting and final points as 

(62) 

and 
f( ) -.!iF( )_K(to,xo;s,x).K(s,x;te,Xe) 
sX- sX- . 

dx K(to, Xo; te, xe) 
(63) 

A straightforward calculation leads to 

Fs(x) = ell ( (te - to) (x _ (te - s)xo + (s - to)Xe)) , 
(s - to)(te - s) te - to 

(64) 

where ell(x) denotes the standard normal cumulative probability, or 

ell(x) = _1_ /x e- t2 / 2dt. 
.,f2if -00 

(65) 

7.2 Approximation of path integrals 

In case the path integral can not be calculated in an exact way with as closed form, 
as mentioned before the only alternative consists of an approximation. Making use 
of techniques from quantum mechanics on the one hand and of the properties of 
convex ordered risks on the other hand, we can find a lower and upper bound for the 
path integrals. A combination of both expressions together with a correct scaling 
will enable us to find an approximation that seems to be very accurate. 

The most important advantage of our methodology has to be found in the fact that 
it results in an analytical expression for the approximation, whereas most techniques 
that are presented in the literature lead to exclusively numerical approximations. 
Consequently, this new methodology is very interesting in the framework of the 
pricing of Asian options. 
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7.2.1 Upperbound 

The method we propose to find accurate upperbounds for the transition probabili
ties, makes use of convex order. We briefly recall the most important concepts and 
necessary results; we refer to [9, 10] for proofs and more details. 

A variable A is said to be smaller than B in convex ordering, 

A:::;cx B, (66) 

if for each convex function u : lR --+ lR : x I-t u(x) the expected values (provided 
they exist) are ordered as 

E[u(A)] :::; E[u(B)]. 

As a consequence, E[A] = E[B] and 

E[(A - k)+] :::; E[(B - k)+] 

with (x)+ = max(O, x). 

(67) 

for all k, (68) 

If an expression is known for the stop-loss premium E[(B - k)+], the distribution 
of the variable B can be found as 

d 
Prob[B:::; k] = 1 + dkE[(B - k)+]. (69) 

The notion of convex ordering can be extended from two single variables to two sums 
of variables, discrete or continuous. The results are summarized in the following 
two propositions (for a proof see [9, 10]). For the distributions, we make use of the 
notation 

Fx(x) = Prob[X:::; x] ; (70) 

the inverse distributions are defined in the classical way as 

Fx1(P) = inf{x E lR: Fx(x) ~ pl. (71) 

Proposition 7.1 Consider a sum of functions of random variables 

(72) 

and for U an arbitrary random variable that is uniformly distributed on [0, 1], define 
the related stochastic quantity 

(73) 

Then 
(74) 
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Remark. The corresponding terms in the sums A and B are all mutually identically 
distributed, e.g. 

(75) 

Proposition 7.2 Consider a functional integration 

l t e 

A = g(X(s))ds , 
to 

(76) 

and for U an arbitrary random variable that is uniformly distributed on [0, 1], define 
the related stochastic quantity 

(77) 

Then 
A ::::;cx B. (78) 

An application of the method of convex upperbounds to the transition probabilities 
of diffusion processes, brings us to the following result: 

Theorem 7.1 For a path integral with a structure as mentioned in equation (58), 
an upperbound can be found as 

where 

I UPP( ) K( ) E [- fe F::;lx( »(U) dT] to, Xo; te, Xe = to, Xo; t e, Xe . U e to T , 

with U uniformly distributed on [0, 1]. 
The expectation can also be written as 

with 
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7.2.2 Lowerbound 

In order to improve the upperbound, we also need to derive a lowerbound for the 
transition probability of diffusion processes. The present result mainly originates 
from an application of the well-known inequality of Jensen. 

Theorem 7.2 For a path integral with a structure as mentioned in equation (58), 
a lower bound can be found as 

(83) 

where 

with ts any point in time between to and te . 

Remark. The notation Ew [ ... ] means an expectation over Wiener paths (or ab
sorbed Wiener paths if the domain of the stochastic process is (0, +(0)) between 
the two boundary time points. 

7.2.3 Approximation 

Consider a stochastic process Y = {Y(s), s E [0, tn for which the transition proba
bility can be expressed as in (59). 

From theorems 7.1 and 7.2, we know that 

(85) 

and 
(86) 

for specific choices of the function V. 

The problem with both bounds is the fact that we are no longer dealing with density 
functions. Therefore, we suggest to use of a convex combination 

p(to, Xo; te, xe) = C(to, Xo; te, Xe) . {Z(to, Xo; te)IloW (to, Xo; te, Xe) 

+ (1 - Z(to, Xo; te)) [UPP(to, Xo; te, xe)} (87) 

resulting in an analytical approximation (which is a density) for the transition prob
ability. 
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The factor z(to,xo;te) can be determined by the condition of a total mass equal to 
one, or 

z(to,xo;te) (88) 

r~: G(to, Xo; te, xe) . IUPP(to, Xo; te, xe)dxe 1 

There is an extra advantage when working with this convex combination, due to 
the factor z(to, Xo; te). Indeed, in the situation where one of the bounds turns out 
to be not that accurate, the contribution of that bound will have a less important 
impact on the approximation. Either of the bounds has an influence on the final 
approximation, but the closer the bound to the exact transition density, the larger 
the impact of that bound. 

8 Examples 

In the following examples, we show how the transition probability for some common 
classes of diffusion processes can be expressed by means of a Feynman path integral, 
as explained in the previous section. If possible, we give the exact computational re
sult for the path integral. We also mention expressions for the long term probability 
and for the maximal probability path between two fixed points. 

8.1 Wiener Model 

a. Model: 
The Wiener model is defined by the SDE 

dY(t) = p,dt + O"dW(t) ; 

Y is distributed on (-00, +(0). 

b. Transformation to unit diffusion : 
For X(t) = ~Y(t), the SDE transforms into 

dX(t) = ~dt + dW(t) ; 
0" 

X is distributed on (-00, +(0). 

c. Maximal probability path : 
The classical trajectory is given by 
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d. Long term probability : 

When t tends to infinity, we get the instable probability density 

e. Transition probability : 

2fL_ 

15(Y) = C . e 0'2 Y. (92) 

In a first step, the transition probability can be expressed by means of a path 
integral as 

fL2t fL 1 1 lot ·2d 1 -- + -(Yt - Yo) l(t,;;Yt) -- x s 
p(O,Yo;t,Yt) = - e 20'2 (J"2 Dx(s) e 2 0 • (93) 

(J" (O,~Yo) 

This path integral can be calculated exactly, making use of the result for the 
Wiener integral in (149). This results in 

8.2 Geometric Wiener Model 

a. Model: 

The Geometric Wiener model is defined by the SDE 

dY(t) = (fL + ~2) Y(t)dt + O'Y(t)dW(t) ; 

Y is distributed on (0,+00). 

b. Transformation to unit diffusion : 

For X(t) = ~ In Y(t), the SDE transforms into 

dX(t) = !!:.dt + dW(t) ; 
0' 

X is distributed on (-00, +00). 

c. Maximal probability path : 

The classical trajectory is given by 

(t - s)lt sit 
Ymod(S!O, Yo; t, Yt) = Yo Yt· 
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d. Long term probability: 

When t tends to infinity, we get the instable probability density 

(98) 

e. Transition probability : 

In a first step, the transition probability can be expressed by means of a path 
integral as 

ph 1 1 lot . 2 1 Yt -!-t -- (t,;;lnyt) -- X ds 
p(O, Yo; t, Yt) = - (-) . e 20-2 r Dx(s) e 2 0 • (99) 

0- Yt Yo J(O,~ In Yo) 

This path integral can be calculated exactly, when making use of the result 
for the Wiener integral in (149). This results in 

1 __ 1_ (In Yt _ p.t)2 
p(O, Yo; t, Yt) = e 20-2t Yo (100) 

V27r0-2t Yt 

8.3 Vasicek Model 
a. Model: 

The Vasicek model is defined by the SDE 

dY(t) = x:(a - Y(t))dt + o-dW(t) ; 

Y is distributed on (-00,+00). 

b. Transformation to unit diffusion: 

For X(t) = ~Y(t), the SDE transforms into 

dX(t) = x: (~ - X(t)) dt + dW(t) ; 

X is distributed on (-00, +00). 

c. Maximal probability path : 

The classical trajectory is given by 

( 1
0 ) (Yt - a) sinh(ks) + (YO - a) sinh(k(t - s)) 

Ymod s ,Yo; t, Yt = a + sinh(kt) . 
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d. Long term probability : 
When t tends to infinity, we get the probability density 

with C= J Ii: • 
7fa2 

Ii: _ 2 

-(-) C -172 (y - a) p y = ·e , 

e. Transition probability : 

(104) 

In a first step, the transition probability can be expressed by means of a path 
integral as 

This path integral can be calculated exactly, making use of the result for the 
Gaussian integral in (150). This results in 

Ii: 
p(O, Yo; t, Yt) = 7fa2 (1 _ e-2Kt ) (106) 

. exp { 0-2(1 :e-2Kt ) ((Yt - a) - (YO - a)e-Kt )2}. 

8.4 Cox-Ingersoll-Ross Model 
a. Model: 

The Cox-Ingersoll-Ross model is defined by the SDE 

dY(t) = /i:(a - Y(t))dt + aVY(t)dW(t) , 

where it is assumed that 2/i:aj0-2 :2: 1 ; 

Y is distributed on (0, +00). 

b. Transformation to unit diffusion : 
For X(t) = ~v'Y(t), the SDE transforms into 

dX(t) = (C;~ -~) X~t) - ~X(t)) dt + dW(t) ; 

X is distributed on (0, +00). 
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c. Maximal probability path : 

The classical trajectory is given by 

Ymod(sIO, Yo; t, yt} 
= (yO + C) cosh(lI:s) - C (109) 

with 

C (110) 

d. Long term probability : 

When t tends to infinity, we get the probability density 

211:a -1 _ 211: y 
p(y) = C . Y a 2 . e a2 , (111) 

with C = (211:Ia2 )2KrY./rr2 Ir (2I1:ala2 ). 

e. Transition probability : 
In a first step, the transition probability can be expressed by means of a path 
integral as 

This path integral can be calculated exactly, making use of the result for the 
Calogero integral in (151). This results in 

pta, Yo; t, Yt) (113) 
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8.5 Adapted Geometric Wiener Model 

a. Model: 

The Adapted Geometric Wiener model (see [14]) is defined by the SDE 

dY(t) = ((8 + ~2 )Y(t) - 1) dt + aY(t)dW(t) ; (114) 

Y is distributed on (0, +00). 

b. Transformation to unit diffusion : 

For X(t) = ~ InY(t), the SDE transforms into 

dX(t) = ~ (5 - e-OX(t)) dt + dW(t) ; 

X is distributed on (-00, +00). 

c. Maximal probability path: 

The classical trajectory is given by 

(115) 

-As 
Ymod(sIO,yo; t, Yt) = :A2B ((28 - a2)2 - 4A2 + 2B(28 - a2)eAs + B 2e2AS ) , 

(116) 
where the constants A and B have to be determined numerically by the con
straints Ymod(OIO, Yo; t, Yt) = Yo and Ymod(tIO, Yo; t, Yt) = Yt· 

d. Long term probability : 

When t tends to infinity, we get the instable probability density 

(117) 

e. Transition probability : 

In a first step, the transition probability can be expressed by means of a path 
integral as 
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o 02t 1 (1 1 ) 
p(O,YO;t,Yt) = _1_ (Yt) 0"2 . e-20"2 . e0"2 Yt - Yo (118) 

0" Yt Yo 

1 1 fnt ·2d j (t,;; InYt) -- x s 
. Dx(s) e 2 0 

(O,~ In YO) 

_~ (1- 20) r e-C7xds __ 1_ rt e-2C7Xds 
.e 2 0"2 10 20"2 io . 

This path integral can be calculated exactly, making use of the result for the 
exponential path integral in (154). This results in 

p(O, Yo; t, Yt) 

= 2.12 ~~~ !¥i . exp {_ 02t _ 0"2 (1- ~)2 t + 271"2} 
71" y'7r 0"5 y't Y5 V Yt 20"2 2 0" 0"2t 

4 (1 0 ) { } 
. ds e 0" 2 0" exp - - - + -fn oo -2 - - 2 1 1 1 (1 1 ) 

o sinh2 (~) 0"2 tanh (~) Yt Yo 

fn OO - 2z2 (471"Z) {2 1 COSh(Z)} 
. dz e 0"2t sinh(z) sin -2 exp -2- (). (119) 

o 0" t 0" VYoYt sinh ~ 
C7 

8.6 Bessel Model with Drift 
a. Model: 

The Bessel model is defined by the SDE 

dY(t) = (y~t) - 2) dt + dW(t) ; 

Y is distributed on (0, +00). 

b. Maximal probability path : 

(120) 

The classical trajectory Ymod(tIO, Yo; t, Yt) is the solution Y of the implicit equa
tion 

2 (C+ JC2_ 4/Y ) Y V 2 _ 
C3 ln C _ JC2 _ 4/y + C2 C - 4/y - s , (121) 

where the constant C follows from the boundary condition Ymod(tIO, Yo; t, Yt) = 

Yt· 

25 



c. Long term probability : 

When t tends to infinity, we get the probability density 

(122) 

with C = 32. 

d. Transition probability : 

In a first step, the transition probability can be expressed by means of a path 
integral as 

(0 ) ( Yt) e-2t . e-2(Yt-Yo) p ,Yo; t, Yt = Yo (123) 

l (t'Yt) -~ rt iids + 2 rt ~ds 
. D+y(s) e 10 10 Y . 

(O,Yo) 

If in this path integral we perform a substitution Y = f(x) = x2 in the same 
way as was developped in the proof of theorem 5.1, the path integral in (123) 
can be rewritten as a path integral of the Calogero type. Making use of the 
result of (151), the transition probability can be found as 

p(O, Yo; t, Yt) 

= (Yt) e-2t e-2(Yt - Yo) j+oo dfJ eifJt roo d'19 e8'19 (124) 
Yo -00 10 

. -.flIP . It ( 2..f'iIlJyYOYi) . exp ( 2..j2i:13(yo + Yt)) . 
sinh(2-.flIP'I9) sinh(2J22/1 '19) tanh(2J22/1 '19) 

8.7 Inverse of Feller's Square Root Model 

a. Model: 

The Inverse of Feller's Square Root model is defined by the SDE 

dY(t) = Y(t) (K, - (0-2 - K,a)Y(t)) dt + o-Y(t)3/2dW(t) , (125) 

where it is assumed that 2K,a/0-2 :::: 1 ; 

Y is distributed on (0, +00). 

b. Transformation to unit diffusion : 

For X(t) = - O'ftw' the SDE transforms into 

dX(t) = (-~X(t) + (~- 2;~) X~t)) dt+dW(t); (126) 
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X is distributed on (-00,0). 

c. Maximal probability path : 
The classical trajectory is given by 

1 

Ymod(sIO, Yo; t, Yt) 

= cosh(Ks) (:0 + C) - C (127) 

( 1)2 0"4 (7 2KO!) (5 2/\:0!) + sinh(/\:s) - + C - C2 + - - - - - - - , 
Yo 4K2 2 0"2 2 0"2 

with 

C 1 ( 1 1) sinh(/\:t) - + - + -~-'-:-'---
cosh(/\:t) - 1 Yo Yt cosh(Kt) - 1 

(128) 

0"4 (7 2KO!) (5 2KO!) 1 2 
x 4/\:2 2 - ~ 2 - 0"2 + YoYt cosh(Kt) - 1 . 

d. Long term probability : 
When t tends to infinity, we get the probability density 

p(y) = C . Y ( 5 2;:) (129) 

4 2KO! 
with C = (~~) - ~ / r (4 _ 2;:) . 

e. Transition probability : 
In a first step, the transition probability can be expressed by means of a path 
integral as 
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This path integral can be calculated exactly, making use of the result for the 
Calogero integral in (151). This results in 

p(O, Yo; t, Yt) 

(131) 

8.8 Linear Drift, CEV Diffusion Model 

a. Model: 

The CEV Diffusion model is defined by the SDE 

dY(t) = 1\;(0: - Y(t))dt + aY(t)3/2dW(t) ; (132) 

Y is distributed on (0, +00). 

b. Transformation to unit diffusion : 

For X(t) = - ".}vw, the SDE transforms into 

(
I\; 3 1 l\;aa2 3) 

dX(t) = "2 X (t) +"2 X(t) - -8-X (t) dt + dW(t) ; (133) 

X is distributed on (-00,0). 

c. Maximal probability path : 

The classical trajectory Ymod(tIO, Yo; t, Yt) can be determined implicitly by 

(134) 

where the constant C follows from the boundary condition Ymod(tIO, Yo; t, Yt) = 

Yt· 
d. Long term probability : 

When t tends to infinity, we get the probability density 
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p(y) = c .! . exp { 2~ ~ _ ~a ! }, 
y3 a2 y a2 y2 (135) 

with C ~ 2:: [1+ V;;: eu;" (1+ en (J u;,,)) 1 
e. Transition probability : 

In a first step, the transition probability can be expressed by means of a path 
integral as 

p(O, Yo; t, Yt) 

3 ~(1 1) -~t - - ---e Yo 4 2 = - (-) . ea Yt Yo . 
3/2 Yt aYt 

(136) 

2 1 lot ·2d j(t--) -- x s , u.Jiit 2 . D_x(s) e 0 
(0 __ 2_) 

, u,fifO 

-- -+~ 1--- x ---x + x ds 1 lot [ 3 2 ( 3a(2) 2 ~2aa2 4 ~2a2a4 6] 
8 0 x2 ~ 2 16 x e 

This path integral can not be calculated exactly, but we get an approximate re
sult when applying the convex combination of upper and lower bound as men
tioned in (87) with V[z] = k [~ + ~2 (1 - 3at) z2 _ 1<;2~U2 z4 + 1<;2~~u4 z6]. 

8.9 Nonlinear Mean Reversion Model 

a. Model: 
The Nonlinear Mean Reversion model is defined by the SDE 

dY(t) = (a_tY(t)-l - ao + a1Y(t) + a2Y(t)2) dt + aY(t)3/2dW(t); (137) 

Y is distributed on (0, +00). 

b. Transformation to unit diffusion : 

For X(t) = - uJY(t) ' the SDE transforms into 

dX(t) = ((~ _ 2a2) _1 __ al X(t) + aoa2 X(t)3 _ a_la4 X(t)S) dt 
2 a2 X(t) 2 8 32 

+dW(t) ; (138) 

X is distributed on (-00,0). 
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c. Maximal probability path : 

The classical trajectory Ymod(tIO, Yo; t, Yt) can be determined implicitly by 

l Ymod(tIO,YO;t,Yt) Z dz 
1"'7=;;===;::;::::r~=r===;;;;:=;;=~=;;====;::;==::;::; - s (139 ) 

Yo .J Az6 + Gz 5 + Bz4 + Cz3 + Dz2 + Ez + F - , 

where the constant G follows from the boundary condition Ymod(tIO, Yo; t, Yt) = 

Yt· 
For the respective coefficients, we have 

A 

B 

C 

d. Long term probability : 

D 

E 

F 

a5 + 2ala-l 

2aoa_l 

a~l . 

When t tends to infinity, we get the probability density 

(140) 

_ _ _ - (3 - 2~2) {2a1 1 aD 1 2a-l 1 } 
p(y)=C·y a. exp - a2 fj- a2fp- 3a2 'fi ; (141) 

the constant C depends on the coefficients a-I, aD, aI, a2 and a, and is 
determined by the condition of a total mass equal to one. 

e. Transition probability : 

In a first step, the transition probability can be expressed by means of a path 
integral as 
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For the respective coefficients, we have 

A = !(!-~)(!-~) 
B = k [a~ - aoa2 (3 - ~)] 
C = ~~ [2alaOa2-a_la2(4-~)] 

(143) 

This path integral can not be calculated exactly, but we get an approximate 
result when applying the convex combination of upper and lower bound as 
mentioned in (87) with V[z] = Az-2 + Bz2 + Cz4 + D z6 + E z8 + FzIO. 

8.10 Double Well Potential Model 
a. Model: 

The Double Well Potential model is defined by the SDE 

dY(t) = (Y(t) - Y(t)3) dt + dW(t) ; (144) 

Y is distributed on (-00, +00). 

b. Maximal probability path : 

The classical trajectory Ymod(tIO, Yo; t, Yt) can be determined implicitly by 

lYmod (tIO,yo it,Yt) dz 
----;==;;====r~:=i'i'=:;:;; - s 

Yo ..; z6 - 2z4 - 2z2 + C - , 
(145) 

where the constant C follows from the boundary condition Ymod(tIO, Yo; t, Yt) = 

Yt· 
c. Long term probability : 

When t tends to infinity, we get the probability density 

-2 y4 Y--
p(y) = C· e 2 , 

2 e-1/ 4 
with C = - 1 1 . 

7r [1/4(4) + L 1/4(;r) 
d. Transition probability : 

(146) 

In a first step, the transition probability can be expressed by means of a path 
integral as 
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122 1 44 1 
(0 ·t ) = 2(Yt -Yo) - 4(Yt -Yo) - 2t 

P ,Yo, ,Yt e (147) 

lint ·2 I1t( 6 4 2) l (t,Yt) -- yds-- Y -2y -2y ds 
. Dy(s) e 2 0 2 0 . 

(o,ya) 

This path integral can not be calculated exactly, but we get an approximate 
result when applying the convex combination of upper and lower bound as 
mentioned in (87) with V[z] = ~(z6 - 2z4 - 2z2 ). 

9 Numerical illustration 
In this last section, we want to show the high accuracy of our approximations. We 
present graphs for the CEV Diffusion Model (figure 1), for the double well potential 
(figures 2 and 3) and for the non-linear mean reversion model (figure 4), three 
models for which the exact transition probability is not known in a closed form. For 
the parameters appearing in the models, use has been made of the same values as 
mentioned in the paper of Ait-Sahalia (see [1]) : 

CEV 
Diffusion 
model 

Non 
linear 
mean 
reversion 
model 

a 
K 

a 
= 

0.0808 
0.0972 
0.7224 

0.00107 
-0.0517 
0.877 
-4.604 
0.8047 . 

Each figure contains our upper and lower bound, and the final new approximation 
which is based on a convex combination of the two bounds. 

For the CEV diffusion model, upper and lower bounds are almost equal, such that 
the convex combination provides a very efficient approximation of the exact transi
tion probability density. As can be seen in the graphs for the double well potential, 
the accuracy of both bounds is still very high, be it that the lower bound performs 
slightly better. For the non linear mean reversion model, the upper bound is less 
accurate, but fortunately the lower bound does better. Thanks to the fact that the 
total mass of the lower bound is only little lower than 1, it seems that also in this 
case, the final approximation performs very well. 
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ure 1: Approximation of the density function for the CEV diffusion model, with t = 1 
l starting point Yo = 0.2. 
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- - Convex combination 
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;ure 2: Approximation of the density function for the double well potential model, with 
: 1 and starting point Yo = 0.5. 
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ure 3: Approximation of the density function for the double well potential model, with 
1 and starting point Yo = O. 
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;ure 4: Approximation of the density function for the non linear mean reversion model, 
h t = 1 and starting point Yo = 1. 
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Appendix A 
integrals 

Computational results for path 

In this first appendix we mention some useful results about path integrals for which 
an explicit expression is known. For the calculation of the Wiener and Gaussian 
integrals, use has been made of the methods of Feynman and Hibbs (see [6]). The 
results for the Calogero integrals are based on a result of Goovaerts (see [8]) and 
Vanneste et al. (see [17]). For the calculation of the exponential integral, we used 
a special coordinate transformation as was done in a similar proof in De Schepper 
& Goovaerts (see [4]) ; this enables us to rewrite the result of the Calogero integral 
into a result for the exponential path integral. 

A.I Wiener integrals 

Ordinary Wiener process 

(148) 
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Absorbed Wiener process 

A.2 Gaussian integrals 

A.3 Calogero integrals 

(Xe + Xo)2 
2(te - to) 

lite a2ite i te ds l (te,xe) -"2 x(s)2 ds - 2 x(s? ds - b -( )2 
Dx(s) e to to to X S 

(to,xo) 

_ a .,;x;;Xe I [a Xo Xe ] 
- sinh (a(te - to)) J2b+t sinh (a(te - to)) 

.exp 0 e { a (x2 + x2) } 
tanh (a(te - to)) , 

(149) 

(151) 

where Ig[z] denotes a modified Bessel function, which can be expressed in a series 
as 
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00 1 (Z)9+2k 
Ig[z] = E k! f(g + k + 1) 2 ' (152) 

and arises as a solution of the differential equation 

1jJ"(z) + ~1jJ'(Z) - (1 + :~) 1jJ(z) = o. (153) 

AA Exponential path integrals 

Appendix B : Proofs of the theorems 
PROOF OF THEOREM 3.1 

From probability theory, we know that the solution of the stochastic differential 
equation (19) is unique. Hence, a solution that is found in another way, automati
cally leads to the same transition probability. 

We start with a discretisation of equation (19), 
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for E = tin, ti = iE and Yi = yeti). This can be rewritten as 

8A(Yi) 
Yi+l - Yi = A(Yi)E + ()---ay(Yi+l - Yi)c + Wi+l - Wi· (156) 

In order to find a path integral expression for the transition probability of the process 
Y = {Yes), s E [0, tj), we will perform a change of variables from w tot Y in the 
Brownian path integral 

l (t,w t ) --21 rt w(s)2 ds 
Dw(s) e 10 

(O,wa) 
(157) 

when written as the limit of an (n - I)-fold integration. Due to the nature of 
8(Wl,W2, ... ,Wn-l) . . I 

the variables, the Jacobian matrix J = !:l( ) IS an uppertnangu ar 
u Yl, Y2, ... , Yn-l 

matrix, and therefore 

() ~ 8A(Yi-l) 

IJI = if (1 - ()E 8A(Yi-l)) ~ e - E i=l 8y 
i=l 8y 

(158) 

This brings us for the path integral to 

J(t,W t ) --21 rt w(s)2 ds 
Dw(s) e 10 

(O,wa) 

Now, we can return to a Feynman path integral expression by eliminating the limit 
of the (n - I)-fold integration. This results in 

l (t,wt) -~ r w(s)2 ds 
Dw(s) e 210 

(O,wa) 

1 lot l (t,Yt) --2 y(s)2 ds 
= Dy(s) e 0 

(O,ya) 

lot 8A 
-() -ds 

. e 0 8y 

1 rt rt 
. e -2' 10 A2(y(s))o ds . e + 10 A(y(s))o dy(s). 

(160) 
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Since the first integral in the last line of equation (160) is a Riemann integral, the 0 
has no influence. The second integral in the last line of (160) behaves as a general 
stochastic integral in the sence of (5) ; 0 can be eliminated when making use of (13) 
~ which completes the proof. Note that this last step is necessary due to the fact 
that Feynman integrations make use of a midpoint definition. 

D 

PROOF OF PROPOSITION 3.1 

A simple proof can be constructed when the transition probability p(O, Yo; t + c, Yt) 
is expanded. 
First, we expand the probability in c up to order one, giving 

ap 
p(O, Yo; t + c, Yt) = p(O, Yo; t, Yt) + c at (0, Yo; t, Yt). (161) 

Next, due to the Kolmogorov property and with (21) one has 

p(O, Yo; t + c, Yt) = 
roo 
J~oo dy p(O,Yo; t,y) p(t, y; t + c,Yt) (162) 

(Yt - Y - cA(y))2 1+00 1-
dy rn=e 2c p(O,YO;t,y). 

-00 y27l'c 

Changing the integration variable as Y = Yt + ~ and expanding in ~ up to order two 
(which is equivalent with order one for c), the last expression can be written as 

(163) 

Performing the integration over ~ and comparing the result with expression (161), 
the partial differential equation arises. 

D 

PROOF OF THEOREM 3.2 

In a first step, we rewrite the O-stochastic differential equation into a Stratonovich 
equation. This is necessary in order to justify the use of the classical chain rule. 
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Assume that the process Y = {Y(s), s E [0, t]} satisfies equation (24), and define 
the notations c: = tin, ti = ic:, Yi = Y(ti) and yr = Y(ti + O(ti+1 - ti))' We then 
have 

lot dY(s) 

= lot {A(Y(s))ds + B(Y(s))o dW(s)} 

n-1 

= J1~ L {c:A(Yi) + B(yr) (Wi+1 - Wi) } 
i=O 

= n~~ ~ {c:A(Yi) + [B(yJl2) + (0 -~) ~: (Yi) (Yi+1 - Yi)] (Wi+1 - Wi)} 

n-1 { 1 aB } 
= J1~ ~ c:A(Yi) + B(yJl2) (Wi+1 - Wi) + (0 - 2")C: ay (Yi)B(yd 

= lot {[A(Y(S)) + (0 - ~) ~: (Y(S))B(Y(S))] ds + B(Y(s)) dW(S)}. (164) 

Now, if we use a change of variables as suggested in (25), the previous reasoning 
brings us to 

lot dX(s) 

rt dY(s) 
= 10 B(Y(s)) 

n-1 { 1 } 
= n11~ ?: (1/2) [Yi+1 - Yi] 

t=O B Yi 

= lim ~ {C:A(Yi) + B(y;/2) (Wi+1 - wd + (0 - ~)c: f!I£-(Yi)B(Yi)} 
n-HlO ~ B( 1/2) 

t=O Yi 

rt{[A(Y(S)) 1 OB] } 
= 10 B(Y(s)) + (0 - '2) oy (Y(s)) ds + dW(s) , 

which completes the proof. 

PROOF OF THEOREM 3.3 

(165) 

D 

This immediately follows from the change of variables mentioned in (25). Indeed, 

d 
p(O, Yo; t, Yt) = -d Prob [Y(t) ~ YtIY(O) = Yo] 

Yt 
1 d 

B(Yt) dXt Prob [X(t) ~ ~(Yt)IX(O) = ~(Yo)]. (166) 
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Applying theorem 3.1, the desired result follows. 

D 

PROOF OF PROPOSITION 3.2 

The forward Fokker Planck equation can be derived in the same way as it was 
done for the result of proposition 3.1, when starting from the transition probability 
p(O, Yo; t + c, Yt) as given in (33). 

The expansions now need to be performed up to order 4 for c, and up to order 8 for 
~ (see e.g. [15]). 

D 

PROOF OF THEOREM 4.1 

The Lagrangian for the proces Y (t) equals 

L( · ) 1.2 1A()2 l&A(y) A() . y,y,s ="2Y +"2 y +"2-----riiJ - y .y. (167) 

Therefore, applying (35), the maximal probability path is determined by 

.. _ A( ) &A(y) ~ &2 A(y) 
y - y &y + 2 &y2 . (168) 

After multiplying both sides by y, two integrations lead to the desired result. 

D 

PROOF OF THEOREM 5.1 

In order to prove (47), we start from the path integral expression for the transition 
probability for the process Y, as stated in theorem 3.1 : 

l (t,Yt) --21 rt y2ds _ ~ rt (A(y)2 + ~A) ds + rt A(y)dy 
p(O, Yo; t, Yt) = Dy(s) e io 2 io uy io . 

(O,yo) 
(169) 

As suggested by the stochastic differential equation (44), we will make use of a 
coordinate transformation, in discretised version 

(170) 

where c = tin, ti = i . c, Yi = Y(ti), Xi = X(ti), for i = 0, ... , n. 

41 



The transformation is obvious for the second and third integral in the exponent. 
For the first integral, the kinetic term, we have 

and thus 

1 lot '2d -- Y s 
2 0 

.2 (1 f"(x(s)£) '(( ( ) ) .( ))2 
Y ds = "2 J'(X(S)L)2 + J x S £ X s ds (171) .: 

(172) 

= _.!. {t J'(x(s)£)2 (dx)2 ds _.!. rt f"(x(s)£) dx(s) _.!. rt f"(x(s)L)2 ds . 
2 io ds 2 io f'(x(s)£) 8 io J'(x(s)£)4 

Due to the conditions of the path integral formalism, the first and second integra
tions in this expression have to be transformed into mid point integrations (the last 
integral does not cause any difficulty being a Riemann integral). Making use of the 
expansion 

1 
= tp(x)dx - "2tp'(x)(dx)2 

tp(x)dx - ~tp'(X) f'~;)2 (173) 

which holds for arbitrary functions tp, and where we relied upon (13), (43) and (45), 
we obtain 

rt f"(x(s)L) dx(s) (174) 
io J'(x(s)£) 
_ rt f"(x(s)) _.!. rt J"'(x(s)) .!. rt f"(x(s))2 
- io f'(x(s)) dx(s) 2 io J'(x(s))3 ds + 2 io J'(x(s))4 ds 

as well as 

{t (dx)2 io J'(x(s)£)2 ds ds (175) 

rt, 2 (dx)2 1 (t f"(x(s))2 rt f"(x(s)) 
= io J (x(s)) ds ds + 4 io J'(x(s))4 ds - io J'(x(s)) dx(s) . 

As a consequence, the kinetic term can be expressed as 

1 lot -- iids 
2 0 

(176) 

1 r, 2 (dx)2 1 r f"(x(s))2 1 rt f"'(x(s)) 
=-"2io J(x(s)) ds dS-"2io f'(x(s))4 dx +4io J'(x(s))3 ds . 
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The transformation can be completed by rewriting the path differential measure as 

n 1 n-l 

Dy(s) = limn-+oo g v'27fc g dYi 

n 1 n-l 

= limn-+oo g v'27fc g f'(Xi)dxi = [f'(x(s)L)Dx(s)] (177) 

Summarizing, this brings us to the interim result 

p(O, Yo; t, Yt) l (t,ytl -~ rt f'(x(s))2 (dx)2 ds 
[f'(x(s)L)Dx(s)] e 2 io ds (178) 

(O,yo) 

1 jot f"(x(s))2 lint f'"(X(S)) 
-- ds + - ds 

· e 2 0 f'(x(s))4 4 0 l'(x(s))3 

· e -~ lot (A[J(x(s))]2 + ~~[J(x(s))]) ds 

· e + lot A[J(x(s))] l'(x(s)) dx(s) . 

Examining this path integral expression, it is clear that we still need a stochastic 
time change from t and ds to t* and da in order to get both a kinetic term and a 
differential measure that are independent of the transformation function. This can 
be done when choosing 

(179) 

or 
ds = l'(x(a)d f'(x(ah) da. (180) 

As before, the transformation is obvious for all integrations except the kinetic term 
in the exponent of (178). For the kinetic term, we use the fact that (see e.g. (173)) 

f'(x(s))dx = , 1 f"(x(s)) 
1 (x(s)L)dx + 2 f'(x(s))2 ds (181) 

, 1 f"(x(s)) 
1 (x(s)R)dx - 2 l'(x(s))2 ds . (182) 

As a result, the kinetic term can be rewritten as 

_~ r f'(x(s))2 (dX)2 ds = _~ rt' (dx)2 da + ~ rt< f"(x(a))2 da. (183) 
2 io ds 2 io da 8 io l'(x(a))2 
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For the path differential measure, the stochastic time change leads to 

Altogether, this results in the final path integral 

(185) 

where we still have to impose the condition 

(186) 

This can be done by adding an integration with a Dirac function, 

(187) 

or 

1+00 r+oo ei(J (t - fat> f'(X}2 dU) 

-00 d(J 10 dt* , (188) 

which completes the proof. 

D 

PROOF OF THEOREM 7.1 

The path integral can be written as 

(189) 
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Applying proposition 7.2, we know that the variable A = Itt: V[X(s)] ds is smaller 

than B = Jt~ F;;b((s)) (U) ds in convex ordering. Since the exponential function is 
convex, it follows immediately from the definition of convex ordering (see (67)) that 

(190) 

with 
IUPP(t x· t x) = K(t x· t x)· Eu e - to V(X(s)) S [ J, te F-l (U) d ] 

0, 0, e, e 0, 0, e, e . (191) 

If we rewrite the expectation in (191) as an expectation over B = Jt~e F;;lx(s))(U) ds 
instead of over U, an application of (69) leads to the second result, which completes 
the proof. 

D 

PROOF OF THEOREM 7.2 

We start by writing the path integral as 

(192) 

for an arbitrary stochastic variable A. 
Applying the inequality of Jensen, it follows that 

(193) 

with 

(194) 

If we choose A = X (ts), with ts such that to ~ ts ~ te, the final result immediately 
follows. 

D 
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