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Abstract

In this paper, we compute the influence function for partial least squares regression.

Thereunto, we design two alternative algorithms, according to the PLS algorithm used.

One algorithm for the computation of the influence function is based on the Helland

PLS algorithm, whilst the other is compatible with SIMPLS.

The calculation of the influence function leads to new influence diagnostic plots for

PLS. An alternative to the well known Cook distance plot is proposed, as well as a

variant which is sample specific. Moreover, a novel estimate of prediction variance is

deduced. The validity of the latter is corroborated by dint of a Monte Carlo simulation.
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1 Introduction

Partial Least Squares (PLS) regression [1] is one of the most widely used chemometrical

tools to estimate concentrations from measured spectra. As it is mostly a chemometrical

tool, it has hitherto only been granted little attention in the statistical literature. A con-

sequence thereof is that some properties of partial least squares regression have never been

investigated. One of these properties is the influence function [2], which is of widespread use

in the literature on robust and mathematical statistics. Indeed, one can define an estimator

to be robust whenever its influence function is bounded, but also for non-robust, so-called

classical estimators (such as PLS), the influence function has major applicability.

In this paper, the influence function for partial least squares regression is computed, and

used as a diagnostic tool to assess the influence of individual calibration samples on predic-

tion. In PLS a calibration stage is required in which a regression vector is being estimated

from a calibration matrix, consisting e.g. of spectra of ”standards” with known concentra-

tions. Once this stage is completed, the responses of samples can be estimated by means of

a single (matrix) multiplication. It is the influence on these predicted responses which will

be assessed. Diagnostic plots will be proposed.

In contrast to the ease of which in PLS responses (e.g. concentrations) are estimated, the

uncertainties thereof are very hard to assess, and often unknown. Faber et al. [3] correctly

point out that the most common technique to assess this uncertainty consists of using the

regression vector to estimate the responses for a set of samples of which the true response is

known, but which have not been used for calibration. Usually, this set of samples is referred

to as the validation set. Estimated and true responses are then used to compute a so-called

root mean squared error of prediction (RMSEP) [4], which is then supposed to be a measure

of the uncertainty of all future predictions made by this model.

The RMSEP is an average measure of uncertainty. Methods which allow the estimation of a

sample specific prediction error have been proposed [5, 6, 7, 8]. All of these approaches are

based on a local linearization of the PLS estimator. However, a variance estimate can also

be computed from the influence function. This approach has got many advantages over the

existing techniques. Firstly, the variance estimates based on the influence function of the

PLS estimator are independent on any model assumption. Moreover, the estimate of vari-

ance derived from the influence function requires very little computational effort, contrary

to the aforementioned variance estimation techniques which have never become popular due

to computational difficulties. Computation of the influence function leads at once to both
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variance estimation and diagnosis of influence, a combination heretofore not reported.

In Section 2 we introduce the reader to the notation used throughout this article.

In Section 3 we provide a short introduction to partial least squares regression.

In Section 4 we introduce the reader to the population version of PLS, since this insight is

needed for a correct computation of the influence function.

In Section 5 we introduce the reader to the basic concept of the influence function, as well

as the results that can be deduced thereof.

In Section 6 we propose algorithms which allow efficient calculation of the influence function,

derived from different PLS algorithms.

In Section 7 this leads to a sample specific prediction interval in PLS, as well as to novel

diagnostic plots.

2 Notation and definitions

Before we can give an introduction to partial least squares regression, we first need to define

the notation used. The calibration matrix X is a matrix of size n× p in which the rows are
n spectra of standard samples, measured at p channels. Matrices will always be denoted in

upper case letters. The corresponding n concentrations of these standard samples consti-

tute the response vector y. Vectors will always be denoted by bold-face lower case letters.

When we refer to individual columns of matrices, we shall denote these vectors using the

corresponding letter. Throughout this work, we will assume both calibration and response

matrices to be mean-centred. When calibration is completed, spectra of new samples (un-

knowns or validation set, if used) are denoted by means of the corresponding Greek letter,

i.e. a new spectrum is denoted as ξ. The corresponding (mostly unknown) concentrations

are consistently denoted as yξ. A circumflex accent denotes an estimate, e.g. ŷξ for the

estimated concentration. Expectated values with respect to a distribution G will be denoted

as EG(·) Whenever it is necessary to make use of row vectors, they will be represented by
lower-case underlined letters. Finally, T and IF(·) denote the transposition and the influence
function, respectively.
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3 Partial least squares regression (PLS)

Partial least squares regression can be seen as a way to estimate a regression vector β in a

linear model

y = Xβ + ε. (1)

In this equation ε is a constant vector of identically and independently distributed erros

with zero expectation and constant variance. PLS is a latent variable regression technique.

This means that PLS extracts independent latent variables from the original set of p (often

correlated) variables. The regression vector is calculated from these latent variables, hence

overcoming difficulties in ordinary least squares such as multicollinearity. In a spectrometric

context, one can intuitively see that this is a correct way to proceed, as pointed out by

Svante Wold [9]. As heeded in the introduction, this insight has lead to the proposal of

an alternative multivariate latent variable regression model [10]. However, the choice of the

model upon which PLS is based has no effect on the results in this article, and is henceforth

disregarded. In PLS, the latent variables are computed in such a way that they contain a

maximum of relevant information concerning the relation betweenX and y. Mathematically,

this is expressed by the following objective function [11] in which the hth weighting vector

(âh) is defined as:

âh = argmax
a

cov (Xah,y) (2a)

under the constraints that

k ah k= 1 and aThX
TXai = 0 for 1 ≤ i < h. (2b)

This objective is a maximization problem under two constraints, which can be solved by dint

of the Langrange multiplier method. All univariate PLS algorithms share the same objective

function. However, different algorithms have been proposed to accomplish the same objective

in which different scaling conventions are used. E.g. in SIMPLS [12] the convention is to

re-scale the estimated weighting and score vectors (i.e. th = Xâh) in such a way that the

score vectors ultimately carry unit variance. In any algorithm, the first weighting vector

must be the dominant eigenvector of the matrix XTyyTX, which will then be or be not

scaled, according to the convention imposed. From the second latent variable on, the second

constraint becomes important: it requires the following latent variables to be orthogonal

(uncorrelated) to the previous ones. Hence, the following weighting vectors will be dominant
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eigenvectors of the matrix XTyyTX, multiplied by a projection matrix which projects onto

the orthogonal complement of the subspace spanned by the previous score vectors. Hence,

before scaling, the hth weighting vector will in general be equal to:

âh = X
T

Ã
In −

h−1X
i=1

tit
T
i

tTi ti

!
y. (3)

The first two factors can be seen as a deflation of the datamatrix X. This deflation can

either be carried out directly on the datamatrix X or on the vector XTy as is the case in

both algorithms used throughout this article (the Helland [13] and SIMPLS [12] algorithms).

Both algorithms will be explained at the population level in the next section.

4 PLS at the population level

Before we can give an introduction to the definition and calculus of the influence function, we

first need a short description of the distinction between PLS at the population level and PLS

at the sample level. Individual experiments are samples taken from a certain population.

E.g. the datamatrix X corresponds to a p-variate random vector x of which n samples are

drawn from the population. In chemometrics this discrepancy is most currently disregarded,

as the theoretical background is of minor importance to the analytical chemist. However,

computation of the influence function requires prior definition of PLS at the population level.

Let (x, y) be centred and distributed with given distribution G, then the objective for PLS

is:

ah(G) = argmax
a

EG
£
aTx y

¤
(4a)

under the constraints that

k ah(G) k= 1 and ah(G)
TS(G)ai(G) = 0 for 1 ≤ i < h. (4b)

The only difference to the objective function stated in the previous section is the explicit

dependence on the distribution G. As this does not change the maximization problem, the

exact solutions of problem (4) are known and can be copied to the population level from the

aforementioned algorithms.

Hence, both the Helland [13] (Equations 5) and SIMPLS [12] (Equations 6) algorithms also

hold at the population level, if one does not omit the fact that all vectors are population
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quantities and thus dependent on the distribution G. The starting values should in both

cases be:

s(G) = EG[xy]

S(G) = EG
£
xxT

¤
.

In the Helland algorithm [13], an additional starting value is needed: H0 = 0p×p. For the

Helland version of the population definition of PLS, the quantities are sequentially defined

as:

ah(G) = (Ip − S(G)Hh−1(G))s(G) (5a)

ãh(G) = (Ip −Hh−1(G)S(G))ah(G) (5b)

Hh(G) = Hh−1(G) +
ãh(G)ãh(G)

T

ãh(G)TS(G)ãh(G)
(5c)

βh(G) = Hh(G)s(G) (5d)

for any 1 ≤ h ≤ p. The Helland algorithm is frequently used as a starting point for any

deviation on PLS (e.g. [6, 8]) since it only consists of four equations. However, compu-

tationally it is outperformed by Sijmen de Jong’s SIMPLS algorithm, which has over the

last years steadily become the ”standard” PLS algorithm included in commercial packages

due to its computational efficiency (less flops and memory are required than in any other

PLS algorithm). Hence, our work would not be complete were our approach not applied to

SIMPLS.

The population quantities corresponding to SIMPLS are defined as follows:

ah =

(
s(G) for h = 1³
Ip − Ṽh−1(G)

´
ah−1(G) for h > 1

(6a)

rh(G) =
ah(G)p

ah(G)TS(G)ah(G)
(6b)

ph(G) = S(G)rh(G) (6c)
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vh(G) =

Ã
Ip −

h−1X
i=1

Ṽi(G)

!
ph(G) (6d)

Ṽh(G) =
vh(G)vh(G)

T

vh(G)Tvh(G)
(6e)

βh(G) = Rh(G)Rh(G)
T s(G) (6f)

for 1 ≤ h ≤ p. Recall that Rh(G) is a matrix containing r1(G), . . . , rh(G) as its columns.
Remark that both Equations 5 and 6 hold for any given distribution G. The only con-

dition is that the starting quantities s(G) and S(G) need to exist, which boils down to

existence of the second moment. The above equations define the statistical functionals

ah, ãh, Hh, rh,ph,vh, Ṽh and βh, all being defined as mappings sending distributions G to

vector or matrix valued quantities.

To return to the sample level, the empirical distribution Gn may be plugged in for G into

the above expressions to yield the well-known PLS algorithms. The empirical distribution

function Gn is a discrete distribution giving mass 1/n to each of the n measured data points,

and can be shown to converge G. It is therefore the sample-based analogue of G. Starting

from

s(Gn) = EGn[xy] = X
ty/n and S(Gn) = EGn

£
xxT

¤
= XTX/n, (7)

one finds all other quantities, now based on the sample, by applying (5) or (6).

Let ξ be a new observation, and denote h the select number of latent variables. Then

the functional ŷh,ξ corresponding to the predicted value based on ξ is defined as

ŷh,ξ (G) = ξTβh(G) (8)

for any distribution G. At the sample level this corresponds to predicting a concentration

of a (possibly new) sample on the basis of the calibration matrix.

5 The notion of the influence function

The influence function (IF) has been introduced by Hampel [2] in order to theoretically assess

the influence that an observation z has on the value that a statistical functional T takes.
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This observation z may be an observed data point, a potential outlier, .... One supposes

that a small fraction ε of the data are placed at the point z, while the other fraction (1− ε)

is coming from the population distribution G. Hence, the distribution becomes:

Gε = (1− ε)G+ εδz, (9)

where δz is the a point mass distribution at z. The influence function is then defined as

IF(z, T, G) = lim
ε↓0
T [(1− ε)G+ εδz]− T (G)

ε
(10)

It can be interpreted as the influence of adding an observation z to the data on the value

of the estimator. If the value of the IF is high, then z is called an influential observation.

Hence, the IF can be used to diagnose influential observations. Another use of the influence

function is to asses the robustness of an estimator. If the influence function is bounded,

the statistical functional is said to be robust. The influence function of the PLS-estimator

will turn out to be unbounded, indicating the non-robustness of the classical PLS-procedure.

Using robust PLS-procedures, e.g. as in [14, 15], might result in bounded influence functions.

Computation of the IF for robust PLS procedures will be presented in a forthcoming article.

In this paper we are interested in assessing the influence of an observation on the classical

PLS-procedure, hence we will compute the IF for ordinary PLS.

Actual compuation of the IF makes use of derivation of the statistical functions, since

(10) yields:

IF(z, T,G) =
∂

∂ε
T (Gε)

¯̄̄̄
ε=0

. (11)

Is also turn out that the influence function is closely related to the variance of an estimator.

It has been shown that [2]:

var(T,G) ≈ EG [IF(z, T,G)
2]

n
(12)

where the approximation becomes more precise as the sample size n increases. More infor-

mation on the use of influence functions can be found in Hampel et al. [2].

Let us now proceed to the applicability of the influence function in the PLS-setting. The

observation z will now be a couple (xT , y) containing a spectrum and the corresponding

concentration. Often z will be an observation (xi
T , yi) from the calibration matrix. The

IF is then a measure of the influence of z on T , where T can be any of the statistical
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functionals defined in the previous section. We are mainly interested in the influence that

each calibration spectrum has on the regression estimators βh and on the predictions ŷh,ξ ,

but also the IF for the weighting vectors appear as an intermediate result. In this way, we

can compute an alternative to the currently used Cook’s Distance, which will be mentioned

in more detail later.

Moreover, as mentioned before, the influence function allows to estimate the variance of

a given estimator, which will be used in Section 5 to compute sample-specific variance

estimates.

6 Algorithms for the influence function

6.1 The influence functions for the Helland algorithm

First the influence functions for the starting values of the algorithm should be found. Let

z = (x, y) be an arbitrary point in the p + 1-dimensional space. We will make usage of

the shorthand notations IF(T ) instead of IF(z, T,G) and hence drop the dependence on the

distribution G and on z. It is an easy exercise to check that

IF(S) = xxT − S (13)

IF(s) = xy − s, (14)

where s and S are shorthand notations for s(G) and S(G). With these starting values, the

influence functions can be computed recursively as follows:

IF(ah) = (Ip − SHh−1) IF(s)− (S IF(Hh−1) + IF(S)Hh−1)s (15a)

IF (ãh) = (Ip −Hh−1S) IF(ah)− (Hh−1 IF(S) + IF(Hh−1)S)ah (15b)

IF(Hh) = IF(Hh−1) +
ãh IF(ãh)

T + IF(ãh)ã
T
h

ãThSãh

− ãhã
T
h

(ãThSãh)
2

¡
ãThS IF(ãh) + ã

T
h IF(S)ãh + IF(ãh)

TSãh
¢

(15c)

IF(βh) = IF(Hh)s+Hh IF(s), (15d)

for 1 ≤ h ≤ p. Again, short-hand notations ah = ah(G), ãh = ãh(G), . . . are used.
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6.2 The influence functions for the SIMPLS algorithm

It is clear that the starting values for the Helland algorithm also hold in this case. The

algorithm continues as

IF(ah) =

(
IF(s) for h = 1

IF(ah−1)− IF(Ṽh−1)ah−1 − Ṽh−1 IF(ah−1) for h > 1
(16a)

IF(rh) =
IF(ah)

(aThSah)
− ah

(aThSah)
3
2

¡
IF(ah)

TSah + a
T
h IF(S)ah

¢
(16b)

IF(ph) = IF(S)rh + S IF(rh) (16c)

IF(vh) = IF(ph)−
h−1X
i=1

h
Ṽi IF(ph) + IF

³
Ṽi

´
ph

i
(16d)

IF
³
Ṽh

´
=
IF(vh)v

T
h + vh IF(vh)

T

vThvh
− 2 vhv

T
h

(vThvh)
IF(vh)

Tvh (16e)

IF (βh) = IF(Rh)R
T
h s+Rh IF(Rh)

T s+RhR
T
h IF(s), (16f)

for any 1 ≤ h ≤ p.

6.3 Further comments

A proof of the expressions in (15) and (16) for both algorithms is straightforward by applying

the functionals on Gε, using (11) and standard differentiation rules. The equations are valid

at any given step h of the iteration. Furthermore, note that the influence function for the

prediction ŷh,ξ is immediately obtained as

IF (ŷh,ξ ) = ξT IF (β) . (17)

Both algorithms lead to identical influence functions for the regression vector and the

predictions. This is logical, since both the Helland and SIMPLS algorithm yields the same

values for β and ŷh,ξ . Therefore also the influence functions are identical. One needs to
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consider the two algorithms as just two different ways of computing the IF and not as different

approximations of the IF, since one is computing in both cases the exact IF. Computationally,

the SIMPLS algorithm to compute the IF for the regression estimator outperforms the

Helland algorithm.

The expressions found for the IF are valid for any distribution G for which s and S are

existing. In practice, the population distribution G in unknown but can be estimated by the

empirical distribution function Gn. Hence, in the practical applications the IF will always

be evaluated for G taken to be Gn. This implies that all quantities s, S,ah, ãh, Hh,βh, rh, . . .

appearing in (15) or (16) are taken to be the sample estimates as obtained by plugging Gn

in the equations (5) or (6).

7 Applications of the influence function

7.1 Influence diagnosis

Most commonly, the influence of individual samples is shown using the so-called Cook’s

squared distance [4]. Roughly, it measures the change in the regression coefficients if the ith

observation is omitted from the data. It is computed as follows:

CD(zi) =
1

pσ2e

nX
j=1

¡
ŷj − ŷij

¢2
(18)

In this equation, σ2e is the residual variance and ŷ
i
j denotes the predicted concentration for

sample j based on a regression vector computed from calibration matrices from which sample

i has been deleted. A large value for the Cook distance is an indication that an observation

is an influenctial observation or outlier. The Cook distances are illustrated in Figure 1.

It should be clear that the influence function is apt to be a suitable measure for the influence

of a sample on prediction. An analogous approach as in the Cook’s squared distance leads to

a diagnostic plot based on the influence function which is a viable alternative to the existing

approaches. The measure of influence of sample i on prediction is the sum of squared

influence functions for sample i on the predicted concentrations of all other samples, i.e.:

SID(zi) =
1

n

nX
j=1

IF (zi, ŷj, Gn)
2 (19)
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Figure 1: The Cook’s Squared Distance for the Fearn data

where ŷj stands for the statistical functional ŷh,xTi . We carried out a comparison of the Cook

Distance (CD, Equation 18) and the Squared Influence Diagnostic (SID, Equation 19) for

the ”Fearn” data [16]. The goal of the analysis by Fearn was to predict the protein content in

wheat samples. Thereunto, near-infrared measurements were carried out at six wavelengths.

The dataset has thenceforth extensively been used and referred to in the chemometrical

literature [7, 6, 17] and references therein.

From Figures 1 and 2 we can see that both the CD and the SID detect sample 4 as a

highly influential sample (an outlier). Furthermore, in the CD plot sample 9 is regarded is

quite influential (but not as influential as sample 4) whereas in the SID plot the influence of

sample 9 is less important, but still outlying with respect to the other sample points.

Using the influence function, it is also possible to establish a measure of the influence of

a certain sample on the prediction of the concentration of a new sample, i.e. a sample that

was not included in the original datamatrix. In this sense, it can be seen as a sample-specific

influence diagnosis (SSID). Although such a sample-specific influence diagnosis makes no

sense in the classical multivariate calibration set-up (one will not calculate a new regression

vector for each sample to be predicted, based on a datamatrix from which highly influential
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Figure 2: The Squared Influence Diagnostic plot for the Fearn data

samples have been deleted), it may be useful in a semi-local context, where on possesses a

myriad of spectra for calibration and one tries to find the ones closest to the new one to be

analysed. A too high sample-specific influence would indicate that the calibration spectrum

should not be included in the local calibration matrix. We include an example of the SSID.

Calibration was in this case done on all but one of the samples from the Fearn dataset; the

last sample was predicted and the influence of the first samples on prediction of the latter

is plotted in Figure 3. One sees that sample 3 is the most influential for this prediction, but

that none of the calibration samples has an extremely high influence on the prediction of the

concentration. Note that the SSID plot allows to distinguish between negative and positive

influence on prediction.

7.2 Variance estimation

7.2.1 Theory

It has been stated in Section 5 that the influence function leads to an estimate of variance

(Equation 12). An estimate of variance for a predicted concentration is found by combin-

ing Equations 12 and 17: plugging in the computed influence function for the predicted
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Figure 3: Influence of samples to the prediction of a new sample, Fearn data

concentration. Taking Gn for G in Equation 12 yields

cvar(T,Gn) = 1

n2

nX
i=1

IF(zi, T,Gn)
2. (20)

Note that the expected value in (12) reduces to an arithmethic mean when working at the

sample level. Having obtained a sample-specific estimate of variance, a sample-specific pre-

diction interval can be computed, but the main drawback of the method proposed here is

that up till now no estimate of degrees of freedom can be derived from the influence func-

tion. In case of large sample sizes this plays no role, but otherwise we suggest to plug in the

cross-validated estimate by Van der Voet [18].

7.2.2 Verification through Monte Carlo simulation

We investigated the correctness of the estimate of variance for the regression vector by

means of a Monte Carlo simulation, analogously to the work by Faber [17]. The set-up of

the simulation was as follows:

1. Determine the optimal number of latent variables for the mean-centred datamatrices.

This was done by venetian blinds cross-validation; four latent variables was considered
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to be the optimal number. This corresponds to the number found in the publications

cited above.

2. Compute SIMPLS vectors up to the aforementioned number of latent variables; define

new datamatrices X̌ = T4P
T
4 and y̌ = X̌β̂4. These ”new” data are perfectly described

by the PLS model.

3. By adding noise to the datamatrices X̌ and y̌, Nrep = 1001 new data sets are generated.

This noise can be described as follows: X̌i = X̌ + Ei; y̌i = y̌ + εi, where the noise

matrices Ei and εi are filled up with random numbers taken from standard normal

distributions with appropriate dimensions.

4. For the first
¡
X̌1, y̌1

¢
, compute the estimate of variance for the regression vector ac-

cording to Equation 20. The square roots of its diagonal elements give estimated

standard errors.

5. Compute the PLS regression vector for each of the other Nrep-1 generated samples¡
X̌i, y̌i

¢
.

6. By taking the elementwise standard deviation of these Nrep-1 estimated regression

vectors “true” (or simulated) standard deviations are obtained and can be compared

with the estimated standard error from step 4.

As original datset, we used for this simulation the “NIR Biscuit” data, a dataset first analysed

by Osborne et al. [19]. The experimental set-up was prediction of (among other analytes)

the sucrose content in biscuits by means of near infrared (NIR) spectrometry. The dataset

consists of 40 samples and 600 spectral variables are used. It has previously been analysed

in [20]. Because the simulation generates a 600×1-vector of standard deviations, the results
are summarized by taking their average value. This is an appropriate way to summarize

the results since standard deviations on individual components of the regression vector do

not differ very much. To have a complete comparison, we also computed the estimate of

standard deviation obtained from a local linearization of the PLS estimator. The results are

summarized in Table 1. One sees that both the local linearization technique as the IF-based

variance estimate yield outcomes close to the “true” standard error.
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std
³
β̂
´

IF 0.0395

local linearization 0.0320

MC (”true”) 0.0350

Table 1: Average standard deviations for the regression vector, comparison of the ”true”

deviation with the estimates obtained from the influence function (IF) and a local lineariza-

tion

8 Summary and conclusions

In this work, we have adopted an approach which is common in the field of robust statistics,

but has been shed from the chemometrics community for years. We investigated the useful-

ness of the influence function in the field of chemometrics, and thus its practical applicability

in the analytical laboratory. We concluded that the contribution of the computation of the

influence function to the PLS method is of major importance.

The benefits of the influence function are twofold: at first it allows to investigate the influence

of individual samples to prediction on a sample specific basis, which may be of importance

when the analytical chemist has very large datasets at his disposition and it is not very clear

which samples to choose as a calibration matrix (a semi-local approach). Also the detection

of very large or zero influences may indicate in the general, non-local context that a certain

sample is not suitable to be included in the calibration set. In this sense we proposed an

alternative to the current method of influence diagnosis, the Cook Distance.

One should realize that both CD and SID are based on classical, non-robust PLS and

are subject to the masking effect. By this it is meant that outliers can bias the estimates

in such a way that the diagnostic measures CD or SID, based on these estimates, become

non-reliable and can fail to detect the outliers. Such a masking effect can occur when there

are clusters of several outliers in the data, but in presence of only few outliers CD or SID are

still believed to be effective. In any case, by estimating the population quantities appearing

in the expressions for the IF by robust estimates, more resistant measures for detecting

influenctial observations could be obtained.

The influence function also provided us with a novel estimate of variance of the PLS-

estimator. As computation of the existing estimates of variance is sometimes cumbersome,

the influence function approach might be considered as a viable alternative to those methods.

15



Monte Carlo simulations have corroborated the hypothesis of its correctness. Moreover, if

both diagnosis and variance estimation are required — a very likely setting in the analytical

laboratory — the approach supposed here is the only one suitable for a joint computation

which we wot of.
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