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CorI1onotonicity and Maxirllal Stop-Loss Prerniurlls* 

Jan Dhaenet Shaun Wang+ Virginia R. Young§ Marc J. Goovaerts' 

Abstract 

In this paper, we investigate the relationship between comonotonicity and stop­

loss order. vVe prove our main results by using a characterization of stop-loss order 

within the framework of Yaari's (1987) dual theory of choice under risk. Wang and 

Dhaene (1997) explore related problems in the case of bivariate random variables. vVe 

extend their work to an arbitrary sum of random variables and present several examples 

illustrating our results. 

1 Introduction 

The stop-loss transform is an important tool for studying the riskiness of an insurance 

portfolio. In this paper, we consider the individual risk theory model, where the aggregate 

claims of the portfolio are modeled as the sum of the claims of the individual risks. We 

investigate the aggregate stop-loss transform of such a portfolio without making the usual 

assumption of mutual independence of the individual risks. \Vang and Dhaene (1997) explore 

related problems in the case of bivariate random variables. We extend their work to an 

arbitrary sum of random variables. 

To prove results concerning ordering of risks, one often uses characterizations of these 

orderings within the framework of expected utility theory, see e.g. Kaas et a1. (1994). We, 

however, rely on the framework of Yaari's (1987) dual theory of choice under risk. Our 

results are easier to obtain in this dual setting. 

In Section 2, ,ye provide notation and a brief introduction to Yaari's dual theory of 

risk. We introduce a special type of dependency between the individual risks, the notion 
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of "comonotonicity". Loosely speaking, risks are comonotonic if they" move in the same 

direction". In Section 3, we consider stop-loss order. It is well-known that stop-loss order 

is the order induced by all risk-averse decision makers whose preferences among risks obey 

the axioms of utility theory. We show that the class of decision makers, whose preferences 

obey the axioms of Yaari's dual theory of risk and who have increasing concave distortion 

functions, also induces stop-loss order. From this characterization of stop-loss order, we find 

the following result: If risk Xi is smaller in stop-loss order than risk Yi, for i = 1, ... , TI, and 

if the risks Yi are mutually comonotonic, then the respective sums of risks are also stop-loss 

ordered. In Section 4, we characterize the stochastic dominance order within Yaari's theory. 

In Section 5, we consider the case that the marginal distributions of the individual risks are 

given. We derive an expression for the maximal aggregate stop-loss premium in terms of the 

stop-loss premiums of the individual risks. Finally, in Section 6, we present several examples 

to illustrate our results. 

We remark that Wang and Young (1997) further consider ordering of risks under Yaari's 

theory. They extend first and second stochastic dominance orderings to higher orderings in 

this dual theory of choice under risk. 

2 Distortion Functions and Comonotonicity 

For a risk X (i.e. a non-negative real valued random variable with a finite mean), we denote 

its cumulative distribution function (cdf) and its decumulative distribution function (ddf) 

by Fx and Sx respectively: 

Fx (x) = Pr {X :::; ;r:}, O:::;;r: < CXl, 

Sx(x) = Pr{X > :r}, O:::;;r < CXl. 

In general, both Fx and Sx are not one-to-one so that we have to be cautious in defining 

their inverses. We define F"yl and S"yl as follows: 

inf{x: Fx(x) 2: p}, 

inf {x : Sx (x) :::; p}, 

0< p:::; L 

O:::;p<L 

F;:I(O) = 0, 

Sx 1 (1) =0. 

where we adopt the convention that inf q; = CXl. We remark that F.yl is non-decreasing, SXl 

is non-increasing and S;/ (p) = F"y 1 (1 - p). 
Starting from axioms for preferences between risks. Von Neumann and Morgenstern 

(1947) developed utility theory. They showed that, vvithin this axiomatic framework, a 

decisionmaker has a utility function 'U such that he or she prefers risk X to risk Y (or is 

indifferent between them) if and only if E (u( - X)) 2: E (u( - Y)) . 
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Yaari (1987) presents a dual theory of choice under risk. In this dual theory, the concept 

of )) distortion function" emerges. It can be considered as the parallel to the concept of 

"utility function" in utility theory. 

Definition 1 A distortion function 9 is a non-decreasing function 9 [0,1] --+ [0,1] with 

g(O) = 0 and g(l) = 1. 

Starting from an axiomatic setting parallel to the one in utility theory, Yaari shows that 

there exists a distortion function 9 such that the decision maker prefers risk X to risk Y 

(or is indifferent between them) if and only if Bg(X) :S Hg(Y), where for any risk X, the 

"certainty equivalent" Bg (X) is defined as 

Hg (X) = /= g[Sx(x)]dx = /1 Si/(q)dg(q). io .~ 

We remark that By (X) = E(X) if 9 is the identity. For a general distortion function 9 1 the 

certainty equivalent Hg (X) can be interpreted as a "distorted" expectation of X. See Wang 

and Young (1997) for a discussion of Yaari's axioms in an insurance context. 

In the following sections, we use two special families of distortion functions for proving 

some of our results. In the following lemma. we derive expressions for the certainty equivalents 

Hg (X) of these families of distortion functions. For a subset A of the real numbers, we use 

the notation fA for the indicator function which equals 1 if ::e E A and 0 otherwise. 

Lemma 1 (a) Let the distortion function 9 be defined by g( x) = f (x > p), 0 :S x :S I, for an 

arbitrary, but .fixed, p E [0,1]. Then for any risk X the certainty equi'vaZent Hg(X) zs gwen 

by 

(b) Let the distortion function 9 be de.fined by g(x) = min (x/p, 1) , 0 :S .r :S I, for an 

arbitrary, but .fixed, p E (0,1]. Then for any risk X, the certainty equi'vaZent Bg(X) zs gwen 

by 

Proof. (a) First let 9 be defined by g(x) = f(x > p). As we have for any :r > 0 that 

S·dx) :S p {::} S)/(p) :S x, we find 

g(Sx(x)) = ' {
Ix < S;/(p) , 

0, x 2: SX1(p), 

from which we immediately obtain the expression for the certainty equivalent. 
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(b) Now let 9 be defined by g(x) = min (x/p, 1). In this case we find 

{
I .1: < S"~l(p), 

g(Sx(x)) = S'y(x)/p, 
_, ,1: 2 S-X I (p) , 

from which we immediately obtain the desired result .• 

Yaari's axiomatic setting only differs from the axiomatic setting of expected utility theory 

by modifying the independence axiom. This modified axiom can be expressed in terms of 

"comonotonic" risks. 

Definition 2 The r-isks Xl, X 2, ... ) Xn ar-e said to be mutually comonotonic if Q,'f/',Ij of the 

following equivalent conditions hold: 

(1) The cdf FX1,x2,oo,xnof (XI ,X2) ... ,Xn) satisfies 

for all Xl' ... , :r;n 2 o. 

(2) Ther-e exists a mndom variable Z and non-deer-easing functions UI, ... , 'Un on R s'/u:h that 

(XI, ... ,Xn) ~ (UI(Z)"",un(Z)), 

(3) For- any unifor-mly distr-ibuted mndom var-iable C on [0, 1], we have that 

In the definition above, the notation "~,, is used to indicate that the two multivariate 

random variables are equal in distribution. The proof for the equivalence of the three con­

ditions is a straightforward generalization of the proof for the bivariate case considered in 

,Yang and Dhaene (1997). 

The following theorem states that the certainty equivalent of the sum of mutually comonotonic 

risks is equal to the sum of the certainty equivalents of the different risks. 

Theorem 2 lfthe r-isksXI,X2",.,Xn ar-e mutually eomonotonie, then 

n 

H9(XI + X 2 + ... + Xn) = LHg(Xi)' 
i=l 

Proof. A proof for the bivariate case can be found in Wang (1996). A generalisation to the 

multivariate case follows immediately by considering the fact if XI,X2"",Xn are mutually 

comonotonic, then also Xl + X 2 + ... + X n- l and Xn are mutually comonotonic .• 

If we restrict to the class of concave distortion functions, then the certainty equivalent 

is subadditive, which means that the certainty equi\'alent of a sum of risks is smaller than 

or equal to the sum of the certainty equivalents. This property is stated in the following 

theOl-em. 
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Theorem 3 If the distortion function 9 is concave, then for any risks Xl, X 2 , "', Xn we have 

that 
n 

Hq(XI + X 2 + '" + Xn) :s; L Hg(Xi)' 
i=l 

The theorem above is a straightforward generalization of the bivariate case considered in 

~Wang and Dhaene (1997). 

3 Stop-Loss Order and Comonotonicity 

For any risk X and any d 2:: 0, we define (X - d)+ = max(O, X - d). The stop-loss premium 

\vith retention d is then given by E(X - d)+. 

Definition 3 A risk X is said to precede a risk Y in stop-loss order, written X :S;sl Y, ~f 

for all retentions d 2:: 0, the stop-loss premium for risk X is smaller than that for risk Y: 

E(X - d)+ :s; E(Y - d)+. 

In the following theorem, we derive characterizations of stop-loss order, within the frame­

work of Yaari's dual theory of choice under risk. 

Theorem 4 For any risks X and Y, the following conditio'ns are equivalent: 

(1J X :S;sl Y 

(2) For all concave distortions functions, we have that Hg(X) :s; Hg(Y). 

(3/ For all distortion functions 9 defined by g(x) = min (x/p, 1) , p E (0,1], we have that 

Hg(X) :s; Hg(Y). 

Proof. 

(1) ::::} (2) : Relying on the fact that stop-loss order is the transitive closure of the order in 

dangerousness (Mliller, 1996), and on the dominated convergence theorem, we only have to 

prove that if X and Yare ordered in dangerousness. written X :S;D Y, then Hg(X) :s; I-Jg(Y) 

for all concave distortion functions. Hence. let us assume that X :S;D Y; that is, E(X) < 
E(Y) and there exists a real number c 2:: 0 such that 

5 x (:r) > 5 y (x)forall::c<c, 

5 x (x) < 5y (x) for all T 2:: c . 

.\"ow let g be a distortion function. As g is non-decreasing, we immediately find 

g(5x (:r)) > g(Sy(x)) for all.T <C, 

g(5x (:r)) < g(5y (x)) for all:r >c. 



Also assume that 9 is concave in [0,1]. Thus, for each y in [0,1] , there exists a line l(:r) = 
ayx + b, with l(y) = g(y) and l(x) ~ g(x) for all x in [0,1]. As l(y) = g(y), we find that 

l(x) = ay(x - y) + g(y). Hence, l(x) ~ g(x) can be written as 

g(1;) - g(y) ~ ay(x - y) for all x in [0.1]. 

As 9 is non-decreasing, we find that ay ~ 0. Further. ay is a non-increasing function of iI 

By substituting Sx(x) and Sy(x) for x and y in the above inequality, we obtain 

9 (Sx(x)) - 9 (Sy(x)) ~ as,.-(x) (Sx(:r) - Sy(x)) for all x ~ 0. 

From the crossing condition for 9 (Sx(x)) - 9 (Sy(x)) and the fact that asy(x) IS a non­

decreasing function of x, we find 

9 (Sx(x)) - 9 (Sy(x)) ~ as, (c) (S\{r) - Sy(:r)) for all x > 0. 

Taking the integral over both members of the inequality above leads to 

where the last inequality holds because E(X) ~ E(Y). Hence. ,ve have proven that condition 

(1) implies condition (2). 
(2) ::::;, (3) : This follows immediately. because g(x) = min (x/p, 1) defines a concave 

distortion function. 

(3) ::::;, (1) : For any distortion function 9 defined by g(:r) = min (x/p, 1) , p E (0,1]. we 

find from Lemma 1 that 'Hg(X) ~ Hg(Y) is equivalent to 

l d Jd P S-;/(p) + -1 Sx(x)dx + E(X - d)+ ~ P Syl (p) + 1 Sy(x)dx + E(Y - d)-I' 
sx ~) 5; ~) 

for all d ~ O. We have to prove that E(X - d)+ ~ E(Y - d)+ for any d ~ O. 

If Sx(d) = 0, then E(X - d)+ = ° so that E(X - d)+ ~ E(Y - d)+. 

::\ow assume that Sx(d) > O. and let p = Sx(d). Note that in general S)/(p) ~ d and 

that for S;/(p) ~ 1; ~ d we have that Sx{r) = p. Hence, Hg(X) ~ Hg(Y) can be rewritten 

as 

E(X - d)+ ~ rd 
1 (Sy(:r;) - p) dx + E(Y - d)+. J 5;; (p) 

As Syl(p) ~ X <=> Sy(x) ~ p, we find that the integral in the inequality above is always 

negative, from which it follows that E(X - dh ~ E(Y - d)-t-. As the proof holds for any 

d 2': 0, we find that condition (1) follows from condition (3) .• 

Within the framework of expected utility theory. stop-loss order of two risks is equivalent 

to saying that one risk is preferred over the other by all risk-averse decision makers. From 
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the theorem above, we see that we have a similar interpretation for stop-loss order within the 

framework of Yaari's theory of choice under risk: Stop-loss order of two risks is equivalent 

to saying that one risk is preferred over the other by all decision makers who have non­

decreasing concave distortion functions. See Wang and Young (1997) for related results. 

:'\ote that our Theorem 4 is more general than the corresponding result of Wang and Young 

(1997) because we do not assume that the distortions are differentiable. 

It is well-known that stop-loss order is preserved under convolution of mutually indepen­

dent risks, see e.g. Goovaerts et al. (1990). In the following theorem we consider the case 

of mutually comonotonic risks. 

Theorem 5 If Xl,X2 , ""Xn and Y1 , Y2 , ... , Yn are sequences of risks 'with Xi S:.SI Yi (i 
L ... ,n) and with Y 1 ,Y2, ... ,Yn mutually comonotonic, then 

n n 

L.: Xi S:.SI L.: Yi. 
i=l i=l 

Proof. Using Theorems 2, 3 and 4 we find that for any concave distortion function 9, 

n n 

i=l i=l 

\\'hich proves the theorem .• 

~ote that in the theorem above, we make no assumption concerning the dependency 

among the risks Xi' This means that the theorem is valid for any dependency among these 

risks. 

For any risk X and any uniformly distributed random variable U on [0,1] , we have that 

X ~ Fx 1(U). From this fact, we obtain the following corollary to Theorem 5. 

Corollary 6 For any random variable U, uniformly distributed on [0,1]' and any risks 

Xl' X 2 , ... ,Xn , we have 
n n 

L.: Xi S:.sl L.: Fjy} (U). 
i=l i=l 

Another proof for this corollary. in terms of" supermodular order" 1 can be found in M tiller 

1.1997). 

:'-Jote that (Xl, X 2 , ... , Xn) and (Fjyj1 (U), FX21(U) , ... , Fx~ (U)) have the same marginal dis­

tributions, while the risks Fx/(U). i = 1, ... ,71" are mutually comonotonic. Hence, Corollary 

1 states that, within the class of all multivariate risk with given marginals Xl, X 2 , ... , X n1 

the stop-loss premiums of Xl + X 2 + ... + Xn are maximal if the risks Xi are mutually 

c0monotonic. 
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4 Stochastic Dominance and Comonotonicity 

In this section, \ve first examine whether Theorem 5, which holds for stop-loss order. also 

holds in the case of stochastic dominance, i.e. if)) S s/' is replaced by )) S sf" . 

Definition 4 A risk Y is said to stochastically dominate a risk X, wriUen X Sst. Y; ~l the 

following condition holds: 

Sx(x) S Sy(x) for all x 2: o. 

Let X I ,X2 , YI and Y2 be uniformly distributed random variables defined on [0,1]. with 

X 2 = 1- Xl and Y I - Y2. Then we have that Y I and Y2 are comonotonic. Further, Xi Sst Y, 

(i = 1, 2). After some straightforward calculations, we find that 

FXdx2(x) < FYI +1'2 (x) if 0 S x < l. 

F Xl + X 2 ( X ) > FYl""I-1'2 ( X ) if x 2: 1. 

Hence, Xl + X 2 is not stochastically dominated by}] + Y2 so that Theorem 5 does not hold 

in the case of stochastic dominance. However, stochastic dominance implies stop-loss order, 

so we should have that Xl +X2 Ssl Y I + Y2. This follows indeed from the crossing condition. 

Theorem 7 For any risks X and Y, the following conditions are equivalent: 

(1) X Sst Y. 

(2) For all distortion functions 9 we have that Hg(X) S Hg(Y). 

(3) SXI(p) S Syl (p) for all p E [0,1]. 

Proof. 

(1) =? (2) : Straightforward. 

(2) =? (3) : Let p E [0,1] and consider the distortion function 9 defined by g(;r) = l(x > 
p). 0 S x S 1. The proof then follows from Lemma 1. 

(3) =? (1) : For a fixed x 2: 0, let p = Sy(x). From S.~l(p) S Syl(p), we haw that 

S" (Syl(p)) S P = Sy(x). Note that in general, S)-;l(p) S X. As Sx is non-increasing, we 

find 

SX(x) S Sx (Syl(p)) S Sy(x). 

As the proof holds for any x 2: 0, we have proven that condition (3) implies condition (1) .• 

Within the framework of utility theory, it is well-known that stochastic dominance of 

t,,·o risks is equivalent to saying that one risk is preferred over the the other by all decision 

makers who prefer more to less. From the theorem above, we see that, within the framework 

of Yaari's theory of choice under risk, stochastic dominance of risk Y over risk X holds 

if and only if all decision makers with (non-decreasing) distortion function prefer risk X. 
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Actually, preservation of stochastic dominance is an axiom in both utility theory and Yaari's 

dual theory. Hence, the fact that condition (1) implies condition (2) is a direct result of this 

aXlon1. 

5 Maximal Stop-Loss Premiums in the Multivariate 

Case 

From Corollary 6, we concluded that in the class of all multivariate risks with given marginals 

(Xl, X 2 , ... , X n), the stop-loss premiums are maximal if the risks Xi, i = 1, ... ,n, are mutually 

comonotonic. For comonotonic risks Xi, the stop-loss premium with retention d is given by 

::\ ow we will derive another expression for this upper bound. 

Theorem 8 Let Xl, ... ) Xn be mutually comonotonic risks. Then for any retention d 2' 0, 

we have 

n 

E(XI + ... + Xn - d)+ = LE(Xi - di)+ - [d - SXl (Sx(d))] Sx(d) 
i=l 

where X = Xl + ... + Xn and the di are defined by di = Sx;(Sx(d)). 

Proof. If Sx(d) = 0, then the inequality trivially holds. 

::\ow assume that Sx(d) > O. Let p = Sx(d) and define a distortion function g by 

g(x) = min (x/p, 1) for 0 :::; x :::; 1. As Xl,'" ,Xn are mutually comonotonic, we find from 

Theorem 2 that 

Csing Lemma 1 this equality can be \Hitten as 

from which we find 

because S;/(p) = L~l Sx;(p) for comonotonic risks, see Denneberg (1994) or Wang (1996). 

On the other hand, we have that 
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Now combine these two equalities to obtain the desired result. • 

From Theorem 8 we see that, apart from a correction factor, any stop-loss premium for 
,. ~ 

the sum of comonotonic risks can be written as a sum of stop-loss premiums for the individual 

risks involved. 

Note that in general we have that SxJ(Sx(d)) < d. However, if S,,{r) > Sx(d) for all 

x < d, then Sx1 (Sx(d)) = d, so that in this case 

n 

E(X1 + ... + Xn - d)+ = 2: E(Xi - di)+ 
i=l 

with the di as defined in Theorem 8. In this case, ,,·e also have that L~'=l di = d. 

6 Examples 

In this final section, we show by example how to evaluate stop-loss premiums for the sum 

X = Xl + X 2 + ... + Xn of the mutually comonotonic risks Xl, X 2 , ... , X n . We first consider 

the case for which all risks have a two-point distribution and then three cases for which all 

risks have continuous distributions. 

Example 1: The Individual Life lVlodel 

Assume that each risk Xi, (i = 1, ... ,n) has a two-point distribution in 0 and ai > 0 

with Pr(Xi = ai) = qi. The ddf of Xi is then given by 

from which we find 

if 0 ::; x < ai, 

if x ~ ai, 

S-l C ) = { Oi, if 0 ::; p < qi 
x, p 0, if qi ::; P ::; l. 

Without loss of generality, we assume that the random variables Xi are ordered such that 

q1 2: ... 2: qn· Now assume that the risks are comonotonic, then we have 

Hence, 

if 0 ::; x < aI, 

if 0 ::; p < qn 1 

if qj-t-l ::; P < qjl 

if q1 ::; P < 1. 

if a1 + ... + aj ::; x < a1 + ... + ajll, 

if :1: 2: 01 + ... + an· 
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which means that X is a discrete random variable with point-masses in 0, a1, a] + a2, a1 + 
a2 + a3, .. " a1 + a2 + ... + an· 

For d such that a1 + ... + aj :s: d < a1 + ... + aj+l ,we find 

so that 
n 

if i < j + 1, 

if i 2- j + 1, 

S-;/(Sx(d)) = S.~1(qj_H) = L:Si;(Qj+l) = al + ... + aj. 
i=l 

,,ve finally find from Theorem 8 that 

'f d > "\",n 1 '_ L.,i=l ai· 

This individual life model is more extensively considered in Dhaene and Goovaerts (1996). 

Example 2: Exponential l\Iarginals 

Assume that each Xi, (i = 1,"', n) IS distributed according to the Exponential (bi) 

distribution (bi > 0) with ddf given by 

SXi (x) = e-x / bi , x > O. 

For comonotonic Xi, the inverse ddf of their sum X is 

Si1 (p) = -blnp, 

Sx(x) = e- X / b , x> O. 

In other words, the comonotonic sum of exponential random variables is exponentially dis­

tributed. Heilmann (1986) considers the case of n = 2. 

One can easily verify that the stop-loss premium with retention d is given by 

Example 3: Pareto lVIarginals 

Assume that each Xi (i = 1," . ,n) is distributed according to the Pareto (a, bi) distrib­

ution (a, bi > 0) with ddf given by 

( bi ) a 

bi +:r ' 
x> O. 
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For comonotonic Xi, the inverse ddf of their sum X is 

SXl(p) = b (p-l/a -1), 

in which b = L~'=l bi. Thus, 

x> O. 

In other words, the comonotonic sum of Pareto random variables (with identical first para­

meter) is a Pareto random variable. 

One can easily verify that for any d 2:: 0 we have that 

E(X _ d)+ = (_b_)a-l b 
b+d a_I' 

a> 1. 

Example 4: Exponential-Inverse Gaussian Marginals 

Assume that each Xi, (i = 1. ... ,n) is distributed according to the exponential-inverse 

Gaussian (bi , Ci) distribution (bi , Ci > 0) with ddf given by 

x> 0, 

see Hesselager, Wang and Willmot (1997). In this case the inverse ddf of Xi is 

1 1 2 fb: 
SXi (p) = - (In p) - v-ln p. 

4Ci Ci 

Thus, for comonotonic Xi, the inverse ddf of their sum X is 

1 1 2 If Sx (p) = - (In p) - -In p. 
4c C 

Sx(x) = e:rp [-2JC (J;y; + b - Jb)], x> O. 

In other words, the comonotonic sum of exponential-inverse Gaussian random variables 

is also an exponential-inverse Gaussian random variable. 

One can easily verify that for any d 2:: 0 we have that 

E(X - d)+ ~ exp [-2Ji (.,jd+ b - Jb)] [Jd ~ b + ;c]. 
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