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Abstract 

The distribution of the present value of a series of cash flows under stochastic 
interest rates has been investigated by many researchers. One of the main 
problems in this context is the fact that the calculation of exact analytical 
results for this type of distributions turns out to be rather complicated, and is 
known only for special cases. An interesting solution to this difficulty consists 
of determining computable upper bounds, as close as possible to the real 
distribution. 

In the present contribution, we want to show how it is possible to compute 
such bounds for the present value of cash flows when not only the interest 
rates but also volatilities are stochastic. We derive results for the stop loss 
premium and distribution of these bounds. 

1 Introduction 

When investigating sums of dependent variables, one of the main problems 
that arise is the fact that due to the dependencies it is almost impossible to 
find the real distribution of such a sum. In some recent papers, we suggested 
to solve this problem by calculating upper bounds. Using the concept of 
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comonotonicity, we are able to determine bounds in convexity order that are 
rather close to the original variable, and much easier to compute. For the 
meaning and consequences of this approach, we refer to section 2. 

One of the applications of this kind of problems is the investigation of the 
present value of a series of non-negative payments at times 1 up to n 

n 
A = I>~te-Yl - Y2 - ... - yt, (1) 

t=l 

where yt represents the stochastic continuous compounded rate of return over 
the period [t - 1, t] (see also [4]). 

In the classical assumption, prices are log-normally distributed, and thus the 
variables yt are independent and normally distributed. In other words, 

(2) 

where /-Lt and at are constants. 

In the present contribution, we will generalize this classical assumption by 
replacing the constant at by a random variable (Yt, where we assume that the 
volatilities (Yt for the periods [t - 1, t] are mutually independent variables. For 
any realization at we then have that 

yt I (Yt = at '" N (/-Lt' an . (3) 

This idea has been borrowed from [6]. 

In correspondence with the financial paradigma, in equation (1) we should 
correct the variables yt by means of their volatility, or 

A (4) 

n 
'" a e-Y(t)+~2:(t) 
~ t , (5) 
t=l 

where Y(t) = Y1 + Y2 + ... + yt is used to denote the total compounded 
rate of return over the period [0, t], and where 2:(t) is defined as 2:(t) = 

(Yr + (Y~ + ... + (Y'f. The reason for this change by means of the volatility as 
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suggested in equations (4) and (5) has to be found in the fact that with this 
adaptation, for the (new) accumulated values we then have the identity 

(6) 

Note that for the variable Y(t) we have the obvious (conditional) moments 

E[Y(t) [0-1 , ... ,o-tl 
Var[Y(t)[o-l, ... , o-tl 

J-L1 + '" + J-Lt 

o-r + .,. + 0-; = ~(t). 
(7) 

(8) 

For the distributions of the variables Y(t) and :B(t) , we will use the notations 
Ft(x) and Gt(x), or 

Ft(x) = Prob[Y(t) :s; xl (9) 

and 

Gt(x) = Prob[~(t) :s; xl (10) 

Since we already fixed the model for Y(t), the function Ft(x) is known. For the 
calculation of Gt(x), we need to specify a model for the stochastic volatilities. 

In order to study the distribution of the present value (5), we will use recent 
results concerning bounds for sums of stochastic variables. In the following 
section, we will explain the methodology we used for finding the desired ans­
wers. We will briefly repeat the most important results. Section 3 contains 
an expression for the function Gt (x) for a few volatility models. The concrete 
boundary results for the quantity A of equation (5) are presented in section 4 
and 5. Finally in section 6, we will give some numerical illustrations. 

2 Methodology 
2.1. Looking at the structure of the variable A in (5), we see that this 
quantity belongs to the class of variables 

n 

A = L <Pt (Y (t), ~ (t) ). (11) 
t=l 

For the p'resent problem the functions <Pt : R2 --t R : (x, s) 1-+ <Pt (x, s) are 
mainly exponential. 
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Even in case the distributions of the random variables Y(t) and 1:(t) are 
known, the calculation of the distribution function for random variables in 
this form is far from self-evident. The most important difficulty arises from 
the fact that neither the random variables Y(t) nor the variables 1:(t) are 
mutually independent. A "simple" convolution of the different individual 
distribution functions thus is not correct, since also the dependency structures 
of the random vectors (Y(l), ... , Y(n)) and (1:(1), ... , 1:(n)) have to be taken 
into account. And this, unfortunately, is almost impossible to obtain in most 
cases. 

Instead of calculating the exact distribution of the variable A, we therefore will 
look for bounds, in the sense of "less favourable / more dangerous" variables, 
with a simpler structure and as close as possible to the original variable. We 
briefly repeat the meaning and most important results of this technique. For 
proofs and more details, we refer to recent publications e.g. [1, 2, 4]. 

2.2. The notion "less favourable" or "more dangerous" variable can be 
formalized by means of the convex ordering, see [5], with the following defini­
tion: 

Definition 2.1 If two random variables V and Ware such that for each 
convex function u : 3t -t 3t : x f-+ u(x) the expected values (provided they 
exist) are ordered as 

E [u(V)] ::; E [u(W)] , (12) 

the variable V is said to be smaller in convex ordering than a variable W, 
which is denoted as 

V ::;cx W. (13) 

Since convex functions are functions that take on their largest values in the 
tails, this means that the variable W is more likely to take on extreme values 
than the variable V, and thus it can be considered to be more dangerous. 

Condition (12) on the expectations can be rewritten as 

E[u(-V)] 2: E[u(-W)] (14) 

for arbitrary concave utility functions u : 3t -t 3t : x f-+ u(x). Thus, for any 
risk averse decision maker, the expected utility of the loss W is smaller than 
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the expected utility of the loss V. This means that replacing the unknown 
distribution function of the variable V by the distribution function of the 
variable W is a prudent stategy. 

The functions u(x) = x, u(x) = -x and u(x) = x2 are all convex functions, 
and thus it follows immediately that V ~cx W implies E[V] = E[W] as well 
as Var[V] ~ Var[W]. 

An equivalent characterisation of convex order is formulated in the following 
lemma, a proof of which can be found in [5] : 

Lemma 2.1 If two variables V and Ware such that E[V] = E[WJ, then 

V ~cx W ¢:} E[(V - k)+] ~ E[(W - k)+] for all k, (15) 

with (x)+ = max(O, x). 

Since more dangerous risks will correspond to higher (so-called) stop-loss pre­
miums E[(V - k)+], again it can be seen that the notion of convex order is 
very adequate to describe an ordering in dangerousness. Indeed, E[(V - k)+] 
denotes the expected loss (in financial terms) of realizations exceeding k. 

2.3. The notion of convex ordering can be extended from two single variables 
to two sums of variables, as is proved in [1, 2, 4]. In the following results, we 
use the notation 

Fx(x) = Prob(X ~ x) (16) 

for the distribution of a random variable X, where x E ~, and 

F)/(p) = inf{x E ~: Fx(x) 2: p} (17) 

for the inverse distribution of X, where p E [0,1]. 

We will start by presenting bounds in convexity for 'ordinary' sums of vari­
ables, and continue with bounds for sums of functions of variables. 

Proposition 2.1 Consider an arbitrary sum of random variables 

(18) 
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and define the related stochastic quantities 

Vupp = Fx;(U) + ... + Fx~(U) (19) 

(20) 

with U an arbitrary random variable that is uniformly distributed on [0,1]' 
and with Z an arbitrary random variable that is independent of U. 

We then have 

v ::;cx V upp* ::;cx Vupp 

and thus the stop-loss premiums satisfy the relation 

(21) 

The corresponding terms in the original variable V and in the upper bounds 
Vupp and V upp* are all mutually identically distributed, or 

(23) 

In fact, by construction the upper bound Vupp is the most dangerous combi­
nation of variables with the same marginal distributions as the original terms 
Xj in V. Indeed, the sum now consists of a sum of comonotonous variables all 
depending on the same stochastic U, and thus not usable as hedges against 
each other. The upper bound V upp* is an improved bound, which is closer to 
V due to the extra information through conditioning. 

The second proposition extends the previous results from ordinary sums of 
variables to sums of functions of variables. 

Proposition 2.2 Consider a sum of functions of random variables 

(24) 

For an arbitrary random variable U that is uniformly distributed on [0, 1], and 
an arbitrary random variable Z which is independent of U, define the related 
stochastic quantities 

Vupp = (1)1 (FXl1 (U)) + ... + ¢n(Fx~(U)) 

V upp* = ¢l(FX;\z(U)) + ... + ¢n(Fx~\z(U)) 
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in case each function cPt : ~ -+ ~ : x f--+ cPt(x) is increasing, and 

Vupp - cPl(Fi; (1 - U)) + ... + cPn(Fi~(l- U)) (27) 

Vupp* cPl(FX;IZ(l - U)) + ... + cPn(FX~lz(l - U)) (28) 

in case each function cPt : ~ -+ ~ : x f--+ cPt(x) is decreasing. 

We then have 

and thus also 

(29) 

Both results are mainly based on the first proposition, combined with the 
property that for any increasing function cP and for any p E [0,1] it is true 
that 

(31) 

and that for any decreasing function cP and for any p E [0, 1] we have the 
equality 

(32) 

Finally, once the boundary values for the investigated quantity and their stop­
loss premiums are found, the distribution function follows immediately when 
use is made of lemma 2.2. 

Lemma 2.2 Consider an arbitrary variable A with distribution function 

FA(k) = Prob[A ~ k] . (33) 

Provided the expectations exist, the relation between stop-loss premiums and 
distribution function is given by 

(34) 
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3 Distribution of ~(t) 
For the numerical illustration, we will need to know the concrete distribution 
of ~(t), which can be calculated if a model for the distribution of the stochastic 
volatilities Cl"t is specified. 
As mentioned before, we assume the volatilities to be all independent and 
identically distributed. We suggest the following two models : 

• an exponential distribution for ai, or 

a; '" exp ( a) , (35) 

where a is chosen large enough to minimize the chance of too large and 
unrealistic values for ai ; 

• a normal distribution for at, or 

(36) 

where again ~ is chosen small enough to minimize the risk of negative 
values for at. 

The results for the distribution Gt(x) are formulated in the following lemmas. 

Lemma 3.1 Define ~(t) as the sum ~(t) = a~ + a~ + ... + ai, with the 
variables aJ independent and identically exponentially distributed, 

aJ '" exp (a) . (37) 

Then the distribution of ~(t) can be written as 

G ( ) =1- -ax ~ (ax)k = 1- r(t, ax) 
t x e 6 k! r(t) (38) 

with r(t, z) = ft'o yt-le- y dy the incomplete Gamma-function. 

Proof. Trivial. 
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Lemma 3.2 Define ~(t) as the sum ~(t) = a-r + a-§ + ... + a-r , with the 
variables a-j independent and identically normally distributed, 

(39) 

Then the distribution of ~(t) is a convolution of 

(i) a Gamma distribution with parameters a = ~ and f3 = 2e, and 

(ii) a compound Poisson distribution with parameter A. = ~ and with claim 

size exponentially distributed with parameter 2e. 

For the probability density, we have 

ta.2 x 
1 --2 - -2 ( X )t/4-1/2 (vxta2) 

gt(x) = 2~2 e 2~ 2~ ta2 I t / 2- 1 e (40) 

Proof. We start by calculating the Laplace transform Lt(u) of gt(x). A 
straightforward calculation gives 

i: e -u s2 d~ ( s ~ a) 

Jl : 2u~2 exp { ~22 (1 + ~u~2 - 1) } , ( 41) 

and thus 

( 1 )t/2 {ta2 ( 1 )} 
Lt(u) = 1 + 2u~2 exp 2~2 1 + 2u~2 - 1 , (42) 

which proves the convolution. 

Next, in order to find the denstiy function, we work out the Laplace inversion. 
At this stage, use can be made of the integral identity 

(43) 

A few transformations now lead to expression (40). 
Q.E.D. 
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Combining the methods as described in section 2 with these distributional 
results, we will be able to calculate the bounds for the present value of a 
series of payments with stochastic interest rates and with stochastic volatility. 
Where needed, we will use the classical notation <I>(x) for the cumulative 
probabilities of the standard normal distribution. 

4 Upper bound 

We now return to the real problem of this contribution, the present value of 
a stochastic cash flow 

A (44) 

n 
~ a e-Y(t)+~~(t) 
~ t , (45) 
t=l 

where all payments aj (j = 1, ... , n) are non-negative, and with the variables 
modeled as specified in the introduction. 

Since both interest rate and volatility are stochastic, we will need two suc­
cessive applications of the results of the previous sections when calculating 
upper bounds. Indeed, in the first step we calculate an upper bound conditi­
onally on all volatilities ; the second step is needed in order to eliminate this 
conditioning. 
The results seem to be interesting even if the models of the volatility are not 
realistic in practical situations (see [6]), and they represent a first result on 
comonotonic bounds for scalar products of stochastic vectors. 

4.1 General result 

We will start by presenting the boundary variable for the present value A, 
and continue by calculating the stop-loss premiums and distribution. 

Proposition 4.1 Let U and V be independent variables which are uniformly 
distributed on [0, 1], and define the variable 

(46) 
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with conditional distribution 

Ht,upp(xlu) = Prob [Wupp(t) ~ xlU = u]. (47) 

We then have 

n 

A < A ~f ""' A, e- (ILl + ... + ILt) + Xt,upp(U, V) _cx upp - L..-J u.t (48) 
t=l 

with Xt,upp(U, V) defined by its realizations Xt,upp(u, v) = Ht~~pp(vlu). 

Proof. We first apply proposition 2.2 (decreasing functions) to A, with res­
pect to the variables Y(t) and conditionally on the volatilities (TI, ... , (Tn. This 
gives 

A < A ';;! ~ a e-Ft-l(l - U)+p~(t) 
_CX L..-J t , (49) 

t=l 

where U is a uniformly distributed variable on [0, 1], and where 

F, (x) = If> (x - (ILl + ... + ILt)) 
t JI;(t) 

(50) 

The sum A can be rewritten as 

A- - ~ -(ILl + ... + ILt) + JI;(t)If>-I(U)+~I;(t) 
- L..-Jate , (51) 

t=l 

or 
n 

A = Late -(ILl + ... + ILt) + Wupp(t) , (52) 
t=l 

where we defined Wupp(t) as in equation (46). 

A second application of proposition 2.2 (increasing functions), now for A with 
respect to the variables Wupp(t) gives the result displayed in (48). 

Q.E.D. 

Starting from the previous result, we arrive at the stop-loss premiums and 
distribution, as summarized in the following proposition. 
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Proposition 4.2 Consider the quantity Aupp as mentioned in proposition 4.1. 
The stop-loss premium for this variable can be calculated as 

(53) 

the distribution follows as 

Fupp(k) = Prob [Aupp :s; k] = area(R(k)) , (54) 

where the region R(k) c {(u,v)IO :s; u:S; 1,0:S; v:S; I} is the collection of all 
combinations of u and v for which 

n 
Late-(J.tl+ ... +J.tt)+Xt,upp(u,v) < k. (55) 
t=l 

4.2 Calculation of the values Xt,upp(u, v) 
In order to find an expression for the values Xt,upp(u,v), we first have to de­
termine the distribution function Ht,upp(xlu) of the variable Wupp(t) of equa­
tion (46). Since this variable Wupp(t) is a specific transformation of the vari­
able ~(t), the distribution Ht,upp(xlu) of the first variable can be deduced by 
means of the distribution Gt(x) of the second one (see section 3). 

The following result can be applied : 

Proposition 4.3 Consider a non-negative variable X for which the distribu­
tion F(x) = Prob[X :s; x] is known. For positive constants a and b, define the 
variables 

{ Zl = aX + bVX 
Z2 = aX - bVX 

with distribution functions denoted by 

12 
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Then 

H , (z) ~ { : ( (vi ~ + fa, - ,'a) ') 
if z :S 0 

if z > 0 , 
(58) 

and 

b2 
0 if z <--

F ( ( J ~ + 1:2 + ;a) 2) 

- 4a 

H2(z) = (59) 
- F ( ( J ~ + £ - ~ r) j b2 0 2 --<Z< a 4a2 2a 4a -

F ( ( J ~ + ~ + ;a) 2) if z > 0 . 

Proof. Both results can be found in a straightforward way, making use of 
the probability identity 

[( b)2 Z b2 ] Prob [aX ± b-IX :S z] = Prob -IX ± 2a :S -;;, + 4a2 . (60) 

Q.E.D. 

Making use of the results of this proposition, with a = ~, b = ±q,-l(u), and 
F(x) = Gt(x), the distribution Ht,upp(xlu) can be written down immediately: 

• if u 2: 1/2, 

10 ifx<O 

Ht,upp(xlu) = Gt (( J2x + q,-1(u)2 _ q,-l(u)f) (61) 

if x> 0 ; 
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• if U ::; 1/2, 

o 
1 

if x::; -2<P-1(U? 

Gt (( J2x + <p 1(u)2 - <p-l(U))2) 

Ht,upp(xlu) = -Gt ( ( J2x + <p-l(u)2 + <P-1(U)) 2) (62) 
1 

if - 2<P-l(U)2 < X ::; 0 

Gt ( (J2x + <p 1(U)2 _ <P-1(U)) 2) 

if x>O. 

A few calculations lead to the inverse Xt,upp(u, v) : 

• if U ~ 1/2, 

• if U ::; 1/2 and v ~ Gt (4<p-l(U)2) , 

Xt,upp(U,v) = ~Gtl(v) + <p-1(u)VGt 1(v) ; (64) 

• if u::; 1/2 and v < Gt (4<p-l(u)2) , 

Xt,upp(U,v) = C (65) 

with C E [_~<p-l(u)2,o[ defined implicitely as the solution of 

Gt ( ( V<P-1(u)2 + 2C _ <P-1(u)) 2) 

-Gt ( ( V<p-l(u)2 + 2C + <P-1(u)) 2) = v. (66) 
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5 Improved upper bound 

For the improved bound, we have to condition on a variable Z which has 
some resemblance to the investigated quantity. As in [4], we will choose linear 
combinations of the one-period compounded rates of return 

n 

Z = L,8t¥t (67) 
t=l 

and we use the notation Pt for the correlation between this variable Z and 
the compounded interest Y(t) = Y1 + ... + ¥t. Note that conditionally on this 
variable Z, again the variable Y(t) is normally distributed, with 

E[Y(t)IZ, 0'1, ... ,O't] 

Var[Y(t)IZ, 0'1, ... , O't] 

kZ\ (Z - E[Z]) 
(f.tl + ... + f.tt) + PtV ~(t) JVar[Z] 

(1- p;)~(t). 

The correlation Pt can be calculated as 

(68) 

(69) 

(70) 

Due to the stochasticity of the volatilities, of course this correlation is also 
stochastic. 

5.1 General result 

We keep the same structure, starting by presenting the boundary variable for 
the present value A, and continuing by calculating the stop-loss premiums 
and distribution. 

Proposition 5.1 Let Ua , Ub and V be independent variables which are uni­
formly distributed on [0, 1], and define the variable 

with conditional distribution 
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We then have 

n 

A < A ~f '" ", e- (f-tl + ... + f-tt) + Xt,upp*(Ua, Ub, V) _cx upp* - ~ u.t (73) 
t=1 

Proof. We first apply proposition 2.2 (decreasing functions) to A, with res­
pect to the variables Y(t) and conditionally on the volatilities 0-1 , ... , o-n. This 
gives 

A < A-* ~ ~ -Ft-1i(1- U)+~E(t) 
_cx - ~ate , (74) 

t=1 

where U is a uniformly distributed variable on [0,1]' and where due to equa­
tions (68) and (69) 

The sum .A * can be rewritten as 

n 
.A* = L ate-(f-tl + ... + f-tt)+~E(t) (76) 

t=1 

e-PtVE(t)if!-I(Ua) + V1- p;VE(t)if!-I(Ub) , (77) 

or 
n 

.A* = L ate-(f-tl + ... + f-tt) + Wupp*(t) , (78) 
t=1 

where we defined Wupp*(t) as in equation (71). 

A second application of proposition 2.2 (increasing functions), now for .A* 
with respect to the variables Wupp*(t) now gives the result of (73). 

Q.E.D. 

Starting from the previous result, we arrive at the stop-loss premiums and 
distribution, as summarized in the following proposition. 
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Proposition 5.2 Consider the quantity A upp* as mentioned in proposition 5.1. 
The stop-loss premium for this variable can be calculated as 

= 11 dUa 11 dUb 11 dv 

(~"te -(Ml + ... + Mt) + Xt,upp. (u", Ub, v) - k) + 

the distribution follows as 

Fupp*(k) = Prob [Aupp* :s: k] = volume(R*(k)) , (80) 

where the region R*(k) C {(ua,ub,v)I0:S: ua:S: l,O:S: Ub:S: l,O:S: v:S: I} is the 
collection of all combinations of UaJ Ub and v for which 

n 
I>~te-(J.L1+ ... +J.Lt)+Xt,upp*(Ua,Ub'V) < k. (81) 
t=l 

5.2 Calculation of the values Xt,upp*(ua , Ub, v) 
As can be seen in equation (71), the variable Wupp*(t) no longer depends on 
the variable 1;(t) alone, but on a combination ofthe n variables 1;(1), ... , 1;(n) 
through the correlation Pt. As a consequence, the derivation of the distribu­
tion Ht,upp*(xlua, Ub) and thus of Xt,upp*(ua, Ub, v.) becomes more and more 
complicated as the linear combination for Z is more complete. This should 
not be surprising, since the improved upper bound becomes closer to the 
original variable A, the more the variables Z and A are alike. Under the pre­
sent circumstances, this corresponds with a linear combination as complete 
as possible. 

We will show the effect of a "small" conditioning by giving the results in 
case we take (32 = ... = (3n = 0 and (31 = I, or Z = Y(l). This choice for 
the conditioning is not unreasonable, since this means that we condition on 
the rate of return for the first period, for which a forecast seems to be more 
reliable than for periods later on. 
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When conditioning on Z = Y(l), the correlation Pt (see equation (70)) can 
be simplified to 

~ 
Pt=V~· 

In this case, the variable Wupp*(t) can be written as 

~L:(t) - <1>-1 (Ua )VL:(l) + ip-1 (Ub) VL:(t) - L:(1) 

(82) 

WA(t) + WB(t) (83) 

where due to the assumptions about the volatilities the variables 

WA(t) = ~L:(1) - <1>-1 (Ua)VL:(l) 

and WB(t) = ~ (L:(t) - L:(1)) + <1>-l(Ub)VL:(t) - L:(1) 

are independent. 

If we use the notations 

and 

(84) 

(85) 

(86) 

(87) 

it follows from (83) that the convolution of these two distributions results in 
the distribution Ht,upp*(xlua, Ub) of Wupp*(t). 

In order to calculate the distributions of (86) and (87), proposition 4.3 can be 
used with a = ~, b = ±<1>-l(ua) and F(x) = G1(x) for Ht,A(xlua), and with 
a = ~, b = ±<1>-l(Ub) and F(x) = Gt-1(x) for Ht,B(xlub). 

We find 

• if U a .s 1/2, 
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• if U a ~ 1/2, 

o 
1 

if x ~ -2"<1>-1(ua)2 

G1 ((J2X+<1> 1(Ua)2+<1>-1(Ua))2) 

Ht,A(xlua) = -G1 ( (J2x + <1>-1 (Ua)2 - <1>-1 (Ua) ) 2) (89) 

if - ~<1>-1(Ua)2 < X ~ 0 

G1 ((J2X+<1> 1(Ua)2+<1>-1(Ua))2) 

ifx>O; 

• if Ub ~ 1/2, 

o 
if x ~ _~<1>-1(Ub)2 

Gt- 1 ( ( J2x + <1>-1 (Ub)2 - <1>-1 (Ub) ) 2) 

Ht,B(xlub) = -Gt- 1 ((J2X+<1>-1(Ub)2+<1>-1(Ub))2) (90) 

if - ~<1>-1(Ub)2 < X ~ 0 

Gt- 1 ( ( J2x + <1> 1 (Ub)2 - <1>-1 (Ub)) 2) 

if x>O; 

• if Ub ~ 1/2, 

6 Numerical illustration 
In this last section, we want to examine the accuracy of the upper bounds in 
comparison with the exact present value. In order to do so, we will investigate 
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the first upper bound (the bound with the smallest precision) for three cash­
flows with different structure : 

• at = 10 for t = 1, ... , 10 ; 

• at = t for t = 1, ... ,10 ; 

• at = 11 - t for t = 1, ... , 10. 

For the normal distribution of the stochastic interest rate (see equation (3)), 
we choose !-Lt = 0.07 for each time point t ; the squared stochastic volatility 
(see equation (35)) is assumed to be exponentially distributed with parameter 
20, i.e. with mean 0.05. 

In figures 1, 3 and 5 (matching the three cases mentioned above) the distribu­
tion of the upper bound is depicted, together with an empirical distribution 
of the original present value obtained by Monte-Carlo simulation. In each of 
the three cases we see that the upper bound performs rather well and thus 
provide a good approximation of the exact distribution of the present value. 

In order to show the calculation method of the distribution function as given 
in equation (54), figures 2, 4 and 6 give an idea of how the region R(k) looks 
by graphing the surface 

n 
sum( u, v) = Late - (!-Ll + ... + !-Lt) + Xt,upp( u, v) 

t=l 

with 0:::; U :::; 1 and 0 :::; v :::; 1 for the same three cash-flows. 
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gure 1: Distribution function of the upper bound Aupp (black) for at = 10 (t = 
... ,10), compared to a simulated version of the distribution of A (grey). 

Figure 2: The surface sum(u, v) (see (92)) for at = 10 (t = 1, ... , 10). 
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gure 3: Distribution function of the upper bound Aupp (black) for at = t (t = 
... ,10), compared to a simulated version of the distribution of A (grey). 

Figure 4: The surface sum(u, v) (see (92)) for at = t (t = 1, ... , 10). 
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19ure 5: Distribution function of the upper bound Aupp (black) for at = 11 - t 

= 1, ... , 10), compared to a simulated version of the distribution of A (grey). 
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Figure 6: The surface sum(u, v) (see (92)) for at = 11 - t (t = 1, ... ,10). 
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