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Robust Regression in Stata

Vincenzo Verardi∗ and Christophe Croux †.

Abstract

In regression analysis, the presence of outliers in the data set can strongly distort the classical
least squares estimator and lead to unreliable results. To deal with this, several robust-to-outliers
methods have been proposed in the statistical literature. In Stata, some of these methods are
available through the commands rreg and qreg. Unfortunately, these methods only resist to some
specific types of outliers and turn out to be ineffective under alternative scenarios. In this paper
we present more effective robust estimators that we implemented in Stata. We also present a
graphical tool that allows recognizing the type of existing outliers.

KEYWORDS: S-estimators, MM-estimators, Outliers, Robustness
JEL CLASSIFICATION: C12, C21, C87.

1 Introduction

The objective of linear regression analysis is to study how a dependent variable is linearly related to

a set of regressors. In matrix notation, the linear regression model is given by:

y = Xθ + ε (1)

where, for a sample of size n, y is the (n× 1) vector containing the values for the dependent variable,

X is the (n×p) matrix containing the values for the p regressors and ε is the (n×1) vector containing

the error terms. The (p × 1) vector θ contains the unknown regression parameters and needs to be

estimated. On the basis of the estimated parameter θ̂, it is then possible to fit the dependent variable

by ŷ = Xθ̂, and estimate the residuals ri = yi − ŷi, for i = 1 ≤ i ≤ n. Although θ can be estimated

in several ways, the underlying idea is always to try to get as close as possible to the true value by

reducing the magnitude of the residuals, as measured by an aggregate prediction error. In the case

of the well-known ordinary least squares (LS), this aggregate prediction error is defined as the sum of

squared residuals. The vector of parameters estimated by LS is then
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θ̂LS = arg min
θ

n∑

i=1

r2
i (θ) (2)

with ri(θ) = yi − θ0 − θ1Xi1 − ... − θ1Xip for 1 ≤ i ≤ n. This estimation can be performed in Stata

using the regress command. A drawback of LS is that, by considering squared residuals, it tends

to award an excessive importance to observations with very large residuals and, consequently, distort

parameters’ estimation in case of existence of outliers.

The scope of this paper is first, to describe regression estimators that are robust with respect to

outliers and, second, to propose Stata commands to implement them in practice. The structure of

the paper is the following: we briefly present, in Section 2, the type of outliers that can be found in

regression analysis and introduce the basics of robust regression. We recommend to use high-breakdown

point estimators (i.e. estimators that resist to a contamination of up to 50% of the observations), which

are known to be resistant to outliers of different types. In Section 3, we describe them and provide

a sketch of the Stata code we implemented to estimate them in practice. In Section 4 we give an

example using the well-known Stata auto dataset. In Section 5 we provide some simulation results

to illustrate how the high-breakdown point estimators outperform the robust estimators available in

Stata. Finally, in Section 6 we conclude.

2 Outliers and robust regression estimators

In regression analysis, three types of outliers influence the LS estimator. Rousseeuw and Leroy (1987)

define them as vertical outliers, bad leverage points and good leverage points. To illustrate this termi-

nology, consider a simple linear regression as shown in Figure 1 (the generalization to higher dimensions

is straightforward). Vertical outliers are those observations that have outlying values for the corre-

sponding error term (the y-dimension) but are not outlying in the space of explanatory variables (the

x-dimension). Their presence affects the LS-estimation and in particular the estimated intercept. Good

Leverage points are observations that are outlying in the space of explanatory variables but that are

located close to the regression line. Their presence does not affect the LS-estimation but it affects

statistical inference since they do inflate the estimated standard errors. Finally, Bad Leverage points

are observations that are both outlying in the space of explanatory variables and located far from the

true regression line. Their presence affects significantly the LS-estimation of both the intercept and

the slope.

Edgeworth (1887) realized that due to the squaring of the residuals, LS becomes extremely vulnerable

to the presence of outliers. To cope with this, he proposed a method consisting in minimizing the sum

of the absolute values of the residuals rather than the sum of their squares. More precisely, his method
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Figure 1: Outliers in regresson analysis

defines the L1 or median regression estimator as

θ̂L1 = arg min
θ

n∑

i=1

|ri(θ)| (3)

The median regression estimator is available in Stata via the qreg command as a standard function.

This estimator does protect against vertical outliers but not against bad leverage points. It has an

efficiency of only 64% at a Gaussian error distribution (see Huber, 1981).

Huber (1964) generalized median regression to a wider class of estimators, called M-estimators, by

considering other functions than the absolute value in (3). This allows to increase Gaussian efficiency

while keeping robustness with respect to vertical outliers. An M-estimator is defined as

θ̂M = arg min
θ

n∑

i=1

ρ(
ri(θ)

σ
) (4)

where ρ(·) is a loss function which is even, non decreasing for positive values and less increasing than the

square function. To guarantee scale equivariance (i.e. independence with respect to the measurement

units of the dependent variable), residuals are standardized by a measure of dispersion σ. M-estimators

are called monotone if ρ(·) is convex over the entire domain and redescending if ρ(·) is bounded1.

1This terminology is related to ρ′.
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The practical implementation of M-estimators uses an iteratively reweighted least squares algo-

rithm. To simplify, suppose that σ is known and define weights ωi = ρ(ri/σ)/r2
i , then equation (4)

can be rewritten as

θ̂M = arg min
θ

n∑

i=1

ωir
2
i (θ), (5)

which is a weighted least-squares estimator. The weights ωi are however a function of θ and are thus

unknown. Using an initial estimate θ̃ for θ, the weights can be computed and serve as the start of an

iteratively reweighted least squares algorithm. Unfortunately, the latter is guaranteed to converge to

the global minimum of (4) only for monotone M-estimators which are not robust with respect to bad

leverage points.

In Stata, the rreg command computes a highly efficient M-estimator. The loss function used is a

Tukey Biweight function defined as

ρ(u) =





1−
[
1− (

u
k

)2
]3

if |u| ≤ k

1 if |u| > k
(6)

where k = 4.685. The starting value of the iterative algorithm θ̃ is taken to be a monotone M-estimator

with a Huber ρ(·) function:

ρ(u) =





1
2 (u)2 if |u| ≤ c

c |u| − 1
2c2 if |u| > c

(7)

where c = 1.345. Moreover, to give protection against bad leverage points, observations associated to

Cook distances larger than 1, receive a weight zero.

Unfortunately, the rreg command has not the expected robustness properties for two main reasons.

First, Cook distances only manage to identify isolated outliers and are inappropriate in case of existence

of clusters of outliers, where one outlier can mask the presence of another (see Rousseeuw and Van

Zomeren, 1990). It can therefore not be guaranteed to have identification of all leverage points. Second,

the initial values for the iteratively reweighted least squares algorithm are monotone M-estimators that

are not robust to bad leverage points and may lead the algorithm to converge to a local instead of a

global minimum.

3 High Break-down point estimators

Full robustness can be achieved by tackling the regression problem from a different perspective. Recall

that the LS estimator is based on the minimization of the variance of the residuals. Hence, since the
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variance is highly sensitive to outliers, LS is largely influenced as well. For this reason, Rousseeuw

and Yohai (1987) propose to minimize a measure of dispersion of the residuals that is less sensitive to

extreme values than the variance2. They call this class of estimators the S-estimators. The intuition

behind the method is simple. For LS, the objective is to minimize the variance σ̂2 of the residuals. The

latter can be rewritten as 1
n

∑n
i=1

(
ri

σ̂

)2 = 1. As stated previously, the square value can be damaging

as it gives a huge importance to large residuals. Thus, to increase robustness, the square function

could be replaced by another loss function ρ which awards less importance to large residuals3. The

estimation problem would now consist in finding the smallest robust scale of the residuals. This robust

dispersion, that will be called σ̂S satisfies

1
n

n∑

i=1

ρ(
ri(θ)
σ̂S

) = b (8)

where b = E[ρ(Z)] with Z ∼ N(0, 1). The value of θ that minimizes σ̂S is then called an S-estimator.

More formally, an S-estimator is defined as:

θ̂S = arg min
θ

σ̂S(r1(θ), ..., rn(θ)) (9)

where σ̂S is the robust estimator of scale as defined in (8).

The choice of ρ(·) is crucial to have good robustness properties and a high Gaussian efficiency.

The Tukey Biweight function defined in (6), with k = 1.547, is a common choice. This S-estimator

resists to a contamination of up-to 50% of outliers. In other words, it is said to have a breakdown point

of 50%. Unfortunately, this S-estimator has a Gaussian efficiency of only 28.7 %. If k = 5.182, the

Gaussian efficiency raises to 96.6% but the breakdown point drops to 10%. To cope with this, Yohai

(1987) introduced MM-estimators that combine high-breakdown point and a high efficiency. These

estimators are redescending M-estimators as defined in (4), but where the scale is fixed at σ̂S . So an

MM-estimator is defined as

θ̂MM = arg min
θ

n∑

i=1

ρ(
ri(θ)
σ̂S

) (10)

The preliminary S-estimator guarantees a high breakdown point, and the final MM-estimate allows a

high Gaussian efficiency. It is common to use a Tukey Biweight ρ(·) function for both the preliminary

S-estimator and the final MM-estimator. The tuning constant k can be set to 1.547 for the S-estimator,
2Note that the Least Trimmed Squares estimator and the Least Median Squares estimator, introduced by Rousseeuw

(1984) rely on the same logic. We programmed these two estimators in Stata, and made available through the command

ltsregress and lmsregress.
3As before, ρ(·) is a function which is even, non decreasing for positive values, less increasing than the square with a

unique minimum at zero
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to guarantee a 50% breakdown point, and it can be set to 4.685 for the second step MM-estimator in

(10) to guarantee a 95% efficiency of the final estimator. If k = 2.697 for the second step, the efficiency

of the MM-estimator will be 70%. For computing the MM-estimator, the iteratively reweighted least

squares algorithm can be used, taking θ̂S as initial value. Once the initial S-estimate is computed,

θ̂MM comes at almost no additional computational cost. We programmed an S- and an MM-estimator

in Stata (with Tukey Biweight loss function) using the algorithm of Salibian-Barrera and Yohai (2006).

We present in the next section a sketch of the algorithm.

3.1 S-estimator and MM-estimator algorithm

The algorithm implemented in Stata for computing the S-estimator starts by randomly picking N

subsets of p observation (defined as p-subset) where p is the number of regression parameters to

estimate. For each p-subset, the equation of the hyperplane that fits all points perfectly is obtained

yielding a trial solution of (9). This trial value is more reliable if all p points are regular observations,

such that the p-subset does not contain outliers. The number N of sub-samples to generate is chosen

to guarantee that at least one p-subset without outliers is selected with high probability. As shown in

Salibian-Barrera and Yohai (2006), this can be achieved by taking

N =
⌈

log(1− Pclean)
log[1− (1− α)p]

⌉
(11)

where α is the (maximal) expected proportion of outliers, p is the number of parameters to estimate

and Pclean is the desired probability of having at least one p-subset without outliers among the N

subsamples4.

For each of the p-subsets, residuals are computed as the vertical distance separating each observation

from the hyperplane that perfectly fits the p-subset. On the basis of these residuals, a scale estimate

σ̂S is obtained as in (8) and this for each p-subset. An approximation for the final scale estimate σ̂S

is then given by the trial value that leads to the smallest scale over all p-subsets. This approximation

can be improved further by carrying some refinement steps, that bring the approximation even closer

to the solution of (9).

This algorithm is implemented in Stata and can be called using the MMregress function and invoking

the initial option. Once the S-estimator is obtained, the MM-estimator directly follows by applying

the iteratively reweighted least squares algorithm up to convergence. We provide a Stata command

(MMregress) to estimate a wide range of MM-estimators. It is described in details in section 6. As far

as inference is concerned, standard errors robust to heteroskedasticity are computed according to the

formulas available in the literature (see e.g. Croux, Dhaene and Horelbeke, 2008).
4The default values we use in the implementation of the algorithm are α = 0.2 and Pclean = 0.99.
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The need of calling on subsampling algorithms becomes Achille’s heel of the algorithm when several

dummy variables are present. Indeed, as stated by Maronna and Yohai (2000), subsampling algorithms

can easily lead to collinear sub-samples if various dummies are among the regressors. To cope with this,

Maronna and Yohai (2000) introduce the MS-estimator that alternates an S-estimator (for continuous

variables) and an M-estimator (for dummy ones), till convergence. This estimator is somehow out of

the scope of the paper and we thus do not elaborate on it here. It is however important to state that

we implemented this estimator in Stata and we can call it with the function MMregress invoking the

appropriate options (i.e. dummies and initial). This estimator can be particularly helpful in the

fixed effects panel data models, as suggested by Bramati and Croux (2007).

3.2 Outlier detection

An important think to stress is that, in addition to reducing the importance of outliers on the estimator,

robust statistics are also intended to identify atypical individuals. Once identified, they could be

analyzes separately from the bulk of data. Tho do so, it is important to recognize their type. This can

be easily achieved by calling on the graphical tool proposed by Rousseeuw and Van Zomeren (1990).

This graphical tool is constructed by plotting on the vertical axis the Robust Standardized Residuals,

defined as ri/σ̂S , with ri ≡ ri(θ̂S), to give an idea of outlyingness with respect to the fitted regression

plane. On the horizontal axis a measure of the (multivariate) outlyingness of the explanatory variables

is plotted. The latter is measured by the Mahalanobis distance defined as di =
√

(Xi − µ)Σ−1(Xi − µ)′

where µ is the multivariate location vector, Σ is the covariance matrix of the explanatory variables

and Xi the ith row-vector of matrix X, for i ≤ i ≤ n. Obviously both µ and Σ should be estimated

robustly if we want these distances to resist to the presence of outliers. Several methods have been

proposed to estimate robustly the Mahalanobis distances. In Stata, the command hadimvo is available

but, more robust estimates for the covariance matrix (such as the Minimum Covariance Determinant

estimator) are also available.

It is then possible to set the limits outside which individuals can be considered as outliers. For the

y-dimension, we set them to −2.25 and +2.25. These represent the values of the Standard Normal that

separate the 2.5% remotest area of the distribution from the central mass. For the x-dimension we set

the limit to
√

χ2
p,0.975, motivated by the fact that the squared Mahalanobis distance is distributed as

a χ2
p distribution under normality.
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4 Example

To illustrate the usefulness of the robust methods, we present an example based on the well-known stata

auto.dta dataset. More specifically, we regress the price of cars on the following set of characteristics:

the mileage, the headroom, the trunk space, the weight, the length, the turn circle, the displacement,

the gear ratio, four dummies identifying the categorical variable repair record in 1978, and a foreign

dummy identifying if the car is not built in the US. The first thing we do is identify outliers. For

this purpose we call on the graphical tool described in Section 3.2. The resulting plot is pictured in

Figure 2. Several features emerge. First, the Cadillac Seville is a bad leverage point. Indeed it is an

outlier in the horizontal as well as in the vertical dimension. This means that its characteristics are

pretty different from those of the bulk of data and its price is much higher than it should be according

to the fitted model. The Volkswagen Diesel and the Plymouth Arrow are large good leverage points

since they are outlying in the horizontal dimension but not on the vertical one. This means that their

characteristics are rather different from the other cars however their price is in accordance with what

the model predicts. Finally the Cadillac Eldorado, the Lincoln Versaille, the Lincoln Mark V, the

Volvo 260 and some others are standard in their characteristics but are more expensive than the model

would suggest. They correspond to vertical outliers.
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Volvo 260
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Subaru

VW Diesel
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Figure 2: Regression outliers in the ”auto.dta” Stata dataset
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Are these outlying observations sufficient to distort classical estimations? Since several vertical

outliers are present as well as a severe bad leverage point, there is a serious risk that the least squares

estimator becomes strongly attracted by the outliers. To illustrate this, we compare the results obtained

using the recommended high breakdown point estimator MMregress with those obtained using regress,

M-estimator (rreg) and median regression (qreg). The differences are, as expected, important. We

present the results in Table 1.

Table 1: Determinants of car prices in the ”auto.dta” Stata dataset.

Dependent: Price in US$ regress qreg rreg MM(0.70) MM(0.95)

Mileage (mpg) −43.95
(0.52)

−44.45
(0.55)

−68.91
(0.92)

− 44.88
(−1.67)

−46.74
(1.56)

Headroom (in.) −689.40∗
(1.72)

−624.19
(1.71)

∗ −739.30∗∗
(2.09)

−311.96∗∗
(2.52)

−440.06∗∗∗
(4.10)

Trunk space (cu. ft.) 74.29
(0.74)

37.50
(0.40)

114.53
(1.29)

186.60∗∗∗
(7.10)

128.98∗∗∗
(3.53)

Weight (lbs.) 4.67
(3.19)

∗∗∗ 2.89∗∗
(2.10)

2.59
(1.99)

∗ 1.03∗∗∗
(5.29)

0.37
(0.62)

Length (in.) −80.66
(1.86)

∗ −48.78
(1.17)

−27.50
(0.72)

−33.74∗∗
(2.57)

0.03
(0.00)

Turn Circle (ft.) −143.71
(1.11)

30.22
(0.30)

−104.26
(0.91)

10.51
(0.48)

−23.79
(0.69)

Displacement (cu. in.) 12.71
(1.45)

9.79
(1.27)

11.34
(1.46)

2.31
(0.98)

2.51
(0.58)

Gear Ratio 115.08
(0.09)

92.28
(0.08)

917.19
(0.82)

492.467
(0.89)

370.20
(0.99)

Foreign 3064.52∗∗∗
(2.89)

2496.04∗∗
(2.38)

2326.91∗∗
(2.48)

−91.66
(0.19)

763.91∗
(1.89)

rep78==2 1353.80
(0.79)

−355.92
(0.27)

465.98
(0.31)

5.99
(0.02)

31.45
(0.11)

rep78==3 955.44
(0.59)

19.24
(0.02)

488.23
(0.34)

−720.50∗∗∗
(2.76)

−286.70
(1.17)

rep78==4 976.63
(0.59)

241.79
(0.18)

813.11
(0.55)

−275.89
(1.04)

390.71
(1.49)

rep78==5 1758.00
(0.97)

1325.18
(0.91)

1514.13
(0.95)

606.77∗
(1.70)

359.01
(0.86)

Constant 9969.75
(1.40)

4083.51
(0.60)

2960.68
(0.47)

5352.18∗∗∗
(3.10)

3495.97
(1.43)

Absolute value of t statistics in parentheses.

Significant at ***1%, ** 5%, * 10%

Let’s compare the results. First the mileage, headroom, trunk space and length seem to be unim-

portant in explaining prices (at a 5% level) when looking at the OLS, median and M-estimators (i.e.

regress, qreg and rreg). However, when the influence of outliers (and especially of the bad leverage

point) is taken into account (i.e. MM(0.7) column), they turn out to be significantly different to zero.

If we consider a more efficient estimator (i.e. MM(0.95) column) weight and length become again

insignificant. The weight variable is flagged as significant by most specifications (though the size of
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effect is very different). The turn, displacement and gear ratio variables turn out to be insignificant in

all specifications. The foreign dummy is insignificant only using the most robust estimators.

5 Simulations

Several recent articles have proven the theoretical properties of the estimators described in the previous

sections. In this paper we will compare the performances of the Stata codes we implemented with

the previously available robust commands and LS. To do so we run some simulations according to

the following setup. We start by creating a dataset (of size n = 1000) by randomly generating 5

independent explanatory continuous variables (labelled X1, . . . , X5) and an error term (e) from six

independent univariate normal distributions with mean zero and unit variance. A y variable is then

generated according to the formula yi = β0+
∑5

j=1 βjXij +ei where β0 = 0 and βj = 1 for j = 1, . . . , 5.

This dataset is called the clean dataset. We then contaminate the data by replacing randomly 10%

of the X1 observations without modifying y. These contaminated points are generated from a normal

distribution with mean 5 and standard deviation 0.1 and are bad leverage points. We call this the

contaminated dataset. We then repeat this procedure 1000 times and each time we estimate the

parameters using LS, L1, M, S and MM-estimators (with a 95% and a 70% efficiency). On the basis

of all the estimated parameters, we measure the bias (i.e. the average of the estimated parameters

minus the true value) and the mean squared error (i.e. the variance of the estimated parameters plus

the square of the bias). The results are presented in Table 2. We do not present the results associated

to the clean sample since all estimation methods lead to comparable outcomes and very low biases.
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Table 2: Simulated Bias and MSE of LS, L1, M and MM-estimators

Estimation method β1 β2 β3 β4 β5 β0

LS (reg) Bias 0.7149 0.0015 0.0010 0.0002 0.0016 -0.1440

MSE 0.5118 0.0017 0.0018 0.0019 0.0018 0.0223

L1 (qreg) Bias 0.6369 0.0006 0 .0013 0.0004 0.0011 -0.1281

MSE 0.4071 0.0026 0.0024 0.0027 0.0027 0.0188

M (rreg) Bias 0.6725 0.0012 0.0010 0.0005 0.00167 -0.1353

MSE 0.4532 0.0018 0.0018 0.0019 0.0019 0.0200

MM (MMregress, eff(0.95)) Bias 0.6547 0.0011 0.0009 0.0010 0.00167 -0.1318

MSE 0.4298 0.0018 0.0018 0.0020 0.0020 0.0190

MM (MMregress, eff(0.70)) Bias 0.0867 0.0012 0.0028 -0.0008 -0.0010 -0.0164

MSE 0.0236 0.0015 0.0015 0.0015 0.0014 0.0024

Simulation setup: sample size=1000, simulations=1000, contamination=10%.

The results of the simulations clearly show that, for this contamination setup, the less biased

estimator among those we considered is the MM-estimator with an efficiency of 70%. Its bias and MSE

are respectively of 0.087 and 0.024 for β1 and of -0.016 and 0.002 for β0. As a comparison, the bias

and MSE of LS are 0.715 and 0.512 for β1 and -1.144 and 0.02 for β0. For the other coefficients the

performances of all estimators are comparable. It is important to stress that if we set the efficiency

of MM to 95%, its performance in terms of bias worsens too much and would thus not be desirable.

The L1 and M-estimators (computed respectively with the qreg and rreg commands) behave rather

poorly and have a bias and an MSE comparable to that of LS.

6 The MMregress command

The MMregress command computes the high breakdown point regression estimators, described in

Section 3, and their standard errors. The general syntax for the command is:

MMregress varlist [if exp] [in range] [, eff(#) dummies(varlist) noconstant outlier graph replic(#)

init]

The first optional parameter is eff, which allows to fix the efficiency of the MM-estimator. It

can take any value between 0.287 and 1; the higher its value, the more efficient the MM-estimator.

While the breakdown point of the MM-estimator is always 50%, its bias increases with its efficiency.

Therefore, to have a good compromise between robustness and efficiency of the MM-estimator, we take
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as a default value eff=70%. The dummies option allows to declare which variables are dichotomous.

In case dummies is declared, the initial estimator will be the MS rather than the S-estimator. Not

declaring this option when dummy variables are present may cause the algorithm for computing the

S-estimator to fail (see section 3.1).

The third option, noconstant, states that no constant term has to be considered in the regression.

The fourth option, outlier, provides an estimate of robust standardized residuals, and of robust

Mahalanobis distances. These can be used to construct a diagnostic plot, as discussed in Section 3.2,

and the option graph calls on this graphical tool for outliers identification. Note that if there is not

at least one continuous variable among the explanatory, an error message is returned. The robust

standardized residuals are nevertheless computed. The option replic allows to fix the number of p-

subsets to consider in the initial steps of the algorithm. The user can use equation (11) to change the

value of N in accordance to his desired level of Pclean and/or α. The default value for N corresponds

to Pclean = 0.99 and α = 0.2. Finally, the option init will return as output the initial S-estimator, or

the MS-estimator if the option dummy is invoked, instead of the final MM-estimator.

7 Conclusion

The strong impact of outliers on the least square regression estimator is known for a long time.

Consequently, a large literature has been developed to find robust estimators that cope with the

”atypical” observations, and have a high breakdown point. At the same time, the statistical efficiency

of the robust estimators needs to remain sufficiently high. In recent years, it seems that a consensus has

emerged to recommend the MM-estimators as the best suited estimation method, since they combine

a high resistance to outliers and high efficiency at regression models with normal errors.

On the other hand, robust methods were not so often used by applied researchers, mainly because

their practical implementation remained quite cumbersome. Over the last decade, efficient and rel-

atively fast algorithms for computing robust estimators, including MM-estimators, were developed.

Nowadays, the use of robust statistical methods becomes much more widespread in the applied sci-

ences, like engineering and chemistry. By providing the Stata code, we make robust regression methods

also available for the econometrics research community.

In this paper we summarize the properties of the best known robust estimation procedures and

provide Stata code to implement them. We create the MMregress command (based on external func-

tions that can be run separately). We furthermore show how this estimator outperforms all ”robust”

estimators available in Stata by mean of a modest simulation study. We hope that this paper will con-

tribute to the development of further robust methods in Stata. In particular, development of robust

12



procedures for Panel Data and time series models would be of major interest for applied economic

research.
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