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Abstract

Well-being consists of many dimensions such as income, health and education. A

society exhibits greater dependence between its dimensions of well-being when the

positions of the individuals in the di¤erent dimensions are more aligned or corre-

lated. Di¤erences in dependence may lead to very di¤erent societies, even when the

dimension-wise distributions are identical. I propose to use a copula-based frame-

work to order societies with respect to their dependence. A class of measures of

dependence is derived to which the multidimensional rank correlation coe¢ cient be-

longs. I illustrate the usefulness of the approach by showing that Russian dependence

between three dimensions of well-being has increased signi�cantly between 1995 and

2003. Unfortunately, the aspect of dependence is missed by all composite well-being

measures based on dimension-speci�c summary statistics such as the popular Human

Development Index (HDI).

Keywords: copula, complex inequality, concordance, HDI, multidimensional inequal-

ity, Russia, well-being.

JEL Classi�cation: D31, D63, I31, O50.

�Koen Decancq: Center for Economic Studies, Katholieke Universiteit Leuven, Naamsestraat 69, B-
3000 Leuven, Belgium. E-mail: koen.decancq@econ.kuleuven.be.
This is a revised version of a chapter of my Ph.D. dissertation. I thank André Decoster, James E.
Foster, Luc Lauwers, Erwin Ooghe, Casey Quinn, Erik Schokkaert, Suman Seth, Tom Van Ourti, John
A. Weymark and participants at seminars in Leuven, Berlin, Montreal, Verona, Oxford, and Louvain-La-
Neuve for very helpful comments and suggestions to this or an ealier version of the paper. All comments
are warmly welcomed. Remaining errors are mine.
I also thank the Russia Longitudinal Monitoring Survey Phase 2, funded by the USAID and NIH (R01-
HD38700), Higher School of Economics and Pension Fund of Russia, and provided by the Carolina
Population Center and Russian Institute of Sociology for making these data available.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


�Consider institutional schemes under which half the population are poor and

half have no access to higher education. We may plausibly judge such an order

to be more unjust when the two groups coincide than when they are disjoint

(so that no one bears both hardships).�

(Pogge 2002)

1 Introduction

Individual well-being is multidimensional. When individuals consider how well-o¤ they

are, they typically take into account their outcomes in many dimensions of life, such as

their income, health or schooling to name a few. Individuals implicitly aggregate and

trade-o¤ all these outcomes to obtain an overall judgment of their well-being.

If we want to take this multidimensionality into account when considering how well-o¤ a

society is as a whole, we face a double aggregation problem: one across the dimensions of

well-being and one across the individuals of the society. To do so, two approaches exist in

the literature (Dutta, Pattanaik, and Xu 2003). One approach is to �rst aggregate across

the di¤erent dimensions for every individual to obtain a measure of her well-being, and

then in a second step to aggregate the resulting well-being measures across the individu-

als. Such an approach is in line with standard welfare economic theory, but poses heavy

requirements on the data, since information on many dimensions has to be collected for

the same (representative) individuals. An alternative approach �rst calculates summary

statistics for every separate dimension, which are afterwards aggregated across the dif-

ferent dimensions. This approach has the advantage that it allows the dimension-speci�c

summary statistics to be based on di¤erent data sources. However, this �exibility comes

at a price: an important aspect of the information gets lost, namely the correlation or

dependence between the positions of the individuals across the di¤erent dimensions.

Compare, for instance, the following two societies. In the �rst society, there is one

individual who is top ranked in all dimensions of well-being, another individual second

ranked in all dimensions and so on. This society, reminiscent of a feudal or caste-

system, is arguably less equitable than another one with exactly the same distributional

pro�le in each dimension, but where some individuals are performing relatively well on

some dimensions and other individuals on other dimensions. Despite the di¤erence in

the correlation or dependence between the dimensions, both societies are judged to be

equally well-o¤ by all well-being measures that summarize �rst the information in every

dimension, and then aggregate across dimensions. The insensitivity to dependence is
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an important drawback of all well-being measures based on summary statistics of their

dimensions. The most prominent example of such a measure is the popular Human

Development Index (HDI), which includes the society�s per capita material standard of

living, its average life expectancy and its average educational outcomes.

The study of dependence is not only interesting to quantify the blind spot of multidimen-

sional well-being measures such as the HDI, the dependence between the dimensions of

well-being per se plays a central role in the pluralistic theory of distributive justice. The

political philosopher Michael Walzer (1983) distinguishes in his theory between simple

and complex inequality. Whereas simple equality requires an egalitarian distribution in

some central dimensions of well-being, complex equality is achieved when the dimensions

are autonomous or independent. In his words, �no individual�s standing with regard to

one good can be undercut by his standing with regard to some other good�(Walzer 1983).

A society with maximal complex equality is one in which the dimensions are completely

independent of each other.1 Walzer argues that rich individuals, for instance, should be

prohibited to use their high income to buy votes, to obtain better health care or educa-

tional outcome and so on. A caste system, on the other hand, can be seen as an example

of a society with maximal complex inequality. Yet, when it comes to ordering societies in

between these extremes with respect to their complex inequality or to measuring complex

equality, the theory o¤ers limited guidance. Swift (1995) states �: : : one must at least

say that people are more [complex] equal if those who score high with respect to some

goods score low with respect to others than if the same people score high (and low) on

all�and Miller (1995) suggests that there is more complex inequality in a society when

there are more individuals who outrank each other in all dimensions of well-being.

This essay proposes an applicable framework to order and quantify the dependence of

societies. In this framework, the copula function will play a central role. The copula allows

one to disentangle the information on the dependence structure from the information on

the dimension-wise distributional pro�les in each dimension of well-being. In this way,

the dependence of societies with di¤erent dimension-wise distributional pro�les can be

compared. I study the properties of the copula-based concordance dependence relation

and characterize axiomatically a family of dependence measures which is consistent with

it.

Contrary to their popularity in actuarial sciences to describe and model multidimensional

1 The notion of complex equality has been criticized for being a very weak egalitarian concept. For
instance, Arneson (1995) argues that the ideal of complex equality can coexist with a large spread between
the top and bottom in the distributional pro�le of every separate dimension. Walzer admits that there
may exist inequalities in each dimension, but argues that given the multidimensionality of well-being,
individuals will perform relatively well in at least some dimensions, so that somehow the inequalities will
be compensated across dimensions.
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risks, copula-based approaches have been applied rarely in welfare economics. Dardanoni

and Lambert (2001) use a copula-based framework to measure the extent of re-ranking

taking place through taxation. The rank-correlation approach used by Fournier (2001)

to analyze the correlation between the incomes of spouses is also implicitly copula-based.

Bonhomme and Robin (2006) estimate various parametric copulas to describe the indi-

vidual earnings trajectories and income mobility in France. Quinn (2007, 2009) analyses

the correlation between health and income by a copula-based measure. All of these appli-

cations are limited to the two-dimensional setting. The multidimensional generalization

proposed in this essay moves beyond the particular two-dimensional setting.

The usefulness of the proposed copula-based partial dependence relations and a consistent

dependence measure is illustrated by addressing the question whether the dependence

between the dimensions of well-being has increased in the Russian Federation between

1995 and 2003. I use data from the Russian Longitudinal Monitoring Surveys (RLMS)

and focus on the three dimensions of well-being included in the HDI: standard of living,

health and schooling. The RLMS is a particularly rich panel data set that follows a

wide range of outcomes for the same individuals over a relatively long period and, hence,

allows one to quantify dependence between the dimensions in a detailed way. After the

collapse of the Soviet Union, Russia underwent a fast and far-reaching transition from

a centrally planned economy to a market economy. During this transition, the access

to social services such as health care, schooling and housing, which used to be wide-

spread and free, increasingly hinged on the ability to pay for them.2 These observations

suggest an increased dependence between the Russian dimensions of well-being after

the transition. Moreover, the copula-based analysis of dependence in the Russian society

after the transition sheds some light on a structural blind spot of the HDI: its insensitivity

to dependence between dimensions of well-being.

The essay is structured as follows. In the second section I introduce the copula and some

of its basic properties. In section three a partial dependence relation based on dominance

of the copula function is de�ned. Section four derives the family of dependence measures

that are consistent with the partial dependence relation, thereby addressing an open

question raised by Dardanoni and Lambert (2001, p. 808): �The interesting question,

to identify the class of copula-based indices which accord with our [concordance] partial

ordering, remains open and is clearly an important one for future research.� Promi-

nent members of the resulting class will turn out to be multidimensional generalizations

of existing two-dimensional association measures, such as Spearman�s rank correlation

2 Blam and Kovalev (2006), Besstremyannaya (2007) and Lokshin and Ravallion (2008) document
the recent commercialization in the Russian health care sector and Smolentseva (2007) investigates the
increasing educational inequalities due to the partial privatization of the schooling system.
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coe¢ cient. Section �ve illustrates the derived dominance criteria and measures of de-

pendence by testing whether the dependence in Russia has increased between 1995 and

2003. Section six concludes.

2 The copula

Let there be m relevant dimensions of well-being, such as material standard of living,

health and schooling. Consider a population of individuals 
. The random vector X =

(X1; : : : ; Xm) attaches to every individual in 
 an m-dimensional real well-being vector:

Let FX : Rm ! [0; 1] be the joint distribution function of the random vector X: Hence,

for each x in Rm; we have:

FX(x1; : : : ; xm) = Pr [X1 � x1 and : : : and Xm � xm] ; (1)

where Pr is a probability measure on 
:When there is no confusion about the underlying

random vector X, the joint distribution function will be simply denoted F: The marginal

distribution function of dimension j, Fj : R ! [0; 1] gives for every outcome xj the

probability that an individual from 
 has weakly less in dimension j than xj ,

Fj(xj) = Pr [Xj � xj ] : (2)

The position pj = Fj(xj) is a real number between 0 and 1 and can be interpreted as

the population variant of the rank of the individual having xj in the total distribution of

dimension j: The position vector p = (p1; : : : ; pm) of an individual lists her positions in all

dimensions of well-being. The individual with a position vector equal to (1; : : : ; 1) is top

ranked in all dimensions, whereas the individual with position vector (0; : : : ; 0) is in all

dimensions bottom ranked. A position vector is said to be outranked or vector-dominated

by another one, if it has a lower or equal position in all dimensions. Similarly, one position

vector outranks another one if it has a higher or equal position in all dimensions.

The random variable Pj attaches to every individual in 
 her position in the j-th di-

mension of well-being. The random variable Pj is obtained by transforming the original

random variable Xj by its marginal distribution function, so that Pj = Fj(Xj): From

probability theory, Pj is known to follow a standard uniform distribution: The random

vector P collects the random variables Pj so that P = (F1(X1); : : : ; Fm(Xm)). The joint

distribution function of P is a so-called copula function, denoted C:3 The copula function

will be referred to as CX when it is advantageous to make the identi�cation with the

3 See Schweizer and Sklar (1983), Joe (1997) or Nelsen (2006) for an extensive treatment of the
de�nition and properties of the copula function.
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underlying random vector X explicit. Formally, each copula function is de�ned as a joint

distribution function with standard uniform marginal distribution functions.

De�nition 1. Anm-dimensional copula function C : [0; 1]m ! [0; 1] is anm-dimensional

distribution function whose support is the m-dimensional unit hyperbox [0; 1]m and whose

one-dimensional marginal distribution functions follow a standard uniform distribution:

Hence for all p = (p1; : : : ; pm) in [0; 1]m:

C(p1; : : : ; pm) = Pr [P1 � p1 and : : : and Pm � pm] : (3)

The copula function maps every position vector p to the probability that a realization

from random vector P is outranked by that position vector. Similarly, the probability

that a realization from random vector P outranks a given position vector p, is given by

the joint survival function, denoted C : [0; 1]m ! [0; 1]: For all p in [0; 1]m; we say:

C(p1; : : : ; pm) = Pr [P1 � p1 and : : : and Pm � pm] :

Every copula function is a joint distribution function de�ned on the unit hyperbox [0; 1]m.

Conversely, Sklar (1959) has shown that each joint distribution function FX can be

written as a function of its m one-dimensional marginal distribution functions Fj and its

copula function CX :

Theorem 1 (Sklar, 1959). Let X be a random vector with joint distribution function

FX and marginal distribution functions F1; : : : ; Fm: Then there exists a copula function

CX such that for all x in Rm :

FX(x1; : : : ; xm) = CX (F1 (x1) ; : : : ; Fm (xm)) :

Moreover, CX is uniquely determined on Range (F1)� � � � �Range (Fm) :

The copula is the function that maps the marginal distribution functions on their joint

distribution function so that the joint distribution function FX (expression (1)) can be

retrieved from the marginal distributions F1; : : : ; Fm (expression (2)) and the copula

function CX (expression (3)). Conversely, Sklar�s result permits one to decompose the

m-dimensional joint distribution function into the marginal distribution functions and

the copula function. The marginal distribution functions represent the distribution of

the outcomes in the di¤erent dimensions of well-being. The copula function, on the

other hand, captures the dependence between the dimensions. After all, the more the

positions coincide across dimensions, the larger the probability that a realization from P

is outranked by a given position vector p and, hence, the larger the value of the copula
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function. In this essay, the copula function CX of the random vector X will be the central

building block in the analysis of the dependence in the society represented by X:

An intuitive example of a copula function is the independent copula C?(p) = p1�� � ��pm:
Using pj = Fj(xj) and Sklar�s theorem, the independence joint distribution function can

indeed be retrieved as the product of its marginal distribution functions. In the literature

many other parametric families of copulas have been studied, see Joe (1997) and Nelsen

(2006) for an overview.

The notion of dependence used in this essay is based on the alignments of the posi-

tions in the di¤erent dimensions, rather than on the levels of the outcomes. Schweizer

and Wol¤ (1981) note: �: : : it is precisely the copula which captures those properties

of the joint distribution which are invariant under strictly increasing transformations�.

Let �(X) = (�1 (X1) ; : : : ; �m (Xm)) denote the transformed random vector obtained

by applying dimension-speci�c strictly increasing continuous transformation functions

�1; : : : ; �m to the respective random variables. A transformation of a dimension changes

the levels of the outcomes of the individuals without changing their positions. Since a

copula is a function of the position vectors only, it is invariant to any strictly increasing

transformation of the dimensions of its underlying random vector X. Formally, Schweizer

and Wol¤ (1981) prove the following result.

Theorem 2 (Schweizer and Wol¤, 1981). Let X be a random vector with copula func-

tion CX and let the transformed random vector �(X) be obtained by applying strictly

increasing transformation functions �1; : : : ; �m to its random variables respectively, then

CX = C�(X):

The result by Schweizer and Wol¤ (1981) shows the usefulness and limitations of a

copula-based analysis of dependence. The copula function focusses on the dependence

or correlation between the positions of the individuals in the di¤erent dimensions, ir-

respective of the exact levels of the outcomes that correspond to these positions. A

copula-based analysis of dependence can be based on ordinal indicators in a way that is

robust to the exact scaling procedure. On the other hand, a copula-based analysis cannot

take any information into account about the exact levels of the outcomes. A copula-based

approach cannot replace a fully-�edged multidimensional inequality analysis.4 However,

the result by Sklar (1959) suggests that there is room for a complementary approach,

in which the standard dimension-by-dimension analysis focussing on the distribution of

the outcome levels within every dimension is complemented with a copula-based analysis

focussing on the ordinal information about the dependence between the dimensions.
4 Maasoumi (1999) and Weymark (2006) provide excellent overviews of the literature on multidimen-

sional inequality measurement.
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Each copula function is bounded by its so-called Fréchet-Hoe¤ding bounds, re�ecting

the cases of minimal and maximal dependence, which are de�ned by C�(p) = max(p1 +

: : :+ pm �m+ 1; 0) and C+ = min(p1; : : : ; pm) respectively.

Theorem 3 (Fréchet-Hoe¤ding). If C is a copula function, then for all p in [0; 1]m:

C�(p) � C(p) � C+(p):

The copula function re�ecting maximal dependence, the so-called comonotonic copula

C+(p), represents the dependence structure in which the outcomes in all dimensions are

ordered in the same way. In other words, C+ is the copula function of the random vector

X+ in which every random variable Xj is an increasing function of every other random

variable Xk. Consequently, for any given position vector p, all the other position vectors

are either outranking or outranked by p: A joint distribution function with a comonotonic

copula describes a society in which one individual is top-ranked in all dimensions, another

is second-ranked and so forth. This society is maximally unequal in the complex sense

de�ned by Walzer (1983). Dardanoni (1996) refers to a distribution with a comonotonic

copula when he talks about a distribution after an unfair rearrangement.

Things are a little bit more intricate when it comes to de�ning the lower bound. The

function C� describes the dependence structure of the so-called countermonotonic ran-

dom vector X�. For m � 3; the function C� is formally not a distribution function

and, hence, can not be a copula function (Nelsen 2006, p.47). Nevertheless, in cases

of countermonotonicity, high ranks in some dimensions come with low ranks in others

and none of the position vectors p outranks or is outranked by any other position vec-

tor. In other words, there is no pair of individuals such that the well-being vector of

one individual vector-dominates the one of the other, so that a countermonotonic soci-

ety satis�es the no-dominance equity axiom used in fair allocation theory (Moulin and

Thomson 1997, Fleurbaey and Trannoy 2003).

Walzer refers to the case in which the dimensions are autonomous or independent as the

ethical benchmark of a maximally complex equal society. Independence is captured by

the independent copula C?: If all the dimensions are independent, the position of an

individual in one dimension does not depend on her position in any other dimension.5

5 Note that independence of the dimensions does not exclude that some individuals may outrank
others. Hooghe (1999) refers to Alcibiades as an ancient example of such an exceptionally gifted individual
who outranks all others individuals in many dimensions. The more relevant dimensions there are, the
smaller the chance that outranking occurs in a society with independent dimensions.
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3 Orderings of dependence

The copula function CX of a random vector X contains all information about the depen-

dence structure. We can therefore order random vectors by comparison of their copula

functions. Let % denote a dependence relation on the set of random vectors X, which

should be interpreted as meaning �is weakly more dependent than�. The corresponding

strict and equivalence relations are denoted � and � : In the rest of this section I will
survey three speci�c dependence relations that make use of the copula function, the �rst

of which is the lower orthant dependence relation.6

De�nition 2. Let X and Y be two random vectors with copula functions CX and CY

respectively. Then Y is said to be weakly more dependent than X according to the lower

orthant dependence relation, denoted Y %LO X; if for all p in [0; 1]m:

CY (p) � CX(p). (4)

Figure (1) illustrates this condition in the two-dimensional case. On both axes of the

�gure, the positions of the individuals are shown. Individuals that are top ranked in

both dimensions will be in the top-right-hand corner of [0; 1]2: A random vector with

comonotonic copula C+ will have all individuals on the diagonal. In the case of indepen-

dence they are evenly scattered on [0; 1]2: Condition (4) implies that for each position

vector p in [0; 1]2; the proportion of the society in its lower orthant (the light shaded

area on the �gure), that is the proportion of individuals who are outranked by p, is not

smaller in the society with random vector Y than X: This condition has to hold for all

position vectors; hence the lower orthant dependence relation is a partial dependence

relation.

Two random vectors X and Y are equivalent in the lower orthant dependence relation, if

they have the same copula function or, equivalently, if in every dimension j the random

variable Yj can be obtained from Xj by a strictly increasing transformation function.

The lower orthant dependence relation is a special case of the multidimensional �rst-

order stochastic dominance ordering studied by Hadar and Russel (1974), Epstein and

Tanny (1980) and Atkinson and Bourguignon (1982) amongst others. The multidimen-

sional joint distribution function FY is said to stochastically dominate FX in the �rst

order if FY (x) � FX(x) holds for all x in Rm, where FY and FX are two joint distrib-

ution functions with the same marginal distribution functions. Indeed, any two copula

6 The idea of ordering random vectors with respect to their dependence based on dominance of their
underlying copulas dates back to the work of Scarsini (1984). For a recent survey on dependence relations,
see Colangelo, Scarsini and Shaked (2006).
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Figure 1: Lower and upper orthants of p in I2:

functions are joint distribution functions with the same (standard uniform) marginal

distribution functions. However, comparing the underlying copula functions instead of

the joint distribution functions themselves has the advantage that it also allows one to

compare the extent of dependence in joint distribution functions with di¤erent marginal

distributions.

The mirror image of the lower orthant dependence relation is the upper orthant depen-

dence relation. It is based on dominance of the joint survival function and can be de�ned

analogously.

De�nition 3. Let X and Y be two random vectors; with joint survival functions CX

and CY respectively. Then Y is said to be weakly more dependent than X according to

the upper orthant dependence relation, denoted Y %UO X; if for all p in [0; 1]m:

CY (p) � CX(p). (5)

Condition (5) requires that for each position vector p, the probability that a realization of

Y outranks p is not smaller than the one for X. In the two-dimensional setting depicted

in Figure 1, the upper orthant of p is the dark shaded area. In a two-dimensional

framework, the lower and upper orthant dependence relation are equivalent,7 but once

7 This follows from the fact that in the two-dimensional setting:

C(p1; p2) = 1� C(1; p2)� C(p1; 1) + C(p1; p2)
= 1� p2 � p1 + C(p1; p2):
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there are more than two dimensions, this is no longer the case.

A third dependence relation combines both orthant dependence relations. This depen-

dence relation is the so-called concordance dependence relation.8

De�nition 4. Let X and Y be two random vectors; with copula functions CX and CY

and joint survival functions CX and CY respectively: Then Y is said to be weakly more

dependent than X according to the concordance dependence relation, denoted Y %C X;
if for all p in [0; 1]m:

CY (p) � CX(p) and CY (p) � CX(p). (6)

It is easily checked that the concordance dependence relation (as well as the lower and

upper orthant dependence relations) is re�exive, transitive and incomplete, hence for-

mally an incomplete pre-ordering. In the two-dimensional case, all three dependence

relations are equivalent. In general, Y %C X implies Y %UO X and Y %LO X; and if
both Y %UO X and Y %LO X hold, Y %C X is implied. The minimal element of all

three dependence relations is the random vectorX� with a countermonotonic dependence

structure and the maximal element is the random vector X+ which has a comonotonic

copula.

4 Measures of dependence

The dependence relations de�ned in the preceding sections are incomplete dependence

relations. Some pairs of random vectors can be ranked, but for some other pairs the

dependence relation is �indecisive�. Although the indecisiveness might be informative in

its own right, in many situations one may prefer a complete dependence relation that

can rank all random vectors with respect to their dependence.

For notational clarity, I will denote a complete binary relation on the set of random vec-

tors by%� with the corresponding strict and equivalence relations�� and��, respectively:
A measure of dependence D is a real-valued order-preserving function of %� that sat-
is�es Y %� X ) D (Y ) � D (X) : I follow an axiomatic approach to derive the class

of dependence measures that satis�es a minimal set of logically independent axioms on

8 See Joe (1990, 1997) or Nelsen (2006) on the concordance ordering. Joe (1990) uses a slightly more
general de�nition based on two joint distribution functions with the same margins, of which the copula
with its standard uniform margins is but one example. Decancq (2009) analyses the rearrangements
leading to a more dependent society according to the concordance dependence relation.

11



%�.9 Formally, the problem of ordering random vectors resembles the problem of order-

ing lotteries and, hence, the �rst three axioms can be borrowed from the literature on

expected utility representations. The fourth axiom adds the notion of dependence.

The �rst axiom requires %� to be a complete and transitive binary relation so that
indecisiveness or cycles are excluded.

Weak Ordering (ORD). The binary relation %� is transitive and complete on the set
of random vectors.

The following two axioms involve the properties of linear convex combinations of random

vectors. Formally, we de�ne a linear convex combination of random vectors X and Y by

�X + (1� �)Y for every � in [0; 1]. A linear convex combination of two random vectors

X and Y is again a random vector and in the setting of this essay, it can be interpreted

as a uni�cation of two societies with their own dependence structure where � re�ects the

population share of the �rst society in the uni�ed total society.

The second axioms adds a �avor of continuity and requires that if X %� Y %� Z holds,
then there exist at least one linear convex combination of X and Z that is ordered on

either side of Y .

Continuity (CONT). For all random vectors X;Y and Z; if X %� Y %� Z; then there
exist an � and � in (0; 1); such that �X + (1� �)Z %� Y and Y %� �X + (1� �)Z:

The third axiom imposes that %� is maintained after a linear convex combination is
taken with a common random vector Z:

Independence (IND). For all random vectors X;Y and Z; if X %� Y and � in (0; 1);
then �X + (1� �)Z %� �Y + (1� �)Z:

These three axioms together impose a general (additively separable) structure on %�,
but so far we have not imposed any sensitivity to dependence to %�. The next axiom
ensures that the ordering of two random vectors implied by %� accords with the ordering
of two random vectors by %C which restricts the attention to copula-based measures:10

9 The aim of this axiomatic approach is di¤erent from the axiomatic approach followed in the statistical
literature by Scarsini (1984), Dolati and Úbeda-Flores (2006) and Taylor (2007), who check a series of
statistical properties for a given class of measures.
10 By the theorem of Schweizer and Wolf (1981), all copula-based measures are invariant to strictly

increasing continuous transformations of the dimensions. The standard (Pearson) correlation coe¢ cient
satis�es a much weaker invariance property, speci�cally it is invariant to strictly increasing linear trans-
formations of the dimensions. On the potential pitfalls of using a non-copula-based measure such as the
standard correlation coe¢ cient as measure of dependence, see Embrechts et al. (2000).
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Consistency with the concordance dependence relation (CONC). For all ran-

dom vectors X and Y; if Y %C X; then Y %� X:

The following Proposition derives the class of order preserving dependence measures

D which satis�es these four axioms. To state this Proposition I make use of a real-

valued function S whose even cross derivatives are all non-negative. In other words,

@kS(p)=@pj1 : : : @pjk � 0 (k = 2; 4; : : :) holds for all sets of an even number of dimen-

sions.11

Proposition. If the binary relation %� on the set of random vectors satis�es ORD,

CONT, IND and CONC, and if the real-valued function S has non-negative even cross-

derivatives, then Y %� X implies that:

D(Y ) =

Z
[0;1]m

S (p) dCY (p) �
Z
[0;1]m

S (p) dCX(p) = D(X):

Proof. See Appendix.

Each function S de�nes a di¤erent measure of dependence or complex inequality that is

consistent with the concordance dependence relation.

In the statistical literature on the measurement of dependence a particular subclass of

functions S with non-negative even cross-derivatives has been studied, that is the class

in which S can be expressed as a sum of a copula function and joint survival function of

the same reference random vector Z.12 In this case, we say that:

DZ(X) =

Z
[0;1]m

�
CZ (p) + CZ (p)

�
dCX(p):

Let the marginal distribution function of random variable Xj be denoted by Fj and the

marginal distribution function of random variable Zj be denoted by Gj . By the de�nition

of the copula function and joint survival function, it follows that:

DZ(X) = Pr [G1(Z1) � F1(X1) and : : : and Gm(Zm) � Fm(Xm)]

+Pr [G1(Z1) � F1(X1) and : : : and Gm(Zm) � Fm(Xm)] :

The dependence measure DZ(X) gives the probability that the realization of an individ-

ual from 
 according to the random vector X outranks or is outranked by the realization

11 This proposition is a speci�c case of a result by Decancq (2009).
12 See for instance, Nelsen (1991, 2002), Dolati and Úbeda-Flores (2006), Schmid and Schmidt (2006,

2007) Behboodian, Dolati and Úbeda-Flores (2007) and Taylor (2007). It can easily be checked that the
sum of a copula and joint survival function satis�es the restriction imposed by the proposition.
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according to Z: Nelsen (1991, 2002) calls this �the probability of concordance�and uses

it as building block for the derivation of various measures of dependence.

It is convenient for the purpose of measuring complex inequality to further require that

the dependence of the benchmarks X? (autonomous or independent dimensions) and X+

(comonotonic or maximally correlated dimensions) is normalized to 0 and 1 respectively.

To achieve that, a linear normalization of DZ(X) is employed that leads to dependence

index eDZ(X) : eDZ(X) = DZ(X)�DZ(X?)
DZ(X+)�DZ(X?)

:

The normalized dependence index eDZ(X) can be interpreted as the relative position
between the benchmarks of independence X? and maximal dependence X+:

An interesting choice for the reference random vector Z is the independent random vector

Y?.13 After some algebraic manipulations the resulting dependence index eD?(X) equals:
eD?(X) = (m+ 1)

h
2m�1

R
[0;1]m

�
C? (p) + C? (p)

�
dCX(p)� 1

i
2m � (m+ 1) ;

which is a multidimensional generalization of the two-dimensional Spearman rank cor-

relation coe¢ cient �:14 The dependence index eD?(X) has an interesting interpretation
in terms of complex inequality. It equals the normalized probability that a randomly

drawn individual from a given society X outranks or is outranked by a randomly drawn

individual from a reference society which is Walzer�s ideal society Z? with independent

dimensions. The more dependence or correlation there is in X the higher this normalized

probability.

5 The Evolution of the Dependence between Dimensions

of Well-being in Russia.

In this section, the empirical usefulness of the multidimensional concordance dependence

relation and the copula-based dependence measures is illustrated based on data from

the Russian Longitudinal Monitoring Survey (RLMS) between 1995 and 2003.15 I will

13 Alternatively, if Y is set to be equal to the random vector X itself; the dependence index eDX(X) is
a multidimensional generalization of Kendall�s � and belongs to the family of generalizations of Kendall�s
� proposed by Joe (1990) (Nelsen 1991, Nelsen 2002). It equals the normalized probability that two
randomly drawn individuals from the society X outrank each other.
14 The dependence index eD?(X) is the mean of two multidimensional rank correlation coe¢ cients �

discussed in Joe (1990) and has been studied by Nelsen (1991, 2002), Dolati and Úbeda-Flores (2006),
Schmid and Schmidt (2006, 2007) and Taylor (2007).
15 The RLMS consists of a series of nearly annual, nationally representative surveys designed to monitor

the e¤ects of Russian reforms on the health and economic welfare of households and individuals in the
Russian Federation. I use rounds VI-XII of the survey which took place in 1995, 1996, 1998, 2000, 2001,
2002 and 2003.
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Figure 2: Human Development Index of the Russian federation (Source: author�s calcu-

lations based on data from the World Development Indicators, 2008).

test the hypothesis of increased dependence in Russia over this period. One can expect

the correlation between monetary and other dimensions of well-being such as health and

education to be much smaller under the Russian communist regime, given its reasonably

well-funded universal educational and health care system. During the transition, the

public funding of the educational and health care system decreased sharply, leading

to a spontaneous commercialization and increased dependence between monetary and

non-monetary dimensions of well-being.16 The RLMS is a rich panel data set so that

the dependence between the dimensions of well-being of the same individuals can be

analyzed over a relatively long period, which makes it a particularly interesting data set

to test this hypothesis.

Over the last decade, the Russian Federation underwent a far-reaching transition from a

centrally planned to a free market economy. Moreover, the country was hit by a severe

�nancial crisis in August 1998. The transition and �nancial crisis had a large impact on

many dimensions of everyday life in Russia. Many of these separate e¤ects are by now

well-documented in the literature. Real GDP per capita almost halved between 1990 and

1998, reaching in 2003 about 80% of its 1990 level. Russian mortality increased after

1990, with life expectancy falling from 64 years in 1990 to 58 years among men by 2002

and from 74 years to 72 years among women (World Development Indicators, 2008).

16 See Blam and Kovalev (2006), Besstremyannaya (2007), Lokshin and Ravallion (2008) on the com-
mercialization of the Russian health care sector and Smolentseva (2007) on the schooling system.
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primary ranking variable secondary ranking variable

standard of living household income individual income

health self-assessed health health indicator

schooling years of schooling additional courses

Table 1: Ranking Variables for the three dimensions of well-being.

Figure 2 presents the evolution of the Russian Human Development Index (HDI), a

composite index combining average Russian performance on three dimensions of well-

being: standard of living, life expectancy and education, with the latter captured by the

literacy and the school enrolment ratio. The dark shaded bars of the �gure show the

analyzed period 1995-2003. After the steep decline in the early 90s, the HDI rises until

the �nancial crisis strikes in 1998. After the �nancial crisis the HDI stagnates until its

mild recovery in 2001. As explained in the introduction, the HDI is based on dimension-

wise summary statistics and, hence, it is by construction insensitive to the dependence

between its dimensions. To test if this is a mere academic concern, I look at the actual

evolution of the dependence between three dimensions of Russian well-being: standard

of living, health and schooling.

In the copula-based framework it su¢ ces to know how the individuals are ranked in the

di¤erent dimensions without having to know the exact outcome levels of the individuals,

hence, ordinal ranking variables can be used. In all dimensions, individuals are ranked

according to two ranking variables in a lexicographic way. In case of a tie in the primary

ranking variable, the individuals are ranked according to the secondary ranking variable.

If a tie occurs in all ranking variables for some individuals, they are ranked randomly.17

Table 1 surveys the ranking variables for the three dimensions of well-being. First, to

obtain a ranking in the standard of living dimension, the individuals are ordered with

respect to their equivalent real household incomes.18 In the case of ties, the individual real

income over the last 30 days is used as secondary ranking variable. In this way, income

pooling is assumed at the household level, but within each household the individuals who

earn more are still ranked higher. The second dimension is the health dimension. The

RLMS contains rich information on the health status of each respondent. Amongst other

questions, the respondents are asked to assess their own health on a �ve-point scale. Self-

assessed health has shown to be a very good predictor for overall health status or longevity

in other surveys (for a comparison with other health indicators, see van Doorslaer and

17 See Denuit (2005) who extensively treats a similar procedure to make a continuous extension of a
discrete random variable.
18 Real household incomes are made comparable across di¤erent household sizes by applying the square

root of the number of people in the household as an equivalence scale.
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Jones (2003)). Almost 60% of the individuals report to be of average health, therefore

I use an objective health indicator as secondary ranking variable. The health indicator

is constructed as a sum of six binary variables, each taking one if the individual reports

that year to su¤er from diabetes, a heart attack, anaemia, an operation, a hospitalization

or other serious health problems. The ranking with respect to the third dimension,

schooling, is obtained by the variable years of schooling. The individuals who spend

the same amount of years in school are ranked based on the number of years they have

followed any additional course, ranging from professional courses to music courses in art

schools.

From the roughly 7000 individuals in the RLMS, a subsample of 1577 individuals in 1053

households is retained for whom I have complete information for all ranking variables in

all waves of the survey. Although the full sample is constructed to be representative for

the entire Russian Federation, this restricted balanced subsample might not be. Indeed,

the individuals who remain in the sample in all waves are a bit poorer, less healthy and

slightly less educated than the total sample. Working on the balanced subsample has

the advantage that the same individuals are followed through time, so that changes in

observed dependence re�ect real changes in dependence and cannot be due to di¤erences

between the individuals who drop from the sample and the ones that are chosen to replace

them.

For every pair of waves, it will be checked whether they can be ordered by the partial

dependence relations introduced in section three. To see whether the sample of one

wave is more dependent with respect to the lower orthant dependence relation than the

one of another wave, one can apply de�nition 2 and check whether the empirical copula

function in the �rst wave is everywhere not below the empirical copula function in the

second wave, or equivalently whether the di¤erence between all copula ordinates is non-

negative. Similarly, one uses de�nition 3 to test dependence with respect to the upper

orthant dependence relation by looking at the di¤erence between the ordinates of the

joint survival functions. In theory, this procedure involves an in�nity of tests (for each p

in [0; 1]m, the di¤erence between all copula and joint survival function ordinates should

be non-negative). Practically, however, the sign of the di¤erence is only tested on a �nite

grid of position vectors p. For this three-dimensional illustration, a grid of 64 points is

selected: f0:2; 0:4; 0:6; 0:8g3.

Since in each wave only a small sample from the underlying total Russian population

is considered, it is interesting to know whether the results obtained actually hold for

the total population as well; in other words, whether the obtained di¤erences at every

grid point are signi�cantly non-negative. To test for signi�cance, an approximation
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1995 1996 1998 2000 2001 2002 2003

1995 - 0 0 0 0 0 0

1996 0 - 0 0 0 0 0

1998 0 0 - 0 0 0 0

2000 0 0 0 - 0 0 0

2001 0 0 0 0 - 0 0

2002 0 0 0 0 L - 0

2003 L,U U 0 0 L,U 0 -

Table 2: Pairwise partial dependence orderings (Source: author�s calculations based on

data from the RLMS, 1995-2003).

of the variance of the ordinates of the empirical copula and joint survival function is

obtained by bootstrapping: from the original sample 1577 individuals are drawn with

replacement repeatedly (1000 times). For each of the 1000 samples, I keep track of the

obtained ordinates at all grid points, and the variance of these ordinates is used to test

the signi�cance of their di¤erence. A conservative procedure is to reject the hypothesis

of increased dependence if the di¤erences between the copula or joint survival function

ordinates of at least one grid point p are signi�cantly smaller than zero. (See also

Dardanoni and Lambert (2001) and Cebrian, Denuit and Scaillet (2004) for a detailed

treatment of di¤erent testing procedures for the concordance dependence relation). Table

2 summarizes all pair wise tests. Every cell presents the result of a test whether the row

year exhibits higher dependence than the column year at the 5% signi�cance level. An

�L�denotes lower orthant dependence, a �U�denotes upper orthant dependence and a

�0� denotes indecisiveness. If both dependence relations apply, the row year is more

dependent according to the concordance dependence relation than the column-year.19

The dimensions of well-being are more dependent in 2003 than they were in 1995 and

in 2001 according to the concordance dependence relation tested at the grid points

f0:2; 0:4; 0:6; 0:8g3. It is a common �nding in (one-dimensional) tests of stochastic domi-
nance based on a �nite number of grid points that the results are sensitive to the number

of grid points chosen. It is not di¤erent here: for a �ner grid none of the pairs can be

ranked.

The grid can be chosen to focus on one of the tails of the empirical copula. Table 3 fo-

cusses on the lower tail of the empirical copula by considering the grid f0:1; 0:2; 0:3; 0:4g3

and Table 4 focusses on f0:6; 0:7; 0:8; 0:9g3 : The lower tail of the distribution shows a
19 I experimented with many alternative ranking variables and the results are remarkably robust

(results are available upon simple request).
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stronger increase in dependence than the upper tail, suggesting that especially the indi-

viduals at the bottom see their poor performance aggravated across dimensions. Note

that the comparison in Table 4 between 2000 and 2001 with its focus on the upper tail

shows a decrease in dependence.

1995 1996 1998 2000 2001 2002 2003

1995 - 0 0 0 0 0 0

1996 0 - 0 0 0 0 0

1998 0 0 - 0 0 0 0

2000 0 0 0 - 0 0 0

2001 0 0 0 0 - 0 0

2002 U 0 U U U - 0

2003 U 0 L,U U L,U 0 -

Table 3: Pairwise partial dependence orderings with focus on the lower tail (Source:

author�s calculations based on data from the RLMS, 1995-2003).

1995 1996 1998 2000 2001 2002 2003

1995 - 0 0 0 0 0 0

1996 U - 0 0 0 0 0

1998 L 0 - 0 0 0 0

2000 L 0 0 - L 0 0

2001 0 0 0 0 - 0 0

2002 L 0 0 0 L - 0

2003 L 0 0 0 0 0 -

Table 4: Pairwise partial dependence orderings with focus on the upper tail (Source:

author�s calculations based on data from the RLMS, 1995-2003).

The large number of comparisons that are indecisive (especially on �ner grids) is some-

what unfortunate. Therefore, in a next step, I look at the evolution of the dependence

index eD?(X). Table 5 presents the results. The random ranking of individuals in case of
double ties introduces some degree of arbitrariness in the results obtained. Therefore, I

carry out a Monte Carlo experiment and repeat the calculation of the indices 1000 times.

In every repetition the random assignment of the ranks in the case of double ties is done

independently. The mean of these 1000 estimations is reported in the �rst column of

Table 5. The second column of Table 5 provides the interval that includes 95% of the

computed dependence indices. This interval is typically rather narrow, suggesting that

the e¤ect of random ranking in the case of ties is relatively small. Over the investigated
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decade, the dependence clearly increases.

One might be concerned how representative the results are for the total population.

Therefore a second bootstrap is carried out. More speci�cally, I randomly draw 1000

times 1577 observations from the initial sample with replacement and compute the re-

spective dependence indices. The mean of the 1577 indices obtained is almost identical

to the indices reported in the �rst column of Table 5 and therefore not reported. The

third column provides the intervals including 95% of the bootstrapped indices.

year index 95% conf. interval 95% conf. interval

(Monte Carlo) (bootstrap)

1995 0.136 [0.128; 0.143] [0.105; 0.170]

1996 0.151 [0.144; 0.159] [0.121; 0.183]

1998 0.143 [0.135; 0.151] [0.108; 0.176]

2000 0.164 [0.155; 0.173] [0.134; 0.196]

2001 0.141 [0.132; 0.150] [0.108; 0.172]

2002 0.187 [0.179; 0.196] [0.157; 0.223]

2003 0.210 [0.200; 0.218] [0.175; 0.240]

Table 5: Evolution of the dependence in Russia between 1995-2003, measured by multi-

dimensional Spearman rank correlation coe¢ icent D?(X) (Source: author�s calculations

based on data from the RLMS, 1995-2003).

Figure 3 depicts the evolution of the index. The full line shows the evolution of the index

itself and the dashed and dotted lines present the 95% con�dence intervals obtained by

Monte Carlo and bootstrapping, respectively. The results show a clear and signi�cantly

increasing trend in the dependence during the decade after the collapse of the Soviet

Union. Note that the results obtained from the dependence indices are indeed consistent

with the concordance partial dependence relation of Table 2 as required theoretically.

More detailed investigations are needed to understand better the underlying mechanisms

why this is the case.

Finally, these �ndings provide a warning about the use of popular well-being measures

based on summary statistics in every dimension, such as the HDI. The dependence be-

tween the dimensions of well-being in changing societies such as contemporary Russia

is far from constant. Compare for instance the years 2002 and 2003 in Figure 2 and in

Figure 3. It is clear that the Russian HDI increases, and that at the same time depen-

dence increases. The standard of living, longevity and schooling on average improve,

but more and more, the same individuals occupy the bottom and top positions in these
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Figure 3: Dependence between the dimensions of well-being measured by the multidi-

mensional Spearman rank correlation coe¢ cient � (Source: author�s calculations based

on data from the RLMS, 1995-2003).

dimensions. Furthermore, the increase in dependence is a¤ecting mostly the lower tail

of the well-being distribution.

6 Conclusion

This essay proposes a copula-based framework to analyze and quantify dependence be-

tween the many dimensions of well-being. The copula function allows one to formalize

many of the theoretical notions from the literature on complex inequality in a natural

way.

The copula-based partial concordance dependence relation compares the instances of

outranking between individuals of two societies, thereby formalizing Miller�s (1995) ob-

servation that in a more complex unequal society there are more cases of outranking

between the individuals. The maximal element of the concordance dependence relation

is the comonotonic society, in which one individual is top ranked in all dimensions, a

second individual second ranked and so on. This society has been referred to in Walzer�s

(1983) original work as the maximally complex unequal society.

To quantify the evolution of complex inequality or dependence based on real-world data,

it is convenient to impose more structure so that a complete ordering of all possible

societies with respect to their dependence can be achieved. The present essay o¤ers a
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simple axiomatic framework that leads to a class of copula-based dependence measures

that is consistent with the partial concordance dependence relation, thereby address-

ing Dardanoni and Lambert�s (2001) open question. Interestingly, a recently proposed

multidimensional measure of dependence in the statistical literature, the multidimen-

sional Spearman�s rank correlation coe¢ cient turns out to be a prominent member of

the resulting class of measures.

The copula-based complete and partial dependence relations are applied to Russian data

to investigate the claim that the correlation between dimensions of well-being increased

during the Russian transition period. The analysis of the dependence in the RLMS

allows one to shed some light on this claim. It is found that indeed the correlation

showed a signi�cant increase after the Russian transition to a free market economy. It is

a question for further research whether this increase in dependence can also be found for

other (transition) countries. However, the increased Russian dependence calls for a more

careful use of composite multidimensional well-being measures based on dimension wise

summary statistics, such as the HDI, which are by de�nition insensitive to dependence

between the dimensions.
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Appendix: Proof

Proposition. If the binary relation %� on the set of random vectors satis�es ORD,

CONT, IND and CONC, and if the real-valued function S has non-negative even cross-

derivatives, then Y %� X implies that:

D(Y ) =

Z
[0;1]m

S (p) dCY (p) �
Z
[0;1]m

S (p) dCX(p) = D(X):

Proof. Step 1. Fishburn (1970, Theorem 8.2) shows that a binary relation %� on the
set of random vectors satisfying ORD, CONT and IND can be represented by a function

D of the form

D(X) =

Z
Rm
S (x) dFX(x);

with S : Rm ! R a real-valued function:

Step 2. Consider the random vector P which is obtained by transforming the random

variables of X by their respective marginal distribution function. Since the marginal

distribution functions are all increasing and continuous, Theorem 2 (Schweizer and Wol¤,

1981) can be evoked to show that X and �(X) have the same copula function and joint

survival function. Hence, by the axiom CONC, D(X) = D(P ) so that:

D(X) =

Z
[0;1]m

S (p) dCX(p);

with S : Im ! R a real-valued function.

Step 3. Copula functions are joint distribution functions, so by Theorem 5.8 from Hadar

and Russel (1974) CX(p) � CY (p) implies:Z
[0;1]m

S (p) dCX(p) �
Z
[0;1]m

S (p) dCY (p); (7)

for all real-valued functions S with positive even cross derivatives and negative odd cross

derivatives. By a similar argument it holds that CX(p) � CY (p) implies:Z
[0;1]m

S (p) dCX(p) �
Z
[0;1]m

S (p) dCY (p); (8)

for all real-valued functions S with positive cross derivatives. Combining (7) and (8)

leads to the result that Y %C X implies that:Z
[0;1]m

S (p) dCY (p) �
Z
[0;1]m

S (p) dCX(p);

for all the real-valued function S with non-negative even cross-derivatives.
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