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(Vt' C)-Optimal Run Orders 

L. Tack 
M. Vandebroek 

Katholieke Universiteit Leuven, Belgium 

Cost considerations have rarely been taken into account in optimum design the
ory. A few authors consider measurement costs, i.e. the costs associated with 
a particular factor level combination. A second cost approach results from the 
fact that it is often expensive to change factor levels from one observation to 
another. We refer to these costs as transition costs. In view of cost minimiza
tion, one should minimize the number of factor level changes. However, there is 
a substantial likelihood that there is some time order dependence in the results. 
Consequently, when considering both time order dependence and transition costs, 
an optimal ordering is not easy to find. There is precious little in the literature on 
how to select good time order sequences for arbitrary design problems and up to 
now, no thorough analysis of both costs is found in the literature. For arbitrary 
design problems, our proposed design algorithm incorporates cost considerations 
in optimum design construction and enables one to compute cost-efficient run 
orders that are optimally balanced for time trends. The results show that cost 
considerations in the construction of trend-resistant run orders entail considerable 
reductions in the total cost of an experiment and imply a large increase in the 
amount of information per unit cost. 

1 Introduction 

In optimum design theory designs are constructed that maximize the information on the 
unknown parameters of the response function. Although such constructed designs have 
good statistical properties, they may not be fit for use because of economical reasons. Cost 
considerations have rarely been dealt with in the construction of optimal experimental 
designs. Generally speaking, two cost approaches are found in the literature. 

Firstly, a few authors deal with costs associated with the particular factor level com
binations. Henceforth, these costs are referred to as measurement costs. Measurement 
co~t~ include the equipment cost, the cost of material, the cost of personnel, the cost for 
spending time during the measurement, etc. 

Secondly, it is usually expensive to alter the factor levels from one observation to another. 
We refer to these costs as transition costs. In order to minimize costs, the number of 
factor level changes has to be kept low by conducting the runs corresponding to the same 
treatment combination one after the other. 
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But performing the observations in a time sequence by allotting them to time points, 
possibly creates some time order dependence in the results. An experimenter who has 
knowledge about the nature of the time trend should construct a run order in which the 
estimates of factorial effects are little disturbed by the presence of the time trend. Often, 
this time dependence is represented by a polynomial. The objective is to construct a run 
order such that the estimates of the important factorial effects are orthogonal or nearly 
orthogonal to the postulated polynomial trend. If the least-squares estimator of a factorial 
effect is the same as when the time trend of qth order is not present, that effect is said to 
be q-trend-free or orthogonal to the polynomial time trend. 

With the exception of the approach of Atkinson and Donev (1996), there is precious little 
in the literature on how to select good time order sequences for arbitrary design prob
lems. However, Atkinson and Donev (1996) do not take into account cost considerations. 
Our concern is about cost-efficient run orders with maximal protection against time or
der dependence for arbitrary design problems, polynomial time trends of any order and 
arbitrary cost functions. Up to now, no thorough analysis of both measurement costs 
and transition costs is found in the literature. It is worth mentioning that the difference 
between measurement costs and transition costs is not always clear and one has to pay 
attention for confusion. As a rule of thumb, keep in mind that measurement costs are 
independent of the sequence in which the observations are taken, as opposed to transition 
costs. 

Section 2 gives a literature review on cost considerations in experimental design and on 
the conf:)truction of trend-robust run orders. Section 3 elaborates our approach to cost 
considerations in the construction of run orders optimally protected against time trends. 
Wide applicable cost models are introduced in order to closely reflect real-life industrial 
design problems. Section 4 describes our proposed algorithm by which (Vt , C)-optimal run 
orders can be computed, i.e. run orders that maximize the amount of information on the 
important parameters of the response function per unit cost. The parameters modeling 
the time dependence are treated as nuisance parameters. Section 5 demonstrates practical 
utility. 

2 Literature reVIew 

This section reviews the two cost approaches in optimum design theory. The first approach 
takes into account measurement costs whereas the second approach deals with transition 
costs. When minimizing the total transition cost, one needs to preserve protection against 
time order dependence in the results. The construction of trend-free run orders will 
constitute the larger part of this section. 

2.1 Measurement costs 

Many authors assume that the total measurement cost of an experiment only depends on 
the total number of observations and that this cost is independent of the particular factor 
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level combinations. This means that for fixed design size, the total measurement cost 
is also fixed. This approach naturally amounts to a too drastic simplification of real-life 
industrial situations. 

In a more realistic approach, measurement costs are assigned to each factor level com
bination. The problem is then structured as the selection of experimental arrangements 
by maximizing the experimental efficiency subject to resource constraints, maintaining 
an integer number of observations for each factor level combination. This integer pro
gramming approach refers back to Kiefer (1959) who suggests a complete enumeration of 
appropriate designs in order to select the optimal design. Unfortunately, the enumeration 
task becomes unmanageable for moderately sized problems. The partial enumeration al
gorithm of Lawler and Bell (1966) is especially suited for this purpose. Based on Lawler 
and Bell (1966), Neuhardt and Bradley (1971) consider constraints on the total number 
of observations, a constraint on the number of observations for a single factor level com
bination or a constraint on the cost of the experiment. However, the results obtained by 
partial enumeration may be far from optimum. 

A similar optimization solution comes from Yen (1985) who computes V-optimal designs 
subject to a budget restriction. The total measurement cost has to be less than the budget 
available. Yen shows that factorial designs that have a Hadamard information matrix are 
in fact cost-optimal designs. However, he only considers saturated regression designs. 

Based on Neuhardt and Mount-Campbell (1978) and Mount-Campbell and Neuhardt 
(1982), Pignatiello (1985) provides a procedure for finding fractional factorial designs 
which permit the estimation of specified main and interaction effects. Given the cost data 
for the factor level combinations and a rank ordering of the importance of the effects to 
the experimenters, a sequence of sets of words eligible to appear in defining relations is 
constructed and cost-optimal fractional factorials are found over these sets. 

Rafajlowicz (1989) states the minimum cost problem as follows: the experimenter wishes 
to attain a given symmetric and positive definite information matrix by using a minimum 
cost experimental design. He defines a continuous cost function which represents the 
measurement cost at any design point belonging to the design region. The problem is 
then to find a minimum cost design where infimum is taken over all designs with the 
desired information matrix. 

Remark that the total measurement cost of an experiment is independent of the sequence 
in which the observations are taken, as opposed to the costs for changing factor levels 
discussed in the next section. 

2.2 Transition costs and trend-resistant run orders 

In practice, it is often expensive to change the levels of one or more factors from one 
observation to another, such as oven temperature or line set-up. Another problem is that 
after the factor levels have been changed, it may take a long time for the system to return 
to steady state. An interesting approach comes from Anbari (1993) and Anbari and Lucas 
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(1994) who discuss how to run 2f -factorials when there are hard-to-change and easy-to
change factors. Hard-to-change factors may take more effort, require more time or cost 
more to change than other factors in the experiment. Anbari (1993) shows how proper 
blocking on the hard-to-change factors achieves super-efficient designs that have high 
cost-efficiencies and 9-efficiencies larger than 100% compared to completely randomized 
experiments. The 9-optimality criterion minimizes the maximum prediction variance over 
the experimental region. When hard-to-change factors are present, Ju (1992) points out 
that running the experiment as a split-plot design can increase precision and save money 
and time. 

In addition, there is a substantial likelihood that there is some time order dependence 
in the re~iUlts or that the observations may be affected by uncontrollable variables that 
are highly correlated with time. As a consequence, the usual estimates of factorial effects 
become very inefficient. For example, when a batch of material is created at the beginning 
of an experiment and treatments are to be applied to experimental units formed from the 
material over time, there could be an unknown effect due to aging of the material which 
influences the observations obtained. Other examples include poisoning of a catalyst, 
steady buildup of deposits in a test engine, etc. Variables that often affect observations 
obtained in some specific order are equipment wear-out, learning, fatigue, etc. The relative 
cost-effectiveness of any sequence is a function of the cost of changing factor levels and the 
protection afforded against time order dependence. Minimization of factor level changes 
i~ no longer the only design issue of interest. An optimal ordering is not obvious and one 
needs to strike a balance between designs that have good statistical properties but are 
quite cOstly and designs that are very cheap but ineffective. 

Cox (1951) was the first to study the construction of designs for the estimation of treat
ment effects in the presence of polynomial trends. Later on, the problem of constructing 
trend-robust run orders with respect to additional criteria, i.e. the cost for changing factor 
levels, was considered. 

Draper and Stoneman (1968) explicitly consider the dual problem produced by time order 
dependence and expensive factor level changes. Based on complete enumeration, they give 
good run orders for 2.f-s -designs with 8 runs when only main effects are of interest, linear 
drift may be present and all factors are equally expensive to change from low level to high 
level and vice versa. Dickinson (1974) extends their work to 24_ and 25-factorials. 

Joiner and Campbell (1976) offer the basis for a simple alternative and look at a random 
subset of orderings and then use the best ordering out of the set. Furthermore, they no 
longer assume that the factors are equally expensive to change. The random orderings 
are generated based on weighting coefficients attached to each factor. Each coefficient 
represents a probability for changing the corresponding factor level from one run to the 
next. The basic idea is to change more expensive factors less frequently and very cheap 
factors more frequently. Therefore, high probabilities are chosen for cheap factors and 
low probabilities are chosen for expensive factors. 

Cheng (1985) and Coster and Cheng (1988) formulate the Generalized Foldover Scheme 
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IGFS) for generating a run order of an r1- 5 -fractional factorial plan based on f - s 
independent treatment combinations, referred to as independent generators. They show 
that t.he main effect of a given factor is q-trend-free if this factor appears at least q + 1 
times in the generator sequence. They also show that the GFS can be used to produce 
systematic run orders which minimize, or nearly minimize, the cost equal to the number 
of factor level changes and for which all main effects are orthogonal to a polynomial time 
trend. Coster (1993) presents generator sequences that may be used with the GFS to 
produce such run orders. An extensive review of constructing trend-free run orders can 
be found in Cheng (1990) and Jacroux (1990). 

Another method for constructing trend-free run orders of factorial designs was originally 
due to Daniel and Wilcoxon (1966). Extending their results, Cheng and JacrolL,{ (1988) 
show that in the standard order of a complete 21 -factorial design, any w-factor interaction 
is orthogonal to a (w - I)-degree polynomial trend. The (w - 1)-trend-resistance of any 
factor is obtained by redesignating this factor to the w-factor interaction in the standard 
order. With this in mind, a method is given for constructing a run order of a complete 
2f-design that yields main effects that are PI-trend-free and 2-factor interactions that are 
P2-trend-free. However, the problem of finding such run orders is usually a nontrivial 
problem when considered for arbitrary values of PI and P2. Cheng et al. (1998) extend 
these findings to the construction of run orders of two-level factorial designs with extreme 
(minimum and maximum) numbers of level changes. Maximizing the number of factor 
level changes may be important if the main concern of the experimenter is possible positive 
correlation between adjacent runs. 

John (1990) ~ses the principle of foldover designs for 21- and 31 -factorials and shows how 
to arrange the runs in a factorial experiment so that the main effects and sometimes 
the two-factor interactions are uncorrelated with linear or quadratic trends. Trend-free 
Box-Behnken designs are treated by Hinkelmann and Jo (1998). 

Trend-free block designs that completely eliminate the effects of a common trend over 
plots within blocks are introduced by Bradley and Yeh (1980) and Yeh and Bradley 
(1983). Yeh et al. (1985) construct nearly trend-free block designs with linear or quadratic 
trends over plots within blocks. Cheng and Jacroux (1988) also consider the problem of 
constructing trend-resistant run orders of complete 21 -designs in 25 equally sized blocks 
and of fractional factorial designs. Jacroux et al. (1995) consider efficient block designs 
in which different blocks can have different linear trends and they emphasize on binary 
trend-free designs. A design is called binary if each treatment appears at most once in 
each block. Jacroux (1998) constructs [-optimal block designs with block size 3 in the 
presence of possibly different linear trends within blocks. In [-optimality, the variance of 
the least well-estimated contrast a/., with a'a = 1 is minimized . ., denote the parameters 
of interest. Lin and Stufken (1999) introduce a new algorithm to convert a binary block 
design with given treatment-block incidence matrix into a linear trend-free block design. 

Another way to model time dependence is to consider correlated errors. Steinberg (1988) 
represents the trend in an experiment by an ARIMA time series. Cheng and Steinberg 
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(1991) determine trend-robust run orders of 2f -factorials under an AR(l) process and 
other more complex time series models for the trend effects. Run orders with a maximum 
number of level changes are found to be nearly optimal for the AR(l) process. 

The references found assume that the time points are equally spaced, that all factors have 
the same number of levels, that higher order interactions are negligible, etc. Besides, none 
of the authors incorporate both costs in the construction of optimum designs. The next 
section will clarify our approach to the construction of cost-efficient and trend-resistant 
run orders for arbitrary design problems. 

3 Trend-robust and cost-efficient run orders 

This section deals with the incorporation of measurement costs and transition costs in 
the con::;tructiOl1 of designs that yield maximal protection against time order dependence. 
Attention will be drawn to arbitrary design problems, arbitrary cost functions, whether 
time points are equally spaced or not and with polynomial time trends of any order. The 
aim is the construction of the best run order in terms of information about the unknown 
parameters of the response function and corresponding costs. 

In the sequel of this paper the design problem at hand assumes n observations and d 
treatment combinations. The allocation of n observations to d distinct design points can 
be done in 

E =(n+d-1)=(n+d-1)! 
n,d n n!(d - I)! (1) 

different ways. Each allocation e E {I, ... ,En,d} represents an experiment described by 
the set {nf }f=l' where n; denotes the number of replicates at design point i in experiment 
e. The time sequence in which the observations are performed is obtained by allotting 
the observations to n out of h time points, with h ;:.:: n. For experiment e and h distinct 
time points there are 

(2) 

distinct run orders. Based on (1) and (2), the total number of distinct run orders associ
ated with an experiment with n observations, d design points and h time points equals 

n.+d-l! 
En,d h! n! d-l)! 1 

R" - ~ r - -,--~ ~ ---..,. 
.,d,h - L..- e,n,d,h - (h _ n).' L..- e, e, . 

e=l e=l n1···· nd' 
(3) 

Table 1 gives examples for h = n and reveals that even for small design sizes, the total 
number of run orders is extremely large. Consequently, construction algorithms based on 
complete enumeration rapidly become unmanageable. 
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d 
II 4 5 6 7 
4 256 625 1,296 2,401 
5 1,024 3,125 7,776 16,807 
(j 4,090 15,G25 46,656 117,649 
7 16,384 78,125 279,936 823,543 
8 65,536 390,625 1,679,616 5,764,801 
9 262,144 1,953,124 10,077,691 40,353,602 
10 1,048,576 9,765,621 60,466,144 282,4 75,208 
11 4,194,300 48,828,111 362,796,952 1,977,326,582 

Table 1: Total Number of Run Orders R",d,n (3) 

3.1 Cost considerations in experimental design 

Before passing on to the construction of optimal run orders, our cost approach will be 
elaborated. We define the measurement cost cm.(x;) at design point X; as 

where m(x;) is a column vector with Pm elements, representing the polynomial expansion 
of the design point for the measurement cost and ~ is a (Pm X 1) vector of coefficients. 
The total measurement cost em of an experiment equals 

2:::7,;"1 niCm(Xi), 

2:::1;"1 ni m'(x;) ~, 
2:::1;"1 ni 1; M ~, 
I'NM~, 

(4) 

where n; denotes the number of replicates at design point i and N equals diag(nl, ... , nd). 
Note that Ii is a (d x 1) vector with element 1 at position i and 0 elsewhere. 1 is a (d xl) 
vector with elements 1. The (d x Pm) matrix M equals 

M = [m'(X1) 
m'(xd) 

In practice, it frequently happens that the factor levels at which cost information is 
available do not coincide with the factor levels of the allowable design points or that cost 
information is available at only a subset of all treatment combinations. To deal with 
this problem, the calculation of costs at any design point is based on an interpolation 
technique. 

In contrast with the measurement costs, the total transition cost of an experiment depends 
011 the tiequence in which the observations are taken. The transition cost Ct(Xi,Xj) from 
design point Xi to design point Xj is the cost for changing the factor levels of design 
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point Xi in the previous run to the factor levels of design point Xj in the next run. This 
transition cost is defined as 

ct(X" Xj) = t' (Xi, Xj)7, 

where t'(Xi' Xj) is a (Pt x 1) vector representing the polynomial expansion of design points 
Xi and Xj for the transition cost and 7 is a column vector with Pt coefficients. The total 
t.ransit.ion cost. Ct of a run order equals 

I:~~l,j=l ni,jCt(Xi, Xj), 

I:~~l,j=l ni,jt'(Xi,Xj)7, 

I:~~l,j=l ni,j l(i_l)d+j T 7, 

I' LT 7, 

(5) 

where ni,j denotes the number of transitions from design point Xi to design point Xj in the 
considered run order. l{i-l)d+j is a (d2 x 1) vector with element 1 at position (i -I)d+ j 
and 0 elsewhere. The column vector 1 contains d2 I-elements. L is the (d2 x d2 ) matrix 
diag(nl,l," . ,nl,d, ... ,nd.l,'" ,nd,d) and the (d2 x pt)-matrix T is written as 

T= 

t~,l 

t' l,d 

t' d,l 

t' d,d 

Based on t.he available cost. information, a two-dimensional interpolation technique is 
used to calculate the transition costs. The first dimension refers to the factor levels of the 
previous run whereas the second dimension refers to the factor levels of the next run. 

The total cost C of a run order is defined as the sum of the total measurement cost (4) 
and the total transition cost (5), or 

c cm+Ct , 

I' N M c; + I' L T 7. 
(6) 

Note that in (6), Nand L are design dependent matrices. The cost information is reflected 
bv M. T. c; and 7. 

3.2 Cost-efficient run orders optimally balanced for time trends 

Henceforth y denotes the response of interest and x' = (Xl .. , X f) is the vector of f 
control variables presumed to influence the response. Denote by f(x) the (p x 1) vector 
representing the polynomial expansion of X for the response model and by g( t) the (q xI) 
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vector representing the polynomial expansion for the time trend, expressed as a function 
of time t. With 0: the (p x 1) vector of important parameters and j3 the (q x 1) vector of 
pardmeters of the polynomial time trend, let the model for the response be of the form 

y = f'(x)o: + g'(t)j3 + E = z'(x, th + E. (7) 

The independent error terms E are assumed to have expectation zero and constant variance 
(J2. It is convenient to write (7) as 

Y = Fo: + Gj3 + s = Zl' + c, 

where Y is an (n x 1) vector of responses and F and G represent the (n x p) and the 
(n x q) extended design matrices respectively. 

In the absence of trend effects, the V-optimal design 8TJ is found by minimizing the 
generalized variance or, equivalently, by maximizing the determinant of the information 
matrix F'F. The V-criterion value equals V = IF'FI. Now we consider three additional 
optimality criteria. 

Firstly, we define a run order to be (V, C)-optimal if it maximizes the amount of in
formation per unit cost. The corresponding design 8(TJ,c) is also called (V, C)-optimal. 
Computing (V, C)-optimal run orders is based on maximization of 

(V, C) = IF~FI. 

The efficiency of the (V, C)-optimal design 8(TJ,c) compared with the V-optimal design 
8TJ in terms of the amount of information per unit cost equals 

(8) 

Raising the determinants to the power 1 results into an efficiency measure which is nearly 
p 

proportional to design size. For instance, two replicates of a design double the V-efficiency 
and the total measurement cost of that design. However, the total transition cost of the 
run order is not necessarily doubled but the average transition cost of all run orders 
belonging to that design certainly does (Appendix 1). Consequently, the interpretation of 
linearity is only precise when considering the average transition cost instead of the total 
transition cost. 

The benefit of incorporating cost information in the construction of optimal designs is 
demonstrated by the following example. An imaginery experiment is set-up to study 
the influence of two factors Xl and X2 on a response of interest. The assumed model is 
described by f'(x) = (1 Xl X2 XIX2). The number of parameters p then equals 4 and the 
number of observations n equals 15. The design points constitute the full 22-factorial. 
Thr mrdsurement costs are described by cm(x) = 15 - 2.5xI + 2.5x2 and the transition 
costs are shown in Figure 1. According to (1) with n = 15 and d = 4, there are 816 
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designs. For each design, the amount of information IF'FI and the total cost cm + C~;n 
is calculated. C~;n denotes the total transition cost of the cheapest run order of that 
design. The results are shown in Figure 2 with labeled V- and (V, C)-optimal designs. 
One observes that the less informative designs have the largest variation in the total cost. 
The designs indicated by the points just above and beneath the V-optimal design are 
a little less informative than the V-optimal one but this is not perceptible in Figure 2. 
Of course, no design is more informative than the V-optimal one, but many experiments 
are much cheaper. However, the decrease in cost goes at the expense of the amount 
of information obtained. The (V, C)-optimality criterion seeks a trade-off between the 
amount of information obtained and the total cost of the experiment by maximizing the 
amount of information per unit cost. The decrease in information of the (V, C)-optimal 
de::;ign is negligible and the decrease in the total cost amounts to 2%. Compared with the 
conventional V-optimal design, the increase in the amount of information per unit cost 
amounts to 2%. 

CO~ , 

(a) factor Xl (b) factor X2 

Figure 1: Transition Costs 

Secondly, in the presence of time trends and when no costs are calculated for, designs 
are constructed that maximize the information on the important parameters a, whereas 
the q parameters modeling the time dependence are treated as nuisance parameters. The 
corresponding Vt-optimal design DDt is found by maximizing 

where 

IZ'ZI 
V t = IG'GI' 

IZ'ZI = I ~',~ ~',~ 1= IG'GIIF'F - F'G(G'Gt1G'FI· 

A run order is called trend-free if the least-squares estimates of the factorial effects of 
interest are free of bias that might be introduced from the unknown trend effects in (3. 
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Figure 2: Cost and Information 

Otherwise stated, trend-robustness is ascertained when the columns of F are orthogonal 
to the columns of G or, equivalently, when 

IZ'ZI = I F~F G~G 1= IF'FIIG'GI· 

To compare the V- and Vcoptimal design for information about the important parameters 
D, the generalized variance of D is compared through 

( Vt(OVt))f; 
V(ov) I 

(9) 

denoting the trend-resistance of the Vt-optimal design or, equivalently, the protection of 
the VI-optimal design ov, against time order dependence. 

Finally. in the presence of trend effects and when both measurement costs and transition 
costs are taken into account, the (V t I C)-optimal run order maximizes 

Analogous to the trend-resistance of the Vcoptimal run order (9), the trend-resistance of 
the (V t I C)-optimal run order is defined as 

(10) 
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and the efficiencies of the (Dt, C)-optimal design compared with the D-optimal design 
and the Droptimal design in terms of the amount of information about the important 
parameters a per unit cost equal 

and 
1 

( Dt (8('D',c))) p C(8v,) 
D(8v,) C(8(v"d 

respectively. In the next section, we propose an algorithm for the construction of (D, C)-, 
Dt- and (Dt, C)-optimal run orders. 

4 The design construction algorithm 

r.1any algorithms have been proposed to construct optimal designs. Welch (1982) ap
plies branch and bound to compute D-optimal designs. Approaches based on simulated 
annealing can be found in Haines (1987) and Meyer and Nachtsheim (1988). Exchange 
algorithms sequentially add and delete design points in order to improve the objective 
function. Some examples include Wynn's algorithm (Wynn (1972)), the DETMAX al
gorithm of Mitchell (1974), Fedorov's algorithm (Fedorov (1972)), the modified Fedorov 
algorithm of. Cook and Nachtsheim (1980), the k-exchange algorithm of Johnson and 
~achtsheim (1983), the kl-exchange algorithm of Atkinson and Donev (1989), the BLKL 
algorithm of Atkinson and Donev (1992) and the coordinate-exchange algorithm of Meyer 
and Nachtsheim (1995). The aim of our proposed exchange algorithm is the construction 
of optimal run orders by allocating n observations selected from a candidate list of d 
design points to n out of h available time points in such a way as to maximize the value 
of the optimality criterion used. 

4.1 Description of the algorithm 

In the first phase of the algorithm, the experimenter can include nl treatment combina
tions with corresponding time points. Then the problem converts to design augmentation. 
This frequently occurs when additional observations are needed after a screening experi
ment or when an initial experiment has failed. None of the observations specified by the 
experimenter can be removed from the run order during the optimization procedure. Next, 
a starting run order is constructed by allotting n2 randomly chosen treatment combina
tions from the candidate list to n2 randomly chosen time points from the list of allowable 
time points. This starting run order is then augmented to n trials in the second phase, by 
sequentially adding n - nl - n2 treatment combinations at time points still available so 
that these additions lead to the largest improvement of the optimality criterion. Finally, 
the trials are subject to iterative improvement in the third phase. This improvement of 
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the run order consists of alternate exchange and interchange of design points. The effect 
of the deletion of a design point Xi at time point tk and the addition of a new design point 
Xj from the list of candidate points at a time point tl still available is investigated. The 
interchange of design points Xi and Xj from (Xi) tk) and (Xj, tl) to (Xi, tz) and (Xj, tk) is also 
investigated. The process continues as long as an exchange or interchange increases the 
value of the optimality criterion used. In order to avoid being stuck at a local optimum, 
the probability of finding the global optimum can be increased by repeating the search 
several times from different starting designs or 'tries'. The input to the algorithm consists 
of the number of tries v, the number of factors j, the order and the number of parameters 
p of the response model, the polynomial expansion for the response model f(x), the order 
and the number of parameters q of the time trend, the polynomial expansion for the time 
trend g(t), the number of observations n, cost information m, t, c:; and T, the list of nl 
treatment combinations and nl corresponding time points to be included in the starting 
run order, the list of h allowable time points and the list of d candidate points. The list of 
d candidate design points can be either user specified or computed as shown in Atkinson 
and Donev (1992). Our algorithm is outlined in Appendix 2. 

4.2 Update formulae 

Reduction of computation time is obtained by using powerful update formulae in order 
to evaluate the effect of a newly added design point or of an exchange and interchange. 

As an example, addition of a new design point Xi at time point tk leads to a new total 
cost of the experiment equal to 

Cnew = Cold + m' (Xi)" + (t' (Xb;, Xi) + t' (Xi, XaJ - t'(Xbil XaJ)T, 

where Xb; and x ai are the respective design points just before and after Xi in the new run 
order. The newly obtained (V t , C)-value equals 

(V C) = (V C) 1 + z'(x;, tk)(Z'Z)-lZ(Xi' tk) Cold 
t: new t, old' 1 + g'(tk) (G'G)-lg(tk) Cnew ' (11) 

After addition of a new design point, the updated matrices (Z'Z)-l and (G'G)-l are 

{Z'Z + z(x t )z'(x. t )}-l = (Z'Z)-l _ (Z'Z)-lZ(Xi, tk)Z'(Xi, tk)(Z'Z)-I 
1., k 1. k 1 + Z'(Xi, tk)(Z'Z)-IZ(X;, tk) 

(12) 

and 

{G'G + (t) '(t )}-I = (G'GtI _ (G'G)-Ig(tk)g'(tk)(G'G)-I (13) 
g k g k 1 + g'(tk)(G'G)-lg(tk) 

Since all components in the right hand side of (11), (12) and (13) are known, the effect 
of the design change is readily calculated without computationally intensive matrix in
versions and determinant operations. Similar update formulae can be established for the 
considered exchanges and interchanges. 
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5 Applications 

This section illustrates the benefits of incorporating cost information in the construction 
of optimal designs. In the first application the effect of incorporating cost considerations 
on the trend-resistance of the optimal run orders is investigated. Afterwards, two case 
studies clarify practical utility in industrial environments. 

5.1 Trend effects in experimental design 

The aim of this example is to investigate the influence of incorporating cost information 
on the protection against time order dependence. A 2-factor experiment is conducted and 
a full second-order response function is assumed. The support points constitute the full 
32-factorial. The number of observations equals 30 and as many time points are available. 
The observations are expected to be distorted by a linear time trend. The measurement 
costs are described by cm(x) = 10 + lOOx? + 100x~. This means that measurements at 
moderate factor levels can be performed at low costs, whereas low and high factor levels 
involve large costs. The transition costs are shown in Figure 3. For instance, altering 
factors Xl or X2 from the low level to the high level or vice versa amounts to a cost of 100. 

COST 
100 

Figure 3: Transition Costs for Factors Xl and X2 

Figure 4 displays the computed optimal designs for various optimality criteria and the 
resul ts are intuitively appealing. Comparison of the V-optimal design and the (V, C)
optimal designs reveals a little shift in the number of replicates from design point (1,1) 
to design point (0,0). This shift can be explained from the fact that average factor level 
settings are cheapest. When the experiment is designed to be protected against a linear 
time trend, four Vcoptimal designs are obtained, from which one corresponds with the V
optimal design. Taking into account both a linear time trend and cost considerations, the 
(VI., C)-optimal design especially differs from the V-optimal design in that the expensive 
design point (1,1) and the cheap design point (0,0) are replicated once less and once more 
respectively. 
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Figure 4: Optimal Designs for Different Optimality Criteria 

Other polynomial time trends of the form g'(t) = (tq) are also investigated. According to 
(9) and (10), the protection against time trends of the Vr and (Vt, C)-optimal run orders 
I5TJ t and I5(TJ t ,c) are given in Table 2. The results show that incorporating cost information 
goes at the expense of the protection against time order dependence. However, this loss 
in prot.ection against time order dependence is rather negligible. The results can be 
generalized to other cost functions. 
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trend-resistance (%) 
q 01)t O(1)t,C) 

1 99.99 99.64 
2 87.33 86.98 
3 100 99.62 
4 92.78 92.45 
5 100 99.64 

Table 2: Trend-Resistance for Several Polynomial Time Trends 

5.2 Case 1: The platen and wafer frequency experiment 

This example is based on an experiment reported by Freeny and Lai (1997). Advanced 
photolithography in very large scale integration (VLSI) increasingly demands global pla
narity across a chip-sized printing field for fine resolution. Chemical mechanical polishing 
(CMP) is a simple technique to achieve this. 

In a designed experiment a polisher which does oxide planarization by CMP is evaluated 
for possible use in the wafer fabrication manufacturing process. The goal is to find the 
maximum rate of oxide removal which could be used without degrading the uniformity of 
the removal over the surface of the wafer. Consequently, the important responses are the 
polisher removal rate and the uniformity across the wafer. We confine ourselves to the 
polishing rate. In CMP, a wafer is held by a rotating carrier and is polished by pressing 
the wafer face down onto a polishing pad on a rotating platen. The rotating padded 
platen is impregnated with a slurry of extremely fine abrasive. The important parameters 
for the polishing process are platen and wafer rotation frequencies, Xl and X2 respectively, 
whereas the polishing pressure was held constant at a single optimum value based on 
previous work. All combinations of three platen and five wafer rotation frequencies were 
used. These are 11, 15 and 19 rpm and 12, 22, 32, 42 and 52 rpm respectively. The 15 
polishing conditions combining every platen frequency with every wafer frequency form a 
full factorial experiment. A tendency of the polisher removal rate to drift lower through 
time had previously been noticed. This drift results in imperfect process reproducibility 
even with automation. For that reason, we introduce a linear trend described by g(t) 
= (t). An important design issue was to choose the order of the fifteen combinations 
to estimate the effects of the design parameters independent of the linear drift. In the 
experiment mentioned by Freeny and Lai (1997), the run sequence of polishing conditions 
is chosen to confound the effect of the linear drift with interaction component xix~ (Table 
3). 

16 



Freeny and Lai 
run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Xl 15 19 11 15 11 19 11 15 19 11 19 15 19 11 15 
X2 22 42 42 52 12 12 32 32 22 52 52 12 32 22 42 

DDt 

run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Xl 15 11 15 11 19 19 11 15 19 11 11 19 15 15 19 
X2 42 22 12 52 22 52 32 32 32 12 42 12 52 22 42 

Table 3: Run Orders 

The assumed response function is given by 

f' () (1 2 2 2 2 3 2 2 3 4 4 2 4) X = Xl X2 Xl XIX2 X2 Xl X2 XIX2 X2 Xl X2 XIX 2 X 2 XIX2 Xl X2 . 

Previous work indicated that the polisher may not reach equilibrium immediately after a 
change in the parameter settings. We turn this knowledge into a transition cost ct and 
assume an increasing cost function offactor level changes. Moreover, ct = ci + c; where c; 
refers to the transition cost associated with changing the levels of factor i. We computed 
the Vc and (V t , C)-optimal run orders DDt and D(Dt,C) for several ratios ~. For instance, * = 0.1 means that factor Xl is ten times cheaper to change than factor X2. The transition 

c~sts for ~ = 0.1 are shown in Figure 5. The optimal run orders are compared with the 
run order ~f Freeny and Lai in Table 4. The results presented relate to the quadratic cost 
functions of Figure 5 but also hold for other increasing cost functions. 

COST COST ., BO 

" " 64 

5G " " .. 
" 32 32 

" " ,6 W 

8 

(a) r;\ for Platcll Rotation Frequency (Xl) (b) c~ for Wafer Rotation Frequency (X2) 

Figure 5: Transition Costs in Platen and Wafer Frequency Experiment for ::t = 0.1 
C2 

One observes from Table 4 that the Vt-optimal run order DDt is a little more trend-resistant 
than the run order proposed in Freeny and Lai (1997). This Vcoptimal run order is shown 
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trend-resistance (%) cost per unit information 
c' Freeny and Lai DVt D(Vt,C) Freeny and Lai DVt D(Dt,C) .::L 
C:, 

1000 98.67 99.14 95.22 22865 22180 4720 
100 98.67 99.14 95.22 2296 2227 490 
10 98.67 99.14 95.22 239 231 67 
1 98.67 99.14 98.43 34 32 21 

0.1 98.67 99.14 95.80 130 118 71 
0.01 98.67 99.14 93.99 1094 983 527 

0.001 98.67 99.14 93.99 10736 9630 4967 

Table 4: Comparison of Run Orders 

in Table 3. A small decrease in trend-robustness is observed when transition costs are 
calculated for. Both the Vr and (Vt , C)-optimal run orders outperform the run order of 
Freeny and Lai in terms of cost per unit information. This especially comes true for the 
(Vt, C)-optimal run orders. In conclusion, the Vr and (Vt , C)-optimal run orders offer 
an outperforming alternative for the run order mentioned in Freeny and Lai (1997). 

5.3 Case 2: The flame spectroscopy experiment 

This case refers to an application mentioned by Joiner and Campbell (1976). An experi
ment is executed in order to evaluate the sensitivity of a spectrophotometer. Five factors 
are included'to be examined: lamp position, burner position, burner height, type of flame 
and flow rate. The measurements are believed to drift linearly with time due to carbon 
build-up. For this reason, it is necessary to interrupt the measurements and remove all 
of the built up carbon after every 20 observations. The number of levels per factor and 
the times needed to change the factor levels are given in Table 5. 

factor number of levels time to change (sec) 
Xl lamp position 2 1 
X2 burner position 2 60 
X3 burner height 3 1 
X4 type of flame 3 60 
X5 flow rate 3 120 

Table 5: Description of the Flame Spectroscopy Experiment 

We assume that each observation has a fixed measurement cost and that the transition 
cost equals the time needed to change the factor levels. As a consequence, the (Vt , C)
optimality criterion can be seen as the criterion with which run orders that maximize the 
amount of information per unit time are preferred. 
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Table 6 compares the computed Vc and (V t , C)-optimal run orders for the following 
response models: 

(1) ['(x) = (1 Xl X2 X3 X4 X5) 

(2) [' (x) = (1 Xl X2 X3 X4 X5 X~ X~ x~) 
(3) f'(x) = (1 Xl X2 X3 X4 X5 XIX2 XIX3 XIX4 XIX5 X2X3 X2X4 X2X5 X3X4 X3X5 X4X5) 

(4) ['(x) = (1 Xl X2 X3 X4 X5 X§ X~ xg XIX2 XIX3 XIX4 XIX5 X2X3 X2X4 X2X5 X3X4 X3X5 X4X5) 

The reduction in terms of percentage in the total transition cost, trend-resistance and the 
cost per unit information of the (Vt , C)-optimal run order with respect to the Vt-optimal 
run order is also mentioned. 

transition cost trend-resistance (%) cost per unit information 
['(x) 01), o(1)"C) red. OD, 0(1), ,C) red. OD, o(1)"C) red. 
(1) :2: 2669 1107 59 100 99.29 0.7 2: 133 56 58 
(2) 2: 2537 1177 54 99.99 99.00 1.0 2: 243 114 53 
(3) 4170 3151 24 82.70 82.48 0.3 263 200 24 
(4) 3864 3034 21 77.81 73.39 5.7 526 345 34 

Table 6: Comparison of Optimal Run Orders for Different Response Models 

Remark that for the first two models in Table 6 more than one Vroptimal run order 
is founci.. Consequently different total transition costs are obtained for these Vcoptimal 
run orders but Table 6 only mentions the lowest transition cost. Table 6 shows that the 
performance of the Vc and (Vt , C)-optimal run orders in terms of trend-resistance and 
cost per unit information decreases when the response model becomes more complicated. 
It is also shown that when costs are considered, the reduction in the total transition cost 
ranges from 21 % for the fourth model to 59% for the simplest model. Again, taking into 
account costs in optimum design theory partly goes at the expense of trend-resistance of 
the optimal run order but the decrease in trend-resistance is negligible for quite simple 
models. Furthermore, incorporating costs entails a decrease in the cost per unit informa
tion that ranges from 24% for the third model to 58% for the first model. 

6 Conclusion 

Economical reasons often limit the usefulness of experimental designs computed on the 
basis of alphabetic optimality criteria. However, the incorporation of cost considerations 
in optimum design theory is a topic about which the literature is suspiciously silent. 
This paper provides a thorough analysis of cost considerations in the construction of 
optimum designs. Measurement costs refer to the costs associated with particular factor 
level combinations and transition costs are involved by changing the factor levels from one 
observation to another. In view of cost minimization, the experimenter should minimize 
the total number of factor level changes by performing the runs that correspond with 
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the same treatment combination one after the other. However, run trends may affect 
the observed response. Minimization of the number of factor level changes is no longer 
the only design issue. This paper presents an algorithm for the construction of cost
efficient run orders that are optimally protected against time trends. Arbitrary design 
problems and arbitrary cost models can be treated. The results show that incorporating 
cost information implies a considerable increase in the amount of information per unit 
cost and the loss in trend-resistance of the cost-efficient run orders is rather negligible. 

Appendix 1. The average transition cost per run order 

Theorem 

The average transition cost per run order of an experiment {n;}f=1 with n 
2::7,=1 ni observations equals *l'(N 0.9 N)Tr. 

Proof 

For all i E {1, ... , d}, we denote each observation r E {1, ... , ni} of design point Xi 

as Xi('r)' The experiment now consists of n design points Xi(r), with i E {1, ... , d} and 
r E {l. .... n;}. Now. n - 1 distinct transitions can be associated with each design point 

Xi.(r): 

This means that for the n design points Xi(r), the total number of distinct transitions 
equals n( n - 1). Furthermore, n distinct design points yield n! different orderings and 
rach run order involves n -1 transitions. As a consequence, the total number of transitions 
over all run orders equals n!(n - 1). It follows that each transition (Xi(r),Xi'(r')) occurs 
11.'(11._1) = (n - 1)1 times. 
71.(71.-1) 

Besides, each transition (Xi, X;) belongs to the following set of ni(ni - 1) distinct transi
tions: 

Tlw t()talllumber ()f transitions (Xi, Xi) over all n l run orders now equals (n -1) Ini ( ni -1). 
This is a fraction (71.-1;'71.,(71.,-1) = 71.,(11.i- 1) [1] of the n!(n-1) transitions over all run orders. 

71..(11.-1) "'(11.-1) 
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In a similar way, the transition (Xi, Xj) belongs to the following set of ninj distinct tran
sitions: 

(Xi(1) , Xj(I)), .. . ,(Xi(I), Xj(n,)), ... ,(Xi(n;), Xj(I))"" ,(Xi(ni)' Xj(nj))' 

These ninj distinct transitions together occur (n - l)!ninj times, namely a fraction 

(Tl~~(~~;~i = n~~~\) [2] of the n!(n - 1) transitions over all run orders. 

Generally speaking, an experiment {ni}1~1 can be run in nl! ~! nd' different ways, resulting 

into (n - 1) nl' ~! nd! transitions. According to [1], the total number of transitions (Xi: Xi) 

over all run orders is a fraction n~~~~~~) of (n - l)nl! ~! nd! transitions or equals ni(ni -

1) nl(~~l~'d! [3]. From [2], the total number of transitions (Xi, Xj) is a fraction n0:;I) of 

(n - l)nl! ~! nd' or equals ninjnl(~~l~d' [4]. Based on [3], [4] and the expression for the 
total transition cost of a run order (5), the total transition cost summated over all run 
order::; belonging to experiment {n;}1~1 equals 

nl(nl - 1) 0 0 0 0 0 
0 nln2 0 0 0 0 

0 0 nInd 0 0 0 
(n-l)! , 

Tr. 1 
nl! ... nd! 

0 0 0 0 0 ndnl 

0 0 0 0 ndnd-l 0 
0 0 0 0 0 nd(nd - 1) 

This total transition cost can be rewritten as 

nl(~ .~l~d!l' (N @N - H(I@ N)) Tr, 

with H = diag(lll~ .. , ldld)' Because there are nl! ~! nd! run orders, the average tran
sition cost per run order now equals 

1 , 1 '( ( )) 1 '( ) 1 ( , , ) -l(N@N)Tr--l HI@N Tr=-l N@NTr--nltll+ ... +ndtddr. 
n n n n' , 

It goes without saying that no costs are associated with transition (Xi, Xi), or equivalently, 
t; .. ,T = 0 for all i E {I, ... ,d}. The average transition cost per run order then simplifies 
to 

1 
-l'(N @N)Tr. 
n 

D 
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The design dependence of the average transition cost per run order is reflected by matrix 
N = diag( nl ... nd)' Replicating the experiment {ni}f=l p times, results into an average 
transition cost per run order equal to 

1 1 
-l'((pN) Q9 (pN))Tr = p -l'(N Q9 N)Tr. 
pn n 

This means that the average transition cost per run order is proportional to the number 
of replicates of the experiment. 

Appendix 2. The construction algorithm 

In the outline of the algorithm, we denote the value of the user specified optimality 
criterion as Q. Possibilities are the D-, (V, C)-, Dt- and (Vt, C)-criterion. The list of d 
candidate points is denoted as D = {I, ... ,d} and the initial list of available time points 
is given as T = {I, . .. ,h}. The addition of design points to the run order diminishes the 
number of time points available. For that reason, the list of available time points T has to 
be updated after each addition or deletion of a design point. A design is denoted as a series 
{n;} and a run order is written as a series R = {(Xi, tj)}. After addition of design points 
that the experimenter wants to include in the starting design, the list of still available time 
points. the value of the optimality criterion, the design and the run order are denoted as 
To, Qo, { no;} and Ro respectively. Besides, the optimal value of the criterion, the optimal 
run order arid the optimal design will be written as QoPt) Ropt and {n;} opt respectively. 
After inclusion of the user specified nl design points and corresponding time points, the 
algorithm proceeds as follows: 

l. Set Qopt = Qo· 

2. Set Vi ED: ni = 0, R = Ro, T = To and Q = Qo. 

3. Repeat v times: 

(a) Randomly choose n2 subject to max(O,p + q - nl) :::; n2 :::; n - nl. 

(b) Repeat n2 times: 

I. Randomly choose i ED. 

ii. n, = ni + l. 
111. Randomly choose k E T. 

lV. R = R U {(Xi, tk)}' 
v.T=T\{k}. 

vi. Update Q. 

(c) Repeat n - nl - n2 times: 

I. Determine i E D and k E T with largest effect on Q. 
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ii. ni = ni + 1. 

111. R=Ru{(Xi,tk)}. 
lV. T=T\{k}. 

v. Update Q. 

(d) Consider the exchanges and interchanges. 

1. Set 6. = 1. 

ll. Find the best exchange: 
Vj E D, Vi E To, V(Xi' tk) E R, Xi i= Xj or tk i= tz : 
compute the eHect 6.fx"tk),(X;,t') on Q of deleting (Xi, tk) and adding (Xj, tz). 
If 6.fx"tk),(Xj,t,) > 6. then 6. = 6.fx"tk),(X;,tl) ' S = 1 and store i, j, k, i. 

iii. Find the best interchange: 
V(Xi' tk), (Xj, tz) E R, tk i= tz : 
compute the eHect 6.[X"tk),(X;,t') on Q of interchanging (Xi, tk) and (Xj, tz). 
If 6.[X"tk),(Xj,t,J > 6. then 6. = 6.[x;.tk),(x;,t1) ' S = 2 and store i, j, k, l. 

( e) If 6. > 1 then 

1. If S = 1 then R = R \ {(Xi, tk)} U {(Xj, tz)}, ni = ni - 1, nj = nj + 1 and 
T=T\{k}U{i}. 

ii. If S = 2 then R = R \ {(Xi, tk), (Xj, tz)} U {(Xi, tl), (Xj, tk)}. 
111. Update Q. 

lV. Go to step (d). 

(f) If Q 2: QoPt, then Qopt = Q, Ropt = R U Ro and {ni}opt = {no;} U {ni}. 
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