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Abstract

We consider the so-called Transportation Problem with Exclusionary Side Con-
straints (TPESC), which is a generalization of the ordinary transportation problem.
We determine the complexity status for each of two special cases of this problem, by
proving NP-completeness, and by exhibiting a pseudo-polynomial time algorithm. For
the general problem, we show that it cannot be approximated with a constant perfor-
mance ratio in polynomial time (unless P=NP). These results settle the complexity
status of the TPESC.
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1 Introduction

The ordinary transportation problem is well-known: given a number of supply nodes each
with a certain supply of items, a number of demand nodes each with a certain demand for
items, and a unit transportation cost for each pair consisting of a supply node and a demand
node, send the items from the supply nodes to the demand nodes at a minimum cost.

In this note we consider the variant where for each demand node a set of pairs of supply
nodes is given such that at most one supply node of each given pair is allowed to send items
to that demand node. Following the literature, we refer to this problem as the transportation
problem with exclusionary side constraints (TPESC).

As far as we are aware, this problem has first been introduced by Cao [3] who described
an application in storage management of containers. In this application, arriving containers
must be positioned in rows of a storage yard, such that the costs of operations (searching,
loading, retrieving) are minimized. Differences in size, ownership or content may disallow
containers to be stored in the same row, giving rise to exclusionary side constraints. A
branch-and-bound approach was described to solve the problem. Other branch-and-bound
approaches are described and tested in Sun [10], while evolutionary algorithms have been
proposed and tested by Cao and Uebe [4], and Syarif and Gen [11]. The complexity status
of TPESC, however, has remained open.
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Our interest in this generalization of the transportation problem stems from an application
that occurs in the context of a procurement problem (see Section 2 and Goossens et al. [8]
for a description).

1.1 Problem Statement

TPESC can be formulated as follows. Let there be a set S of supply nodes, each with a
supply of si, i ∈ S, and a set D of demand nodes, each with a demand of dj, j ∈ D. For each
pair of consisting of supply node i ∈ S and demand node j ∈ D, a unit cost cij ≥ 0 is given.
Finally, for each demand node j ∈ D, a (possibly empty) set of pairs of supply nodes, called
Fj, is given; thus Fj = {(i1, i2)| (i1, i2) ∈ S×S, i1 6= i2}. The problem is to send all supply to
the demand nodes at minimum cost, such that each demand node j ∈ D receives items from
at most one supply node for each pair of supply nodes present in Fj. Obviously, if Fj = ∅
for all j ∈ D, the ordinary transportation problem arises. Notice that we assume that total
supply equals total demand, that is

∑
i∈S si =

∑
j∈D dj. For a mathematical formulation,

we refer to Sun [10].

1.2 Our results

In this paper, we show that TPESC is NP-complete. In fact, the problem is NP-complete
already for the smallest nontrivial case, that is, the case with two demand nodes. Even more
specifically, we establish for each of two relevant special cases of TPESC its approximability
status (we refer to Garey and Johnson [6] or Ausiello et al. [1] for an introduction to these
issues). One special case concerns the setting where all Fj, j ∈ D are equal (we refer to
this case as TPESC with common exclusionary sets, see Section 2). Then, we show that in
case of two demand nodes the problem is (weakly) NP-complete and a pseudo-polynomial
time algorithm exists. In case of three demand nodes, the problem becomes strongly NP-
complete. Another special case concerns the setting where all sets Fj, j ∈ D except one are
empty (we refer to this case as TPESC with a single exclusionary set, see Section 3). Then,
we show that the existence of a polynomial-time algorithm with a fixed performance ratio
would imply P=NP, even in the case of two demand nodes. Our results motivate the use of
heuristics and branch-and-bound approaches ([3], [10], [4], [11]) for solving large instances
of the TPESC.

2 TPESC with common exclusionary sets

In this section we focus on the TPESC with common exclusionary sets. This special case
arises in a procurement problem (see Goossens et al. [8]). We now proceed to describe this
problem in more detail.

Consider a buyer procuring given amounts of different goods from different suppliers. Each
of the suppliers uses a so-called total quantity discount policy to set the prices for the different
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goods; more in particular, each supplier distinguishes volume intervals on the total number
of sold goods that determine the prices charged for each individual good. The resulting
procurement problem (referred to as the TQD problem) is to obtain the given amounts of
each of the different goods from the suppliers at minimum cost. Thus, a solution for an
instance of this TQD problem prescribes how much items of each good are ordered from
each supplier. In Chauhan et al. [5], a PTAS is described for a special case of the problem
involving a single good. Observe that the TQD problem (as the TPESC) is a generalization
of the ordinary transportation problem. Indeed, by associating a demand node to each good
(with its demand equal to the amount that needs to be bought), and by associating a supply
node with appropriate lower and upper bounds to each volume interval of each supplier, the
TQD problem boils down to selecting supply nodes (at most one from each supplier) and by
finding the right amount of goods to be transported. (In case a supplier can only deliver a
fixed number of items, that is, there is only one supply node for each supplier with coinciding
upper and lower bound, the ordinary transportation problem arises). One important aspect
in this generalization of the transportation problem is the fact that for each demand node,
a set of supply nodes is given (namely the nodes corresponding to the intervals of a single
supplier) from which at most one can be used to actually supply that demand node; this
corresponds to our Fj, j ∈ D sets. Also, observe that these sets are the same for all demand
nodes, in other words, we are dealing with an instance of TPESC with common F -sets.

Let us now formulate our results for this special case of TPESC. We first prove that the
problem with |D| = 2, that is, the case of two demand nodes, is weakly NP-complete, then
we exhibit a pseudo-polynomial algorithm for this case, and finally we show that the problem
with |D| = 3 is strongly NP-complete.

Theorem 2.1 TPESC with common exclusionary sets is NP-complete, even if |D| = 2.

Proof. We prove the theorem by presenting a reduction from Even-Odd Partitioning (EOP)
to TPESC. EOP is proved to be NP-complete in Garey et al. [7].

EOP
Input: n pairs of positive integers Ii = (x2i−1, x2i), i = 1, . . . , n.
Question: does there exist a partition of {1, . . . , 2n} into disjoint subsets A and B with
|A ∩ Ii| = |B ∩ Ii| = 1 for i = 1, . . . , n, and with

∑
i∈A xi =

∑
i∈B xi?

For each integer in the input of EOP, we construct a supply node with supply equal to
the value of the integer, that is, we set S = {1, 2, . . . , 2n} with si = xi for i = 1, . . . , 2n.
There are two demand nodes, each having demand d1 = d2 = 1

2

∑2n
i=1 xi. We set F1 = F2 =

{(x2i−1, x2i)| i = 1, . . . , n}, implying that at most one supply node per pair is allowed to send
items to that demand node. All costs are 0. This completes the description of the instance
of TPESC.

A yes-answer to the EOP instance directly corresponds to a feasible solution of the TPESC
instance. Also, by observing the fact that the two demand nodes have common exclusionary
constraints, it is clear that in any feasible solution of the TPESC instance, each supply node
sends its entire supply to precisely one of the demand nodes which in turn corresponds to a
yes-answer of the EOP instance. ¤
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Of course, this result leaves the possibility open that a pseudo-polynomial time algorithm
exists for TPESC with common exclusionary sets and two demand nodes. We will now
describe such an algorithm.

We first construct a graph G = (V, E). There is a node in G for each supply node in
the TPESC instance. Let there be an edge between each pair of nodes for which there is
an exclusionary constraint in F . The resulting graph can be partitioned into a number of
connected components (Vi, Ei), i = 1, . . . , c, such that there is no exclusionary constraint
between two vertices in different sets Vi. Thus, each connected component is maximal. For
each component i, there are only two possible ways of dividing the supply of the nodes of that
component over the two demand nodes (as observed earlier, the fact that the two demand
nodes have common exclusionary constraints and that total supply equals total demand,
implies that in any feasible solution, each supply node sends its entire supply to precisely
one of the demand nodes). Indeed, if we pick an arbitrary node of each component and call
it the primal node of the component, we can either assign its supply to the first demand
node or to the second. This choice determines to which demand nodes the supply of the
other nodes of that component must be sent.

Suppose that assigning the supply of the primal node of component i to the first demand
node results in a total supply of wi being sent to the first demand node by the component
i, and a remaining supply of ri =

∑
j∈Vi

sj − wi being sent to the second demand node.
Further, let pi1 (pi2) correspond to the total cost corresponding to component i, when the
supply of the primal node is being sent to the first (second) demand node. We partition the
set of components into two subsets as follows: C1 = {i| wi ≥ ri}, and C2 = {i| wi < ri}.
This allows us to define decision variables xi such that, for i ∈ C1: xi = 1(0) if the supply of
the primal node is being sent to the first (second) demand node, and for i ∈ C2: xi = 1(0)
if the supply of the primal node is being sent to the second (first) demand node. We can
formulate the TPESC problem with common exclusionary sets and two demand nodes as
follows:

minimize
∑
i∈C1

[pi1xi + pi2(1− xi)] +
∑
i∈C2

[pi2xi + pi1(1− xi)] (1)

subject to
∑
i∈C1

[wixi + ri(1− xi)] +
∑
i∈C2

[rixi + wi(1− xi)] = d1 (2)

∑
i∈C1

[rixi + wi(1− xi)] +
∑
i∈C2

[wixi + ri(1− xi)] = d2 (3)

xi ∈ {0, 1} for i = 1, . . . , c. (4)

Let us now define for i ∈ C1: ai = wi − ri, pi = pi1 − pi2, and for i ∈ C2: ai = ri − wi, pi =
pi2 − pi1, and we define B = d1 −

∑
i∈C1

ri −
∑

i∈C2
wi.

Rewriting (1)-(4) using these definitions gives us the following equivalent integer program:

minimize
c∑

i=1

pixi (5)
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subject to
c∑

i=1

aixi = B (6)

xi ∈ {0, 1} for i = 1, . . . , c. (7)

Notice that when constraint (6) is satisfied, both the first and the second demand node
receive their required supply of d1 respectively d2. Also observe that the definitions above
imply that ai ≥ 0. In fact, we can eliminate those variables xi which have as coefficient
ai = 0 (since, in an optimal solution we set, in case ai = 0: xi = 1 if pi ≤ 0, else we set
xi = 0). Thus, henceforth we will assume that ai ≥ 1. Furthermore, we assume that B ≥ 0,
since no solution exists if B < 0.

This problem is a generalization of the change making problem (see Martello and Toth [9]),
since there is a cost pi associated to each variable xi. Furthermore, there are bounds equal
to 1 on the variables. Wright [12] developed a dynamic program for the change-making
problem. The following modified version of this algorithm, to which we refer as algorithm
DP, provides an optimal solution for formulation (5)-(7).

Let fq(z) be the optimal solution value of a sub-instance of (5)-(7), consisting of components
1, . . . , q and a right-hand side of z, with 1 ≤ q ≤ c and 0 ≤ z ≤ B. If no solution exists for
a combination of values q and z, then fq(z) = ∞. It is clear that

f1(z)





= 0 if z = 0;
= p1 if z = a1;
= ∞ if z 6= a1.

Now, fq(z) can be computed by considering increasing values of q from 2 to c and, for each
q, increasing values of z from 0 to B as

fq(z)

{
= fq−1(z) if z = 0, 1, . . . , aq − 1;
= min(fq−1(z), fq−1(z − aq) + pq) if z = aq, . . . , B.

The optimal solution value of formulation (5)-(7) is then given by fc(B). The time complexity
of algorithm DP is O(cB), which proofs that TPESC with two demand nodes with common
exclusionary constraints can be solved in pseudo-polynomial time. We have shown the
following:

Theorem 2.2 Algorithm DP is a pseudo-polynomial algorithm for TPESC with common
exclusionary constraints and two demand nodes.

We now argue that it is unlikely that this algorithm can be extended to the case of three
demand nodes by showing that TPESC with common exclusionary sets and three demand
nodes is strongly NP-hard.
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Theorem 2.3 TPESC with common exclusionary sets is strongly NP-complete, even if
|D| = 3.

Proof. We prove the theorem by presenting a reduction from Graph 3-colorability ([6]) to
TPESC.

Graph 3-colorability
Input: a graph G = (V, E).
Question: is G 3-colorable, that is, does there exist a coloring of the vertices of G such that
two connected vertices receive different colors, and such that no more than three different
colors are used?

We build an instance of TPESC by having a supply node for every vertex of V , by having a
supply node for every edge of E, and by having a single dummy node d. Thus S = V ∪E∪{d}.
Each supply node corresponding to a vertex or an edge of G has sj = 1, j ∈ S \ {d}, the
supply corresponding to the dummy node equals sd = 2(|V |+ |E|). There are three demand
nodes, each having demand dj = |V | + |E|. Let the two endpoints of an edge e ∈ E be
denoted by ve and we, and let pe be the supply node in S corresponding to this edge e. For
each edge e in G there are three pairs of supply nodes in F :

F = {(ve, we), (ve, pe), (we, pe)| e ∈ E}.

Further, all costs are 0. This completes the description of an instance of TPESC.

Suppose that G admits a 3-coloring. We associate a different color to each of the three
demand nodes. Next, we send the unit supply of each supply node corresponding to a vertex
v ∈ V to the appropriate demand node (the one with v’s color in the coloring). The unit
supply of a supply node corresponding to an edge e ∈ E is sent to the demand node not
receiving supply from supply nodes ve and we (obviously, there is always one such node). We
use the supply from the dummy node to satisfy all demand from the demand nodes exactly.
Observe that we have satisfied the exclusionary constraints, and hence: we have a feasible
solution to TPESC.

Suppose there is a feasible solution to TPESC. Consider a triple of supply nodes (ve, we, pe)
associated to edge e. Due to the choice for F , it follows that the supply of each of these
three supply nodes is sent to a unique demand node. Thus, the supply of supply nodes that
correspond to vertices in G that are connected, goes to different demand nodes. Since there
are three demand nodes, we have found a 3-coloring. ¤

3 TPESC with a single exclusionary set

In this section we deal with a special case of TPESC, namely the problem that arises when
exactly one F -set is nonempty. As we shall see, already this restricted version is hard to
approximate, even for two demand nodes. First, we sketch an application of this special case
of TPESC.
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When a company decides to store its goods, it basically has the choice between constructing
its own private warehouse and renting a public warehouse. Assuming that there are seasonal
changes in the need for storage space, Ballou [2] shows that it is advisable to make use of
both options. This leaves the company with the problem of where to store what goods,
minimizing the total cost. One can imagine that the public warehouse imposes constraints
on what goods can be stored together (e.g. hazardous materials), whereas these constraints
could be non-existing in a private warehouse, since this warehouse can be built specifically
according to the (safety) needs of the company. This practical application boils down to a
TPESC with only two demand nodes, where only one has a nonempty F -set (namely the
demand node corresponding to the public warehouse).

Theorem 3.1 TPESC with a single exclusionary set does not admit a constant-factor ap-
proximation algorithm unless P=NP, even if |D| = 2.

Proof. We prove the theorem by presenting a reduction from Independent Set (IS) to
TPESC.

Independent Set
Input: a graph G = (V, E) and an integer K ≤ |V |.
Question: does there exist an independent set of cardinality at least K, that is, a subset
V ′ ⊆ V with |V ′| ≥ K, such that no two vertices in V ′ are joined by an edge in E?

For each vertex in V we construct a supply node, with supply 1; thus sj = 1 for all j ∈ V .
There are two demand nodes; the first one has demand d1 = K, the second has demand
d2 = |V |−K. All costs equal 0. The first demand node has a set of exclusionary constraints
F1 = {(k, l)| k, l ∈ V ∧(k, l) ∈ E}. The second demand node has no exclusionary constraints,
that is, F2 = ∅.
We now show that the existence of a polynomial-time algorithm with a constant performance
ratio for TPESC would imply P=NP.

Suppose that the instance of IS has a yes-answer, that is, there exists an independent set
V ′ of cardinality at least K. In this case, given the construction of F1, there exist K supply
nodes corresponding to nodes from the set V ′ that satisfy the exclusionary constraints. It is
now easy to see that a solution where the supply of these nodes is sent to the first demand
node and where the other nodes supply the second demand node, is a feasible solution to
TPESC that has zero cost.

In case that the instance of TPESC has a yes-answer, one immediately observes that the
supply nodes assigned to the first demand node corresponds to an independent set of size
K.

Thus an algorithm with a constant performance ratio for TPESC would find a zero cost
solution if one exists, and hence would be able to distinguish between the yes-instances and
the no-instances of IS. ¤
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