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Abstract 

Bi-randomization designs have become increasingly popular in industry be­
cause some of the factors under investigation are often hard-to-change. It is 
well-known that the resulting compound symmetric error structure not only 
affects estimation and inference procedures but also the efficiency of the ex­
perimental designs used. In this paper, the use of bi-randomization designs is 
shown to outperform completely randomized designs in terms of V-efficiency. 
This result suggests that bi-randomization designs should be considered as an 
alternative to completely randomized designs even if all experimental factors 
are easy-to-change. 

Keywords: V-optimality, correlated observations, experimental design, hard­
to-change factors, restricted randomization, split-plot design 

1 Introduction 

Bi-randomization designs (BRDs) are heavily used in industry especially when factor 
levels are difficult or costly to change or to control. Typical examples of such factors 
are pressure, humidity and process temperature. Rather than conducting a com­
pletely randomized experiment in which pressure has to be moved back and forth 
according to the randomization scheme, executing experimental runs with equal 
pressure successively is preferred by the experimenter. Alternatively, the exper­
imenter could group all experimental runs with the same temperature level and 
execute them simultaneously in one furnace. In doing so, the number of changes in 
the levels of the hard-to-change factors is limited to the number of levels. Letsing­
er et al. (1996) point out that the resulting compound symmetric error structure 
affects estimation and inference procedures as well as design efficiency. Goos and 
Vandebroek (1999) propose an algorithm to construct 'V-optimal bi-randomization 
designs in this context. Ganju and Lucas (1999) describe how bi-randomization 
experiments are obtained by not resetting the factor levels for the consecutive runs 
of the random run order. They argue that bi-randomization experiments should be 
designed rather than being the accidental outcome of a random run order. 
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By using a bi-randomization design in the presence of hard-to-change factors, the 
ease of experimentation is significantly increased and precious time and resources 
can be saved. However, this should not be the only reason to consider using bi­
randomization. In this paper, we will show that bi-randomization designs are often 
statistically much more efficient than completely randomized experiments. Contrary 
to bi-randomization designs as described by Letsinger et al. (1996) and Goos and 
Vandebroek (1999), the bi-randomization designs described here allow more factor 
level changes. The benefits of this approach are fourfold. Firstly, the statistical 
efficiency of the experiment is increased. Secondly, increasing the number of level 
changes protects the experimenter against systematic errors which may occur when 
something goes wrong at a certain hard-to-change factor level. Thirdly, more de­
grees of freedom are available for the estimation of the whole plot error. Finally, the 
number of factor level changes is mostly smaller than in a completely randomized 
design. For all these reasons, the type of bi-randomization design discussed here 
should not only be considered when some of the experimental factors are hard-to­
change, but even more so when no hard-to-change factors are present. 

In Section 2, we describe the model assumptions corresponding to a bi-randomization 
design as it is used in industry when hard-to-change factors are present. The con­
sequences for model analysis and design efficiency are briefly discussed. In Section 3, 
we allow more flexibility in the design of a bi-randomization experiment and motivate 
this approach. In Section 4, an efficient algorithm for the construction of V-optimal 
BRDs is presented. Finally, computational results are discussed in Section 5. 

2 Hard-to-change factors 

The presence of hard-to-change factors often dictates the necessity to run response 
surface experiments in a bi-randomization format. In this section, the corresponding 
response surface model and the underlying assumptions are discussed. It is shown 
that observations are statistically dependent and have a compound symmetric error 
structure. As a result, the statistical analysis and the efficiency of the experimental 
design are affected. 

2.1 Model 

The set of independent variables in a bi-randomization experiment is divided in 
two groups. The nw hard-to-change design variables are denoted by Zl, . •• ,Znw or 
simply by z and are called the whole plot variables. The remaining ns variables 
are the sub-plot variables Xl, .•• , X n , or x. The bi-randomization experiment has 
two types of experimental units called whole plots and sub-plots and therefore two 
randomization procedures. Firstly, the w unique factor level combinations of the 
whole plot variables are randomly assigned to the w whole plot experimental units, 
thereby generating the whole plot error variance. It is assumed that there is a 
one-to-one relation between the whole plots and the w hard-to-change factor level 
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combinations in the experiment. As a consequence, the level of the hard-to-change 
factors is changed only w times during the experiment. The second randomization 
consists of allocating the factor level combinations of the sub-plot variables x to 
the sub-plot experimental units, generating the sub-plot error variance. The jth 
observation within the ith whole plot can be written as 

(1 ) 

where the p x 1 vector f(z, x) represents the polynomial expansion of the experi­
mental variables and the p x 1 vector (3 contains the p model parameters. In matrix 
notation, we have 

Y = Af3 + BI5 + e, (2) 

where Y is the n x 1 vector containing the n observations, A is the n x p design 
matrix containing the n vectors f(Zi,Xij), B is the n x w matrix with (i,j)th entry 
equal to one if the ith observation belongs to the jth whole plot and equal to zero if 
not, and 15 and e are the w x 1 and n x 1 vectors with whole plot and sub-plot errors 
respectively. We assume that E(<5) = E(e) = 0, Cov(<5) = O"ZIw , COV(e) = O";In 
and Cov( <5, e) = 0, with Iw and In the w- and n-dimensional identity matrix. The 
variance-covariance matrix of the Si observations within the ith whole plot is the 
S; x S; compound symmetric matrix 

Vi = O";Is;xs; + O"yIs;I~;, 
= O";(Is;xs; + dIs;I~J, 

(3) 

with d the variance ratio O"Z /0";, Is; the Si dimensional identity matrix and Is; an 
S; x 1 vector of ones. Note that n = I:~=1 Si. The variance ratio d measures the 
extent to which observations from the same whole plot are correlated. Observations 
from different whole plots are uncorrelated. Suppose the entries of Yare grouped 
per whole plot, then Cov(Y) is given by the n x n block diagonal matrix 

V = l6' S, : 1 
o 0 Vw 

(4) 

2.2 Analysis 

The statistical data analysis of bi-randomization experiments differs from that of 
completely randomized experiments. Under normality, the maximum likelihood 
estimate of the unknown model parameter (3 in (2) is the generalized least squares 
estimate instead of the ordinary least squares estimate. In order to investigate 
the impact of this change in analysis, a distinction between crossed, balanced and 
non-crossed BRDs has to be made. 
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Crossed, balanced and non-crossed BRDs 

Crossed BRDs -also referred to as split-plot designs- differ from non-crossed BRDs 
in that every combination of levels of x appears in each whole plot. Each whole plot 
then has an equal number of sub-plots, namely s = n/w, as well as equal levels of 
x. In non-crossed BRDs, each whole plot may have a different number of sub-plots 
and the levels of the sub-plot variables need no longer be identical across whole 
plots. A BRD is called balanced when the number of sub-plots within each whole 
plot is equal. Crossed designs are balanced, but not vice versa. In general, the 
design matrices A = (A~ I ... IA~)' of crossed, non-crossed and balanced BRDs can 
be written as 

f'(ZI' Xl) f'(Zl' Xll) f'(ZI' X11) 

f'(Zl'Xs) f'(Zl' Xistl f'(ZI' Xls) 
......... . ........... . ......... 
f'(Z2' Xl) f'(Z2, X21) f' (Z2' X2l) 

f' (Z2' Xs) , f'(Z2, X2S2) and f'(Z2' X2s) 
. . . . . . . . . ............ . . . . . . . . . . 

........ . . ........... . ......... 
f'(zw,xIl f' (zw, Xwl) f'(zw, Xwl) 

f'(zw,xs) f' (zw, xwsw) f'(zw,xws) 

respectively. Designs that fall within the category of crossed BRDs are the factorial 
designs. Included within the category of non-crossed BRDs are the central composite 
design (CCD) and the Box-Behnken designs. BRDs derived from a CCD or a Box­
Behnken design are not balanced. 

Estimation and inference 

Under the assumption of normal errors, the maximum likelihood estimator of the 
unknown model parameters (3 is given by the generalized least squares (GLS) es­
timation equation 

(5) 

The variance-covariance matrix of the estimators is given by 

Cov(j3) = (A'V- l A)-I. (6) 

However, (5) and (6) cannot be used directly since the variances I7l and 17; of the 
whole plot and sub-plot errors are not known. For saturated designs, crossed BRDs 
and some specific first order non-crossed BRDs (see Davison (1995)), ordinary and 
generalized least squares prove to be equivalent, implying that, in these cases, error 
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variance knowledge is no longer necessary for model estimation purposes. In all 
other cases and for model editing, knowledge of the whole plot and sub-plot error 
variance remains essential. Error variance estimates are thoroughly described by 
Letsinger et al. (1996). They recommend restricted maximum likelihood (REML) 
for error variance estimation because of its robustness across various values of d and 
because it is a good estimation option when small designs and near full second order 
models are used. 

The risks of improper analysis of BRDs are pointed out by Box and Jones (1992), 
Davison (1995) and Ganju and Lucas (1997), who extend the results of 
Kempthorne (1952). By using a BRD, a loss of precision in estimation of whole plot 
coefficients is incurred, while the opposite is true for the sub-plot coefficients and 
the whole plot by sub-plot interactions. Analysis of a BRD as a CRD can therefore 
lead to erroneously considering whole plot effects as significant and sub-plot effects 
as insignificant. See for instance Nelson (1985). 

2.3 Design efficiency 

Typically, a standard design is used to perform a bi-randomization experiment. 
However, these designs were developed to be applied in completely randomized ex­
periments and do not take into account the bi-randomization error structure. There­
fore, they are less efficient than designs specifically constructed for bi-randomization 
experiments. In this paper, we will use the V-optimality criterion to evaluate 
designs. It is by far the most used optimality criterion and a direct function of 
Cov((3). 

For a CRD the V-criterion value is given by IA'AI/O";. Since 0"; is a constant, it 
does not affect the efficiency of a design. When an experiment is conducted under a 
bi-randomization structure, the V-criterion value IA'V-1 AI depends on 0"; and d 
through V. This result suggests that V-optimal CRDs are no longer V-optimal as 
a bi-randomization experiment. In fact, designing a completely randomized experi­
ment only consists of determining the design points. Designing a bi-randomization 
experiment simultaneously involves choosing the number of whole plots and the 
number of sub-plots within each whole plot, i.e. determining the structure of the 
variance-covariance matrix V. Neglecting the bi-randomization structure of a re­
sponse surface experiment may therefore lead to poor designs and consequent ana­
lysis. The dependence of design efficiency on the bi-randomization structure was 
pointed out by Letsinger et al. (1996), who compare V- and Q-efficiencies of stand­
ard first and second order response surface designs under various variance ratios. 
Goos and Vandebroek (1999) provide an algorithm to compute V-optimal BRDs 
and point out that the resulting designs are usually not crossed. 
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3 Increasing the number of level changes 

In this section, we extend the class of bi-randomization designs by allowing more 
changes in the whole plot factor levels. Stated otherwise, we relax the assumption 
that there is a one-to-one relation between the whole plot factor levels and the 
whole plot experimental units. Firstly, we illustrate the modification by means of 
an example and describe how model (2) is changed due to the different assumption. 
Next, we will motivate the importance of the model and the corresponding design 
problem. 

3.1 Example 

In order to clarify the purpose of this paper, consider a factorial experiment from the 
steel industry described by Andersen and McLean (1974). The experiment involved 
four furnaces and was meant to investigate the impact of furnace temperature and 
orientation within the furnace on the strength of three alloys. We assume the model 
of interest contains all linear factor effects and the quadratic effect of the factor 
temperature. Temperature had four experimental levels (675, 700, 725 and 750), 
while the factor orientation had only two levels: random and aligned orientation. 
Each furnace had a different temperature and within each furnace the investigat­
or randomly placed (orientation 1) samples from each of three alloys and had an 
aligned arrangement (orientation 2) of other samples from the same three alloys. 
In other words, all experimental runs for which the temperature was at the same 
level were conducted in the same furnace. The whole plot factor in this experiment 
is temperature, whereas alloy type and orientation are the sub-plot factors. As a 
result, the temperature is set only four times and the experiment involves four whole 
plots. It is obvious that a one-to-one relation is assumed between the whole plot 
factor levels (temperatures) and the whole plots (furnaces). 

In this paper, we will allow the whole plot factor temperature to be reset more often. 
In doing so, we increase the number of whole plots in the experiment. For instance, 
instead of using each furnace only once, the experimenter could use them twice res­
ulting in eight independent heatings and as many whole plots. For a given number of 
experimental runs, each whole plot would then contain less observations. As before, 
exactly one temperature corresponds to each whole plot (furnace). However, more 
than one whole plot corresponds to each whole plot factor level (temperature). Al­
though this experimental setup is more cumbersome than the original, it is still much 
easier to conduct than a completely randomized experiment. As a matter of fact, 
the latter would require 3 x 4 x 2 = 24 instead of 8 independent heatings. Moreover, 
increasing the number of whole plots yields BRDs that are statistically more efficient 
than the original experiment. As an illustration, a V-optimal BRD with six whole 
plots is shown in Table 1. For slightly correlated responses (d = 0.1), the V-criterion 
value is improved by 60%. For larger degrees of correlation, the improvement is even 
more pronounced: when d = 2, the V-criterion value of the BRD with six whole 
plots is three times larger than that of the original experiment with four whole plots 
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Temp Or Alloy Temp Or Alloy Temp Or Alloy 
675 1 1 700 1 3 750 1 2 
675 2 1 700 2 2 750 2 2 
675 1 2 700 1 1 750 1 3 
675 2 3 700 2 2 750 2 1 
675 1 3 725 1 1 750 1 1 
675 2 2 725 2 3 750 2 3 
675 1 3 725 1 2 750 1 2 
675 2 1 725 2 3 750 2 1 

Table 1: V-optimal BRD with 24 runs and 6 whole plots for the steel experiment. 

and is even slightly better than that of a completely randomized experiment with 
the design points of the original experiment. In the sequel of the paper, we will 
show that situations in which completely randomized experiments are outperformed 
by bi-randomization experiments in terms of V-efficiency are numerous when the 
number of whole plots is slightly increased. In addition, the experimenter is better 
protected against systematic errors. Suppose that something went wrong in one of 
the furnaces in the original experiment, then all six runs executed in that furnace 
would be affected. On the contrary, if something went wrong in one of the furnaces 
in the alternative setup of Table 1, only four observations would be distorted. We 
will now outline the modified model assumptions and motivate the use of increasing 
the number of changes in the whole plot factor levels. 

3.2 Model 

As before, observations within one whole plot all have the same whole plot factor 
level combination. However, a given whole plot factor level combination can occur 
in more than one whole plot. The kth observation within the jth whole plot with 
the ith whole plot factor level combination can be written as 

(7) 

As a direct result of the changed assumption, the bi-randomization experiment can 
have more different whole plots than it has different whole plot factor level combin­
ations. A special case is the case in which each observation is assigned to a different 
whole plot. The factor levels are then independently reset for each run and the ex­
periment comes down to a completely randomized experiment. As a matter of fact, 
each whole plot then contains only one observation such that V is a diagonal matrix 
and 0"; and O"g cannot be distinguished from each other. Similarly, model (2) is ob­
tained from model (7) when there is only one whole plot for each whole plot factor 
level combination in the design. However, between both approaches lies a largely 
unexplored spectrum of bi-randomization designs which are often statistically more 
efficient than both extremes. In general, the designs corresponding to model (7) 
possess more whole plots than the BRDs corresponding to model (2), but less than 
a completely randomized experiment. In the sequel of this paper, we will show that 
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they should be considered as an alternative to the completely randomized designs in 
the absence of hard-to-change factors. Furthermore, we produce a number of good 
reasons why increasing the number of whole plots may be useful even if some of the 
experimental factors are hard-to-change. 

3.3 Motivation 

Traditionally, observations from an experiment were assumed to be statistically inde­
pendent. However, this assumption is often not realistic and the impact of correlated 
observations on the efficiency of experimental designs has recently received consider­
able attention in the literature. It turns out that the presence of correlation between 
observations can be beneficial to the design efficiency. Anbari and Lucas (1994) show 
that proper blocking of two level factorial designs in the presence of hard-to-change 
factors is a better approach in terms of Q-efficiency than running them in a random 
order. Goos and Vandebroek (1999) found that V-optimal BRDs are often more 
efficient than V-optimal completely randomized experiments. Moreover, they prove 
that design efficiency always benefits from correlated observations when the designs 
are saturated. Box and Jones (1992) and Davison (1995) show that using a BRD 
increases the precision in estimation of the sub-plot coefficients and the whole plot 
by sub-plot interaction coefficients, but decreases the precision of the whole plot 
coefficients. This is especially true when the BRD possesses few whole plots, mak­
ing it hard to detect significant whole plot factor effects. However, all other things 
being equal, slightly increasing the number of whole plots largely solves this problem. 

Using the algorithm described by Goos and Vandebroek (1999) to construct V­
optimal BRDs by choosing design points from a 21 x 21 grid on X = [-1,1]2, we 
obtained strong indications that substantial efficiency gains could be realized by re­
laxing the one-to-one relation between the combinations of whole plot factor levels 
and the whole plots. Consider the V-optimal BRDs for a full quadratic model in 
one whole plot variable z and one sub-plot variable x in Figure 1 obtained by using 
the default 3 x 3 grid on x. Choosing the finer 21 x 21 grid yields the BRDs in 
Figure 2. 

For a given variance ratio d, the BRDs in Figure 2 have a much larger V-efficiency 
than the BRDs in Figure 1. For instance, the BRD in Figure 2a is 29% more efficient 
than the BRD in Figure 1 b when d = 0.1. They also possess larger numbers of whole 
plot levels and thus of whole plots. Besides -1, 0 and + 1, the design construction 
algorithm also chooses ±0.1, ±0.2, ±0.8 and ±0.9 as whole plot levels. The optimal 
sub-plot levels remain 0 and ±1. However, grouping the observations which are 
close to each other yields the designs displayed in Figure 1. This result suggests 
that the optimal whole plot levels are indeed at the 0 and ±1 levels, but that not 
all observations at a certain whole plot level should be put in the same whole plot. 
Instead, it strongly recommends the use of more whole plots in order to decrease 
the number of correlated observations. 
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-1 .r-----~.,r_----~. -1 .,r_-----------~. -1 .,r------------~ 

x x • x • • 

1 .,}------_------~. 1 .,}------_-------(I. 1 .,}------_~-----(~, 

-1 z 1 -1 Z 1 -1 z 

(a) d = 0 (b) 0::; d ::; 0.274 (c) 0.274::; d::; 7.084 

Figure 1: V-optimal 1S-point BRDs for the full quadratic model in 2 variables. Candi­
date design points are points on a 3 x 3 grid on X = [-1, 1]2. • is a design 
point, @ is a design point replicated twice and 0 is a design point replicated 
three times. 

-1 .. ----~~----.. 

x • • x •• • x • • • 

-1 -1 -1 

(a) d = 0.1 (b) d = 1 (c) d= 10 

Figure 2: V-optimal 15-point BRDs for the full quadratic model in 2 variables. Candi­
date design points are points on a 21 x 21 grid on X = [-1,1]2 .• is a design 
point. 

9 



Another advantage of increasing the number of whole plots is that more degrees of 
freedom are available for the estimation of the whole plot error. The whole plot de­
grees offreedom are given by the difference between the rank of [AlB] and the rank 
of A. All other things being equal, increasing the number of whole plots increases 
the number of columns in B and thus the rank of [AlB]. However, one should not 
forget that the sub-plot error has to be estimated as well. The sub-plot error degrees 
of freedom are given by the number of observations n minus the rank of [AlB]. As 
a result, increasing the number of whole plots leads to a decrease in the degrees 
of freedom available for sub-plot error estimation. Ganju and Lucas (1999) plead 
for properly designed bi-randomization experiments that allow decent estimation of 
both error components. Of course, better estimates for the variance components 
will lead to better estimates of the model parameters too. 

Finally, increasing the number of factor level changes reduces the risk that systemat­
ic errors distort the results of the experiment. For example, if something goes wrong 
at a given level of a hard-to-change factor, this will influence all the observations at 
this level since it is not independently reset for each experimental run. As experi­
ments in the presence of hard-to-change factors typically use a minimum of factor 
levels, this may have dramatic consequences for the analysis of the experiment. In 
other words, even if factor levels are hard to change, it is worthwhile to increase the 
number of whole plots. 

Several authors have shown that correlation can be beneficial for the efficiency of 
a response surface design. In addition, computational results suggest that increas­
ing the number of whole plots may further increase the efficiency of bi-randomization 
designs. In the next section, we present an algorithm to construct the bi­
randomization designs we have discussed in this section. 

4 Design construction 

The construction of V-optimal BRDs is more complicated than the computation 
of V-optimal CRDs because design efficiency depends on the compound symmetric 
error structure. In this section, we will explain why this is so. We also describe a 
generic point exchange algorithm for optimal BRDs. 

Designing a completely randomized experiment only consists of determining the 
design points of the experiments. Numerous algorithms have been developed for 
this design problem. The most famous construction algorithms for response surface 
designs may be classified as point exchange algorithms and include the algorithm 
of Fedorov (1972), the DETMAX algorithm of Mitchell (1974) and the BLKL al­
gorithm of Atkinson and Donev (1992). Designing a bi-randomization experiment is 
complicated by the fact that exchanging design points affects the design efficiency in 
two ways. Like in the CRD case, exchanging design points modifies the design ma­
trix A. In addition, exchanging design points of a BRD changes V = Cov(Y). As in 

10 



Goos and Vandebroek (1999), the algorithm presented here autonomously computes 
the optimal whole plot sizes and gives the optimal allocation of sub-plot levels to 
each whole plot for a given number of observations n and degree of correlation d. 
In addition, we now allow more than one whole plot per whole plot factor level 
combination. For this reason, the number of whole plots per whole plot factor level 
combination needs to be determined as well. In our algorithm, we allow the possib­
ility to restrict the number of whole plots. This is particularly important when the 
whole plot variables are hard-to-change. Another reason to put a constraint on the 
number of whole plots is to leave enough degrees of freedom for estimating the sub­
plot error. It should be pointed out that algorithms for blocking response surface, 
such as the BLKL algorithm and the algorithm of Cook and Nachtsheim (1989), are 
inappropriate for generating BRDs because they were developed for a totally differ­
ent design problem. Not only do they assume uncorrelated observations, but they 
also require specification of the number of blocks and of the block size. Moreover, 
the composition of the blocks does not depend on the factor levels, as is the case here. 

The input to the BRD construction algorithm consists of the desired number of 
observations n, the number of tries, the order of the model, the number of model 
parameters p, the number of explanatory variables k and the structure of their poly­
nomial expansion f. The whole plot and sub-plot factors need to be identified and 
an estimate of the variance ratio d must be provided as well. Since the computed 
designs are optimal for a range of d-values, a reasonable guess is satisfactory for 
the purpose of design construction. In most industrial environments, information 
on d is available from prior experiments. Depending on how they were analyzed, 
prior bi-randomization experiments may directly or indirectly contain valuable in­
formation on the variance ratio in a specific experimental setting. If they were 
properly analyzed as a BRD, prior guesses for d are obtained by &g;&;, where &; 
and &t are the estimates of the sub-plot and whole plot error variance respectively. 
If they were improperly analyzed as a CRD, the data from the experiments can be 
recovered in order to analyze them properly and thereby obtain estimates of a; and 
at. Bisgaard and Steinberg (1997) point out that the whole plot error variance is 
usually larger than the sub-plot error variance in prototype experiments. Letsinger 
et al. (1996) describe an experiment from the chemical industry and obtain d = 1.04. 

A more detailed description of the design construction algorithm is given in the 
Appendix. A Fortran 77 implementation of the algorithm can be obtained from 
the authors. In the next section, computational results demonstrate the benefits of 
using BRDs instead of CRDs. 

5 Computational results 

In this section, the computational results are discussed. A small example illustrates 
the features of the optimal BRDs and the substantial gains that can be achieved by 
conducting bi-randomization experiments instead of completely randomized experi-
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ments. The effect of limiting the number of whole plots for economical or practical 
reasons is investigated as well. A factorial experiment shows that large efficiency 
gains can be realized for pure linear models, linear models with two-factor interac­
tions and quadratic models. 

Consider a full quadratic model in one whole plot variable z and one sub-plot variable 
x. For 0 ::; d::; 0.7011, 0.7011 ::; d ::; 0.9113 and d ~ 0.9113, the 10-point V-optimal 
BRDs obtained by our algorithm are given by 

-1 -1 
-1 -1 

-1 +1 
-1 +1 

-1 -1 
-1 +1 

-1 0 
-1 0 
-1 +1 

-1 0 
-1 +1 

0 -1 
0 0 

0 -1 

0 0 
and 0 +1 (8) 

0 0 

0 +1 +1 -1 
0 +1 +1 +1 

+1 0 +1 0 
+1 -1 

+1 -1 +1 0 
+1 -1 

+1 +1 
+1 +1 

+1 +1 

respectively. We will refer to these three designs as BRDl, BRD2 and BRD3 re­
spectively. These designs have a couple of striking features that hold generally. 
Firstly, the optimal number of whole plots decreases as the correlation increases. 
The 10-point designs shown in (8) have eight, seven and six whole plots. Appar­
ently, the higher the correlation between observations within the same whole plot, 
the better it is to group more experimental runs and thereby induce more correlated 
observations. Otherwise, the lower the correlation, the more the optimal design will 
resemble a completely randomized experiment. Secondly, observations at the zero 
levels of the whole plot variables are assigned to separate whole plots, such that 
whole plots containing more than one observation only occur at z = ±1. Thirdly, 
the designs are neither crossed nor balanced. 

In order to obtain the optimal BRDs in (8), no constraint was imposed on the 
number of whole plots. However, limited resources often impose such constraint. 
Suppose for instance that no more than three whole plots are allowed. In this case, 
the V-optimal BRDs are given in Figure 3. We will refer to these alternative design 
options as BRD4 and BRD5 respectively. 
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-1 .-----~~----~ • 

x • x • 

~------------~,. 
-1 -1 1 

(a) 0 ~ d~ 2.803 (b) d:2: 2.803 

Figure 3: V-optimal IO-point BRDs with 3 whole plots for the full quadratic model in 
one whole plot variable z and one sub-plot variable x . • is a design point, ® is 
a design point replicated twice. 

In order to visualize the superiority of bi-randomization experiments to completely 
randomized experiments and to investigate the effect of limi ting the number of whole 
plots, we have computed the relative efficiencies 

(9) 

for d-values between 0 and 3, i.e. from zero correlation to largely correlated obser­
vations, holding IJ'; + IJ't = l. The numerator of (9) gives the V-criterion value of 
the BRD under investigation. The denominator gives the V-criterion value of the 
V-optimal CRD when IJ'; = l. The design points of the V-optimal CRD are the 
same as those of BRD1, BRD2 and BRD4. The relative efficiencies of BRD1, BRD2, 
BRD3, BRD4 and BRD5 are displayed in Figure 4. BRD1 and BRD2 are superior 
to the CRD for variance ratios between 0 and 3. BRD3 is better than the CRD 
when d > 0.323. It also turns out that restricting the number of whole plots has 
a substantial negative impact on design efficiency. Nevertheless, both BRD4 and 
BRD5 outperform the CRD as soon as d :::::: l.3. 

We have performed a factorial experiment to investigate the role of several mod­
el characteristics on the properties of the V-optimal designs. We have computed 
designs for a pure linear model, a linear model with two-factor interactions and for 
a full quadratic model in three variables for six different degrees of correlation (d = 
0.1,0.25,0.5,0.75,1,2). For each combination, we have computed a nearly satur­
ated design, a design with twice as much observations and one in between. Also, 
we have investigated the effect of the number of whole plot variables. The results 
are shown in Tables 2 and 3. The first column of the tables shows the degree of 
correlation as measured by d. For each model under investigation, the number of 
design points n, the number of whole plots wand the relative efficiency of the BRDs 
with respect to the V-optimal CRD are displayed. The factorial experiment con­
firms the main results of the 10-point example in (8) and provides additional insights. 
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Degree 01' Correlation (d) 

. - BR01 BR02 BROS 
--- BR04 .. - ... _. BROS --- CRO 

Figure 4: Comparison of the V-efficiency of the IO-point BRDs in (8) and Figure 3 to 
the V-optimal CRD for the full quadratic model in one whole plot and one 
sub-plot variable for various degrees of correlation. 

Table 2 shows that efficiency gains for a pure linear model lie between 2% and 236% 
and between 14% and 12839% for a full quadratic model when there is one whole 
plot variable. It turns out that the higher the correlation, the larger the efficiency 
gain of using a BRD instead of a CRD. Also, the more complex the model, the lar­
ger the improvement in efficiency. For all models, the number of whole plots in the 
optimal designs decreases as the correlation increases. In other words, the higher 
the degree of correlation, the more observations will tend to be grouped in the same 
whole plot. Table 3 shows that efficiency gains in the presence of two whole plot 
factors are smaller. This is because, for a given number of observations, there are 
more whole plot factor levels when there are two whole plot variables instead of 
one. The larger number of whole plot factor levels reduces the possibility to group 
observations and to benefit from the correlation. It turns out that the CRD is the 
optimal design option in many cases when there are two whole plot variables. In Ta­
ble 3, these are the cases in which the number of whole plots w equals the number of 
observations n. However, the number of whole plots in the optimal design becomes 
smaller than the number of observations as the model moves from pure linear to 
quadratic and as the degree of correlation increases. The results also indicate that 
observations at the zero levels of the whole plot variables are seldomly grouped in a 
whole plot. In holding these observations statistically independent, the variance of 
the parameters corresponding to the quadratic whole plot factor effects is kept low. 
In general, the optimal designs are not crossed. For the pure linear model and linear 
model with two-way interactions the optimal BRDs may be balanced, especially as 
n is a power of 2. A striking result is that the 23 factorial design is not necessarily 

14 



Pure Linear Linear + interactions Quadratic 
d n w reI eff n w reI eff n w reI eff 

0.1 5 4 1.03 8 4 1.13 12 6 1.16 
0.25 4 1.09 4 1.41 6 1.59 
0.5 3 1.27 4 2.14 6 2.92 

0.75 3 1.50 3 3.52 5 5.89 
1 3 1.78 3 5.69 5 11.54 
2 3 3.24 3 29.16 5 113.52 

0.1 8 4 1.02 12 6 1.13 18 11 1.18 
0.25 4 1.09 5 1.44 10 1.63 
0.5 4 1.27 5 2.37 8 3.14 

0.75 4 1.50 4 4.02 8 6.39 
1 4 1.78 4 6.64 8 12.58 
2 4 3.24 4 35.64 7 129.39 

0.1 10 7 1.04 16 7 1.13 24 14 1.14 
0.25 7 1.13 7 1.41 12 1.54 
0.5 7 1.31 7 2.22 11 3.04 

0.75 6 1.56 6 3.72 10 6.17 
1 6 1.85 6 6.07 10 12.4 
2 6 3.36 6 31.75 10 127.41 

Table 2: Properties of V-optimal designs for a pure linear model, a linear model with 
interactions and a full quadratic model in one whole plot variable and two sub­
plot variables. 

Pure Linear Linear + interactions Quadratic 
d n w reI eff n w reI eff n w reI eff 

0.1 5 5 1.00 8 8 1.00 12 11 1.01 
0.25 5 1.00 8 1.00 11 1.04 
0.5 5 1.00 4 1.07 8 1.17 

0.75 5 1.00 4 1.29 8 1.44 
1 5 1.00 4 1.58 8 1.80 
2 4 1.20 4 3.50 7 4.37 

0.1 8 8 1.00 12 12 1.00 18 18 1.00 
0.25 8 1.00 10 1.02 14 1.03 
0.5 8 1.00 8 1.19 14 1.24 

0.75 8 1.00 8 1.47 14 1.56 
1 8 1.00 8 1.84 14 1.96 
2 7 1.05 8 4.28 13 4.64 

0.1 10 10 1.00 16 16 1.00 24 24 1.00 
0.25 10 1.00 13 1.01 20 1.03 
0.5 10 1.00 12 1.14 20 1.20 

0.75 10 1.00 12 1.36 18 1.44 
1 9 1.00 11 1.63 18 1.78 
2 8 1.15 9 3.50 15 4.15 

Table 3: Properties of V-optimal designs for a pure linear model, a linear model with 
interactions and a full quadratic model in two whole plot variables and one 
sub-plot variable. 
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the best design option in these cases. For example, the 8-point V-optimal BRD for 
the pure linear model in one whole plot variable and two sub-plot variables is given 
by two replicates of a 23 - 1 fractional factorial design and not by the 23 factorial 
design. On the contrary, the optimal 8-point BRD for a linear model with interac­
tions has the points of the 23 full factorial experiment as its design points. Whereas 
the eight observations for the pure linear model are allocated to four whole plots of 
two observations each no matter what d is specified, the allocation of observations 
to the whole plots depends on the degree of correlation and makes a substantial dif­
ference in design efficiency when interactions are included in the model. For small 
degrees of correlation, the eight observations are divided in four whole plots of two 
observations. However, for d > 0.5 only three whole plots are used: one with four 
observations and two with two observations. Finally, all other things being equal, 
efficiency gains do not depend on the number of observations n. 

In this section, we have shown that the CRD is often outperformed by properly 
designed BRDs. The benefits of using BRDs increase as the degree of correlation 
and as the model complexity increases. The largest efficiency improvements can be 
realized if there is only one whole plot variable. 

6 Conclusion 

Bi-randomization designs are heavily used in industry, especially when hard-to­
change factors are present. Key property of bi-randomization designs is that the 
levels of the hard-to-change factors -also referred to as whole plot factors- are 
changed as little as possible. In doing so, the ease of experimenting is increased and 
time and costs are saved. In this paper, it is shown that bi-randomization designs 
may be a good alternative to a completely randomized design if no hard-to-change 
factors are present. In addition, it is argued that (slightly) increasing the number of 
whole plots is useful when some of the factors are hard-to-change. Firstly, statistical 
efficiency is significantly improved. It turns out that in most design problems, com­
pletely randomized experiments are inferior to properly designed bi-randomization 
experiments. Secondly, the experimenter is better protected against systematic er­
rors when the factor levels are reset more often. Thirdly, more degrees of freedom 
are available for whole plot error estimation. Fourthly, even when the number of 
level changes is increased, bi-randomization designs are still easier to conduct than 
completely randomized designs. These benefits were illustrated by means of a simple 
example. A factorial experiment was carried out to investigate the impact of the de­
gree of correlation, the number of observations and the model on the features of the 
V-optimal bi-randomization designs and on their efficiency relative to a completely 
randomized experiment. It turns out that the number of correlated observations in 
the optimal bi-randomization design increases as the degree of correlation increases 
and that the higher the correlation, the larger the efficiency gain of using a BRD 
instead of a CRD. Also, the more complex the model, the larger the improvement 
in efficiency. 
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Appendix 

Our exchange algorithm starts with the generation of a non-singular n-point start­
ing design and then adds and deletes design points in order to achieve increases in 
IA'V-1 AI. Design points are chosen from a predefined set of candidate points which 
covers the entire region of interest X. In order to avoid being stuck in a local optim­
um, the search is repeated for a number of different starting designs. Each repetition 
is called a try. The generation of starting designs includes a random component after 
which the starting design is completed by sequentially adding the candidate points 
with the highest prediction variance. Taking into account a possible restriction on 
the number of whole plots, the design points are randomly divided in a number of 
whole plots. The singularity when n < p is overcome by using A'V- 1 A + rI instead 
of A'V- 1 A with r a small positive number. 

In order to speed up the algorithm, powerful update procedures were used. From (3) 
we have that 

(AI) 

Since 

(A2) 
i=l 

we can write the information matrix of a BRD as 

w 
, -1 1 '\' '( d, ) A V A = '2 L.,-Ai ISixsi - ~dlsilsi Ai, 

O"f: i=l + S, 

1 W Si W d 
= '2{'\' '\'f(Zi,Xij)f'(Zi,Xij) - '\' --d(A;ls )(A;ls )'}. (A3) 

0" L.,- L.,- L.,- 1 + Si ' , 
f: ,=1 J=l ,=1 

Expression (A3) was used to update the information matrix after design changes 
and to some extent reduces the computational burden. As an illustration, consider 
addition of an observation to the ith whole plot. Let A', V' and Ai' denote the 
new design matrix, the corresponding variance-covariance matrix and the part of the 
new design matrix corresponding to the ith whole plot respectively. The relationship 
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between the information matrix before and after adding the observation is given by 

A *'y*-I A *' = A'y-I A 

+ f(Zi' X(i,s;+1) )f' (Zi, X(i,s;+l)) 

+ 1 +dSid(A;ls;)(A;ls;)' (A4) 

1 + (S~ + 1)d(At1(s;+l))(Ai'1(s;+I))" 

Adding an observation in a new whole plot is a special case of (A4) where Si = 0, 
Ai = 0 and Ai = f'(Zi' XiI)' The adapted information matrix can then be calculated 
usmg 

(A5) 

These expressions show that the information matrix can be updated by adding 
and subtracting outer products. Using the well-known matrix results that for any 
positive definite matrix M and vector u, 

1M + uu'l = IMI(l + u'M-Iu), (A6) 

and 

(A7) 

the inverse and the determinant of the information matrix can be updated at a low 
computational cost after adding, deleting or exchanging design points. 

By default, the design region is taken as X = [-1, +l]k and the candidate points are 
chosen from the 2k, 3k, . .. factorial design depending on whether the model contains 
linear, quadratic or higher order terms. Alternatively, the grid of candidate points 
can be specified by the user. Note that construction of a non-singular design requires 
n :::: p. Finally, the user may impose a restriction on the number of whole plots in 
the experiment. The algorithm was implemented in Fortran 77 and can be obtained 
from the authors. 
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