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How the Co-Integration Analysis Can Help
in Mortality Forecasting

Abstract

The method of mortality forecasting proposed in 1992 by Lee and Carter describes a time
series of age-specific log-mortality rates as a sum of an independent of time age-specific
component and a bilinear term in which one of the component is a time-varying parameter
reflecting general change in mortality and the second one is an age-specific factor. Such
a rigid model structure implies that on average the mortality improvements for different age
groups should be proportional, regardless the calendar period.

In this paper we investigate whether the mortality data for England and Wales follow
this property or not. We perform the analysis by applying the concept of the Engle and
Granger co-integration to the time series of log-mortality rates. We investigate the goodness
of fit of the predictions to the historical data. We find that a lack of co-integration indeed
can cause some problems in performance of the model. In the last section we propose several

opportunities to omit the pitfalls.
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1 Introduction and motivation

During the 20% century the life time expectancy increased dramatically - for example for Eng-
land and Wales in 1900 the life expectancy at birth was 48.15 years for females and 44.23 for
males, while in 1995 - 79.46 for females and 74.25 for males (the source: Human Mortality
Database [11]). Usually we consider the mortality improvements as something positive and op-
timistic - we live statistically longer than our ancestors. On the other hand when we think about
the assumptions of modern social security systems, such dramatic changes in the mortality may
be also seen as one of the major threats to them. Thus they pose a great challenge for actuaries,
especially those planning public retirement systems and private life annuities business. In fact all
the components of social security systems are affected by mortality trends. Therefore nowadays
reasonable mortality forecasting techniques are of paramount importance for the society.

In the 20" century global mortality has declined at relatively constant rate. However significant
heterogeneity was observed in a number of deaths by age, a cause of deaths and a calendar
year. When one chooses an appropriate model for forecasting future trends, one must foresee
whether the model would reflect this heterogeneity. One must also rise a more fundamental
question: is using historical data theoretically sound at all? It is well-known that the mortality
in the previous centuries declined much slower than in the 20** century. Can we thus assume
that present trends will stand on for the next decades? One has also to determine whether
arbitrarily small mortality can be reached in the model or rather some biological barriers should
be imposed. All these questions undermine the sense of forecasting mortality in a very long time
perspective. However for average time horizons such forecasts are necessary, so nolens-volens
one has to choose the most suitable forecasting method.

It has been empirically tested that the rate of improvement is age- and gender- specific, and
thus most of modern methodologies concern the mortality rates separately for both genders
and different ages. There are several approaches to develop suitable models. Some parametric
methods can be easily obtained in the framework of Generalized Linear Models. It has been
argued that the number of deaths when the central exposed-to-risk is given may be assumed
to follow Poisson distribution (see [3]) and the promising estimates may be obtained by fitting
the Poisson regression (see [19], [17] and [20]). An interesting alternative was proposed in 1992
by Lee and Carter ([13]) who developed a method combining parametric approach with time
series analysis. Recently the Lee-Carter model has been widely discussed in actuarial literature.
Some essential improvements were introduced by Brouhns et al. ([4]) who estimated parameters

by Poisson log-bilinear regression and Renshaw and Haberman ([18]) who described the model



in the GLM terms.

In this contribution we evaluate performance of the Lee-Carter model from another perspective.
In the first part of the analysis we examine whether age-specific log-mortality rates for England
and Wales for years 1901-1995 are pairwise co-integrated. In the second part we make forecasts
for years 1971-1995 based on the same data restricted to years 1901-1970, and compare them to
the historical data to test the efliciency of the model.

In Section 2 we briefly describe the assumptions of the Lee-Carter methodology and the es-
timation methods used to obtain the forecasts. Section 3 explains the relationship between
the assumptions of the Lee-Carter model and the concept of co-integration. The data sources
are described in Section 4. The results of the co-integration analysis are presented in Section 5.
In Section 6 we compare obtained estimates and forecasts to the historical data. Next we make
some suggestions about possible ways of improving the classical Lee-Carter methodology in

Section 7. Finally, Section 8 briefly summarizes the paper.

2 The Lee-Carter methodology with some modifications

The model proposed in [13] (see also [12]) is a very powerful and elegant approach to mortality
projections. It specifies log-linear form for the force of mortality p.(¢). More precisely, in

the model the following relation is assumed:
In ﬂm(t) =y + ,Bxlﬁt + €zt (1)

where [i;(t) denotes the estimated mortality rate for people at age z in calendar year ¢, £
- an error term, in classical approach assumed to be homoskedastic (the estimation methods
considered more recently in actuarial literature, e.g. [4] allow to release this assumption), oy
describes the shape of the age profile (can be computed for example by averaging over time), 3,
- the pattern of deviations from the age profile, and «; is an age-independent process describing
time-deviations of mortality. The mortality rates are estimated here as a ratio of an actual
number of deaths D,; to a central exposed-to-risk E;.

One can easily check that the structure is invariant under either of the parameter transforma-

tions:

B
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Usually for uniqueness of the model specification following constraints are imposed:

th=0and Zﬁm=0.
t T

In classical settings parameters oy, 8y and x; were estimated by minimizing the sum of squares:

Z (lnﬂw(t) — Qg — Bw"ﬁt)Z-

z,t

The estimation problem cannot be solved by a simple regression model because of the presence
of a bilinear term. The minimization of the sum consists of taking &, as a raw average of
In i (t)’s and then getting B, and & from the first term of singular value decomposition (SVD)

of the matrix [Infi4(t) — o?m(t)]xt. Next the values k; are re-estimated (taken o and 3, as

given) so that the following identity holds:

Z Dyt = Z Eyt exp (&x + Bfn’%t)
z z

This means that after re-estimation the resulting death rates applied to actual exposures-to-risk
will produce total number of deaths actually observed each year.

The estimated time-dependent parameter At can be seen as a stochastic process. Then the fore-
casts can be obtained by modeling & as an ARIMA (p,q,s) process, using standard Box and
Jenkins methodology (identification-estimation-diagnosis) (see [2]). Denoting the resulting pro-
jections beyond the data time horizon 7T as /%T+ s, the forecasted mortality rates will be expressed

by the formula:
fa(T + ) = fia(T) - exp (8o (ores — A1) ).

However, as pointed out in [1], the classical methodology of estimating parameters imposes too
restrictive conditions on the error structure in equation (1). For this reason in our numerical
illustration we will adopt the Poisson log-bilinear regression developed in [4].

The method assumes that the number of deaths of people at age x in year ¢ is Poisson-distributed

(according to [3] this assumption is plausible), namely
Dyt ~ Poisson (Ey1i5(t)), where In iy (t) = o + Bohit. (2)

The parameters , By and k¢ are estimated by maximizing the Poisson log-likelihood function,

which takes the following form :

L, B, k) = Z (Dmt(ozw + Bykit) — Eypt exp (o + ant)) -+ constant.

z,t



Because of the presence of the bilinear term [ k¢, in our estimations one has to use numerical
procedures. Following [4], we use an iterative method proposed in [10], which is based on

the following general scheme:

é(u+1) — é(v) o %_g(éfu)) )
246

This leads to the following explicit algorithm:
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where ]5;’;) = Eyiexp (dgj) + BS/)/%EV)). As starting values we have taken &550) =0, Ba(;o) =1,
/%EO) = 0 and we have stopped the iteration when the increase in log-likelihood function after all

three steps was sufficiently smaller than 1074

3 The concept of co-integration and its relations with the Lee-

Carter model

Suppose that one has have two time series variables X; and Y;, which can be decomposed as

follows:
Xt = a(t) —|— Ut, (3)
Y:; = b(t) -+ v, (4)

where processes a(-) and b(-) represent non-stationary time trends and wu¢, v - the irregular
stationary components. One says that variables X; and Y; are co-integrated if there exist non-
zero values (1 and (s such that the linear combination 81 X; + (32Y; is stationary, which means
that the term Sia(t) + (20(t) has to vanish.

The co-integration analysis is usually performed in economic sciences to determine whether
there exist some unique relationships between economical variables resulting in a long-term
equilibrium.

In this contribution we deploy the method of co-integration analysis developed by Engle and
Granger ([8]). Their testing methodology proceeds in two steps. In the first step it has to be ve-

rified whether the variables under consideration are indeed non-stationary. The non-stationarity
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can be stated by means of so-called unit root tests. Usually it is required that the variables have
exactly one unit root (i.e. the first differences are stationary)

The most popular method of testing the existence of unit roots is the Augmented Dickey-Fuller
test (ADF) (see [6], [7]). One tests the hypothesis of unit root against the alternative hypothesis
that the series is autoregressive of order kK + 1 (AR(k + 1)). In the ADF test the following
equation is deployed:

k

Xp—Xe1=bXe1+ Y ¢ (Xej— Xejo1) + &, (5)
j=1

where ¢; is assumed to be a white noise process and k denotes the number of lagged first
difference terms. In standard applications there are two modifications of the test; the first one

including the constant term:

k
Xt — Xt—l =c+ bXt_l + Z Cj(Xt_j — Xt__j_]_) + & (6)
j=1

and the second additionally including the trend variable:
k
Xe—Xpy=cHat+bX 1+ Y (X — Xej1) + & (7)
j=1

The test relies on rejecting the null hypothesis of the unit root (Hp : b = 0) in favor of stationarity.
To test this hypothesis, a negative and significant (non-normally distributed) ¢-ratio for b has
to be computed and then compared to critical values reported in [6] or more recently in [14]. If
the hypothesis of the unit root cannot be rejected, the test is repeated for first differences to
check the existence of multiple unit roots (one has to determine whether the order of integration
of the tested variables is equal exactly to 1).
The Phillips-Perron (PP) test (see [16]) is an alternative approach to test existence of unit roots.
While the ADF test corrects for higher order serial correlation by adding lagged difference terms
on the right-hand side, the PP test makes the correction to the t-statistic of the b coefficient
for one of the AR(1) regressions of the form (5), (6) or (7) (i.e. when k is equal to 0). More

precisely, the following equation is employed:
Xt —Xe1 =0+ P0Xe1+es

(with possible modifications when there is no intercept term and when we additionally consider a
trend variable). The PP test is robust to heteroskedasticity and autocorrelation of unknown form
of {&¢}. In our application we deploy tests provided by EViews, which are based on the Newey-
West correction (see [15]). The asymptotic distribution of the PP t-statistic is the same as

the ADF t-statistic, thus its value is again compared to the critical values reported in [6] or [14].



After the existence of unit roots has been stated for variables X; and Y;, one has to verify

whether co-integrating constants 8; and [z exist (it can be assumed that 8;=1). This is done

by performing two symmetric OLS estimations:
Y: = ag + bo Xt + ugy (8)

Xt = a1 +b1Y; + uyg, 9)

and testing the stationarity of wi: and wug: by the Augmented Dickey-Fuller test (in this case
however the values of the ¢-statistic are compared to critical values reported in [9]). If the unit
root hypothesis is rejected for ui; then one can take 8; = 1 and B, = —b1, and as a conse-
quence $1X: + B2Y; = a1 + we is stationary. The analogous reasoning may be carried out for
the equation (9).

Now let us return to the Lee-Carter model. We will consider log-mortality rates as a set of
time series variables indexed by age { In fig (t)}x (note that we perform whole analysis for both
genders separately). According to the equation (1), the Lee-Carter model assumes the long-
term relationship between log-mortality rates and a common co-integrating variable x;. In some
sense this representation is similar to (3) and (4). Indeed, consider two ages z1 and z5 and let

X1 =log uz, (t) and Xo = log g, (t). Then
Xl = /Ble/t + Qg + Exqt

and
Y1 = Brokt + ag, + €yt

Note that in the original methodology of Lee and Carter the assumptions on error terms €4
were very close to stationarity (homoskedasticity of variance and mean reversion). Despite
in more recent works these assumptions are not so strict and allow even for some systematic
patterns (the approach of [4]), the most important property of a stationary process, i.e. mean
reversion, should be satisfied. Moreover a high number of parameters in the model imposes that
the variability of error terms should be relatively small. Thus if the model is specified correctly
it may be assumed that a possible co-integration relationship will not be affected by an error
structure.

For these reasons it is not the best practice to check the stationarity of the residuals directly.
Their shape heavily depends on the employed estimation methodology. Moreover the systematic

patterns which may appear in the time series variables describing error structure may result in



rejecting the stationarity hypothesis even if their real impact on long term relationships between
log-mortality rates is negligible..

In exchange it seems to be a much better idea to test whether log-mortality rates for different
ages are co-integrated. Indeed, consider two ages 1 and z3. Then the long-term relationship

will be given by the formula:

&aw2 + ﬁw}_ In fig, (t) + €4t — &szt. (10)

If the error terms £4,; and e,,; are stationary than the co-integration follows immediately. If not

In /1031 (t) = Og; —

- it is still very likely that co-integrating constants between the series of log-mortality rates can
be found independently on the error structure given by a specific estimation model. Moreover,
we expect that it should be much easier to find co-integrating relations for all possible pairs than
to find one co-integrating process k: for all log-mortality rates simultaneously (mathematically
these properties are equivalent, but from the statistical point of view pairwise tests are much
weaker).

Summarizing, the assumptions of the Lee-Carter model and the Engle-Granger co-integration,
despite not mathematically equivalent, have many points of tangency. In fact the logic of the Lee-
Carter model is based on the observation that time changes of mortality for log-mortality rates
for different ages have always the same (up to an error term) proportions, regardless the calendar
period. Despite the Engle and Granger co-integration analysis is formulated in a bit different
language, we are convinced that it provides a very useful tool to make the diagnostic checks of
validity of the Lee-Carter model. In this paper we illustrate our findings by applying the Lee-
Carter method and co-integration tests to the 20** century mortality data for England and

Wales.

4 The description and sources of the data

The analysis is performed on the basis of population estimates and death counts for England
and Wales in the period 1901-1995. More exactly, we use death counts D, for years 1901-1995
and all ages between 0 and 1104 years, as well as the estimates of exposure-to-risk F,; and
mortality rates fi;(t). All data are provided separately for both genders.

The original data come from the following sources:

1. Population estimates:

e Office for National Statistics (1998). ” Twentieth Century Mortality in England and
Wales” (CD-ROM). Newport, South Wales: Office for National Statistics.



e Office for National Statistics. Population estimates unit. Unpublished data.

2. Death counts:

o Philipov, D. ”Construction of the England and Wales population and mortality sur-
faces, 1841-1999”. Unpublished manuscript.

e Title of tables: ”Deaths at Different Ages”. Registrar’s General Annual Report,
1901-1910.

o General Register Office (1911-1920). ”Annual Report of the Registrar General”.
London: Her Majesty’s Stationery Office.

e General Register Office (1921-1973). ”Registrar General’s Statistical Review of Eng-
land and Wales”. London: Her Majesty’s Stationery Office.

e Office of Population Censuses and Surveys (1974-1995). ”Mortality Statistics” (Series
DH1). London: Her Majesty’s Stationery Office.

The data were downloaded through the Human Mortality Database on 14 April 2003. In our

analysis we used also estimates of exposure-to-risk and death rates obtained by HMD.

5 The co-integration analysis for log-mortality rates

In this section we investigate whether age-specific log-mortality rates for England and Wales are
pairwise co-integrated. We perform the tests for all combinations of five different ages: 5, 25,
40, 60 and 75 years, separately for males and females. We proceed with Engle and Granger’s

procedure in two steps, as described in Section 3.

5.1 Testing for unit roots

More careful analysis of the data indicates that log-mortality rates for England and Wales reveal
significant variations for years of both world wars (1914 — 1918, 1939 — 1944) and epidemics
(Spanish flu in 1918). Also in 1929 an unexpected increase in mortality was noted. Thus
the assumption of heteroskedasticity and serial independence of error terms in the formula (5)
is very difficult to satisfy even for a very large number of lagged differences on the right-hand
side of the equation. For these reasons we use for our purpose Phillips-Perron test instead of
Augmented Dickey-Fuller, for which the conditions for error terms are less rigid.

In Table 1 there are numerical results of the test presented.



Table 1: Values of the t-statistic for log-mortality rates my(t) = In(fiz(t))

Males Females

z Mg (t) Vm,(t) me (%) Vi (t)
5 | -0.237162 -15.69261  0.007477 -12.39218
25 | -0.440493 -13.15585 -1.368653 -7.811529
40 | -0.835487 -16.98648 -0.894117 -11.30519
60 | -0.239665 -16.35535  0.528027 -13.35696
75 | -0.136543 -18.49173 -0.844876 -17.01046

We compare the results to the critical values from Table 2. The hypothesis of existence of unit
roots cannot be rejected for neither of tested time series variables. For first differences there is
a clear indication of stationarity (the hypothesis of unit root is easily rejected for all variables).
We conclude that all variables are integrated of order 1, and thus the assumptions necessary to

proceed with estimating the co-integrating equations (8) and (9) are satisfied.

5.2 The tests for co-integration

‘We deploy the procedure of Engle and Granger described in Section 3. After OLS-estimation of
(8) and (9), we test the stationarity of the residual series using the equation (5). Preliminarily
we choose the number of lagged differences k£ which minimizes the Akaike Information Criterion
(AIC). Next we check by usual Q-Statistic if the residuals are not serially correlated. If the hy-
pothesis of white noise is not rejected we use in the model the number k, otherwise - we aim to
choose the smallest k' > k such that residuals from the equation (5) are not serially correlated.
Because of a very big sensitivity of the results to the choice of the model, in ambiguous cases
we also report the results for the model with increased number of lagged differences.

The values of t-statistic are contained in Table 3. We use the following labels in the table: zSy
means the co-integration test for the sex S (where S means ”M” for males and "F” for females)

of log-mortality rates for ages  and y. In the third column we report results when log-mortality

Table 2: The critical values reported in [14]

Confidence level
90% 95% 99%
me(t) | -2.5829 -2.8922 -3.5007
Vmg(t) | -2.5831 -2.8925 -3.5015




Table 3: The results of the co-integration tests
Lags | Eq. (8) Eq. (9)
5M25 1 -2.609717 -2.635994
5M40 2 -2.752887 -2.943339
31 | -2.593201 -2.848422
1 -2.751095 -2.780564
2 -2.754339 -2.550786
25M40 1 -2.407018 -2.495128
1
1
1

5M60
SMT5

25 M 60 -2.220739  -2.200334
25 M75 -2.743430  -2.566435
40M60 -3.034872  -2.976308
21 | -2.710061 -2.637798
40M75 | 9 | -1.696533 -0.925303
60M7T5 | 9 | -2.414889 -1.867568
5F25 1 |-3.152333 -3.587565
5F40 0 |-3.136495 -3.284172
1t | -2.360561 -2.579673
5F60 1 | -1.511879 -1.248186
5F75 2 | -2.340452 -2.000002
95F40 | 0 | -3.030436 -2.927567
11 |-3.393295 -3.149962

25F60 0 -2.043662 -1.565188
25F'75 2 -2.130491 -1.004689
40F60 3 -0.506666  0.212523
40F75 4 -2.040707 -1.520733
60F75 2 -2.599192  -2.373252

for age z is the independent variable in the equation (8) and log-mortality for age y dependent,
and in the fourth column the opposite case. The values of t-statistic are compared to the Engle

and Yoo critical values reported in Table 4.

5.3 Conclusions

The analysis of results contained in Table 3 reveals that for most of the tested pairs log-mortality
rates are not co-integrated. The results strongly support co-integration for only two pairs:

females aged 5 with females aged 25 (for the equation (9) the test rejects the hypothesis of

! An explaining test
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Table 4: The critical values reported in [9)

Confidence level
90% 95% 99%
No lags | -3.03 -3.37 -4.07

Lags | -291 -3.17 -3.73

a unit root at the confidence level 5%, while for the equation(8) at 10%) and females aged 25
with females aged 40 (the hypothesis is rejected only for the equation (8) at the confidence
level 10%. The explaining tests with one additional lagged difference in the equation 5 reject
the hypothesis once again - for (8) at 5% and for (8) at 10%). The results for females aged 5
with females aged 40 also support the co-integration - the hypothesis of a unit root is rejected
at 10% both for (8) and (9) (explaining tests did not allow to reject the hypothesis). Note that
these results are consistent with the theoretical property of transitivity of the co-integration
relation.

From all remaining pairs only the tests for males aged 40 with males aged 60 allow for rejecting
the hypothesis of unit root at the level 10% (however explaining tests did not allow for rejecting
the hypothesis). For remaining sixteen combinations neither of 32 tests allowed for rejecting
the null hypothesis. Although the p-values of the tests usually seem to be relatively small, the
results make the assumption of co-integration of log-mortality rates for all ages doubtful, at least
in the case the tested data set.

The results of the tests suggest that the Lee-Carter methodology, is not fully applicable to
the 20" century mortality data for England and Wales. In the next section we compare the pre-
dictions obtained from the Lee-Carter forecasts to the historical data. It is possible to notice
that indeed the proportions of mortality improvements between different ages do vary with time,
what is linked to the lack of co-integration. In Section 7 we discuss how it is possible to modify

the Lee-Carter methodology to make the mortality forecasts more reliable.

6 The forecasts obtained by the model

Apart from the co-integration analysis, we make also the forecasts to look at the results of
the model. The forecasts are derived for the period 1971-1995 on the basis of the mortality data
for England and Wales for years 1901-1970. Then the estimates for the period 1901-1995 are
compared graphically to the historical data. We employ the methodology of [4] described in

Section 2.
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Table 5: Estimated parameters of the model (11)

Males Females
Coef. St.er. Coef. St.er.
C | -0.011035 0.001597 -0.010099 0.001761
A | -0.501670 0.101670 -0.369395 0.114339

The raw estimates of o, 8, and x; are inserted in the Appendix. However obtained estimates of
k¢ are not easy to model as an ARIMA process because of an excessive variability of mortality in
the periods of wars (1914-1918, 1939-1944) and epidemics (1918 and probably 1929). Therefore

we used the smoothed process k; obtained from the following formula:

/

$((1919 — t)k1013 + (t — 1913)K1019) for t = 1914, ...,1918
= %(51928 + f<.;1930) for ¢ = 1929
1((1945 — t) k1038 + (t — 1938)k1045) for t =1939,...,1944
L Kt otherwise

After these adjustments the Box and Jenkins methodology (identification - estimation - diagno-
sis) was employed to generate an appropriate ARIMA time series model for mortality index K.

Both indices for males and females were modelled as ARIMA(1,1,0) process, i.e.:
Kt — Rt—1 = C + A(Rt—1 — Ke—2) + &4, (11)

where £; forms a white noise process. In Table 5 we insert the estimated parameters.

We depict the results on two sets of graphs. In Figure 1 we depict the historical evolution of
the mortality rates for chosen ages, both for the historical data and for the Lee-Carter estimates
and forecasts. In Figure 2 the global age-specific log-mortality rates are depicted for chosen
calendar years.

At a first view the fit of the Lee-Carter estimates to the historical data seems to be reasonably
good. However the lack of co-integration leads to several inconsistencies. For the year 1951
for example the model seems to overestimate mortality for males aged between 5 and 30. This
tendency is kept for the following years, but the predictions for 1995 do not reveal it any
more. However then the mortality for elderly males is overestimated significantly. This may
suggest that from 1970 the pace of improvement for represented by the parameters 3, should be
decreased for ages 20-30 while should be increased for elderly ages. For females this phenomenon
is illustrated even more clearly. For most of the years the fit for females is even better than

for males. However on the last graph of Figure 2 (i.e. for year 1995) the fit for females is very

12



bad - the mortality is significantly underestimated for years 20-40 and overestimated for elderly
women. Those phenomena result from the fact that the assumption of constant 3, is not always
plausible and thus the long-term relationship (10) does not hold.

We want to stress that in short time despite these problems the forecasts still may perform
reasonably good. Moreover in some applications (for example reserving in life-annuity business)
overestimation of the mortality for some ages may be compensated by underestimation for
others. However the lack of co-integration of the log-mortality series suggests that the model is
not enough flexible and that it cannot be used in very long perspective (the example for females

that already 25-year age-specific forecasts turn out to be very inadequate).

7 How to omit pitfalls?

The Lee-Carter model can be made more efficient in several ways.
One of possible reasons for which log-mortality rates for different ages may not be pairwise

co-integrated is too long time perspective. Indeed, in the classical Lee-Carter model the same
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Figure 1: Changes of Mortality for England and Wales over Time for Chosen Ages

weight is put to the observations at the beginning as at the end of the period. It does not
always reflect the reality - it is well known that for example mortality trends in the thirties
were influenced mostly by improvements in mortality caused by infectious diseases, from which
infants and young people benefited relatively more than elderly people. Thus probably the time

period taken for the analysis is too long. It is also possible to use similar approach to this of
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Renshaw and Haberman ([18]). In their generalized linear modelling based regression approach
to mortality forecasting they propose to add a time break-point for greater structural flexibility.
Translating their idea into the classical Lee-Carter model settings, the addition of the break-
point means that we choose a time point ¢y and estimate two sets of parameters: G, for t < tp and
B~ for t > ty. The motivation is to put greater emphasis on more recent trends. Obviously such
an approach will produce better fit to the historical data, but on the other hand the modification
substantially increases number of parameters involved.

Also disaggregation of the data may lead to a substantial improvement of the results. There are
two possible ways of disaggregation. For the first one all calculations are performed for every
group separately, in particular death rates are modelled separately. The disaggregation with
respect to gender is of this type. Geographical disaggregation is another example. A division of
the population into smaller age-groups is also possible (for example for calculating the present
value of life annuity the analysis can be restricted to elderly people).

In some cases it is possible to disaggregate only death counts, keeping the central exposed-to-risk

E: at global level. The death rates in disaggregation with respect to an underlying cause of
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Figure 2: Log-Mortality Rates for England and Wales for Chosen Calendar Years

death may be performed this way. The main advantage of this approach is that the death rates
modeled separately can be added together to get global estimates of death rates.

, (4)
) () = Z;xi fori=1,...n,
T
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and thus

R 7.1_ D:(EZ) n "
falt) = 22122 = S0,

i=1
However one has to remember to take possible dependencies between the numbers of deaths
between different subgroups into account.
The common feature of both types of disaggregation is estimation of separate sets of parameters
ag(f), ag ) and mgi) which may catch some specific differences in mortality for analyzed subgroups.
Especially disaggregation with respect to the cause of death seems to be a very promising
improvement in the model. The main advantage of this approach is that it really explains
the reasons of the lack of co-integration, unlike other methods which aim only to improve the fit
by some manipulation with the data or parameters. Indeed, while in the first half of the 20
century the mortality improvements followed from rapid decrease in the mortality caused by
infectious diseases, in the second half of the century improvements resulted mainly from decrease
in number of deaths caused by cardiovascular diseases (see e.g. [5]). These facts could explain
why in the first years of the century infants benefited the most from mortality improvements,
while recently especially elderly people did.
Disaggregation with respect to the cause of death has also some disadvantages. The results of
such forecasts cannot be reliable in a very long time perspective because usually old causes of
death are replaced by new ones, for example recently AIDS became the one which should be
analyzed separately. Also proper data are often unavailable.
However we consider examining disaggregation with respect to the cause of death as an inte-
resting topic for future research which can increase our knowledge about behavior of mortality

rates in time.

8 Summary

In the paper we have made an attempt to evaluate the Lee-Carter model of forecasting future
mortality. In the analysis we have used the concept of the Engle and Granger co-integration
and have applied it pairwise to the log-mortality rates.

We have performed the analysis for 20" century data for England and Wales. The tests that
we have used did not allow for stating perfect pairwise co-integration between age-specific log-
mortality rates what undermined the reliability of the Lee-Carter model for this particular data
set. The comparison of the Lee-Carter forecasts with the historical data seems to confirm

conclusions derived from the co-integration analysis.
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In practical applications we suggest making co-integration tests before deploying the Lee-Carter

model as a method of diagnostic checking. The lack of co-integration may be a kind of warning

signal that the obtained predictions may not be reliable. It may be also an indication that more

weight should be put on more recent observations in the model or that a more disaggregated

analysis is required, for example with respect to a cause of death.
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Appendix

Year
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930

Males

.97430559

.99027241

.008666032
.986613478
.015198594
.011420245
.024521078
.034699659
.044487163
.073830793
.034785807
.0856226528
.073419504
.069837085
.043832253
.096844574
.096122439
.961929332
.086127366
.130387126
.162554216
.146006203
.195304455
.172252865
.175760205
.204205221
.187098462
.216307455
.154164596
.241019442

1. Estimations of x;

Females

.958104082
.974269994
.992290267
.972095934
.002461809
.998083218
.014063799
.020292117
.03672619

.062839727
.020388652
.077676314
.0568270761
.049796109
.004458296
.043184417
.02936574

.914803598
.045447573
.102782603
.149898735
.139435872
.183502215
.161512647
.166099545
.192292801
.176541902
.202971375
.147982019
.223324843

Year
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

20

Males

.216216948
.231579354
.226009201
.249588039
.27425508

.272134314
.273252529
.319566742
.326620825
.251860885
.285961335
.370988783
.365532173
.397726122
.421440492
.441280236
.437027614
.514874179
.495239337
.52149409

.503266271
.580296797
.585247293
.611651573
.607191768
.621742746
.63714992

.645503413
.652902364
.670147532

Females

.2056971396
.225761779
.221947415
.24118375

.265146559
.258777394
.262292297
.296961205
.31504895

.222294395
.231432388
.312498501
.318329955
.337062245
.372975934
.406624158
.407601818
.491054728
.491003813
.511645528
.495100076
.546229624
.560233067
.578428701
.578142882
.589252898
.592647397
.601395485
.610483914
.614248975



Year
1961
1962
1963
1964
1965

Age

© 00 N o o s~ W N o=

I
w N r O

[y
S

15
16
17
18
19
20
21
22
23
24

Males

.651045988
.660026179
.655077903
. 71234977
. 712736555

Males

. 756053556
.065584527
. 642585944
.056939177
.60176891

.231736069
.597217368
.976874715
.345146713
.535604251
. 682436986
. 769015215
.912388993
.81073017

.621847699
.660962679
.706419281
. 756150577
.803776125
.84754822

.839806971
.794461194
.802444332
.747762913
.649795248

Females

.605536763
.60752804
.603523958
.636153364
.6362825

Year
1966
1967
1968
1969
1970

-1
-1
-1
-1
-1

Males
.708026196
.743908519
.718527936
.723902053
.74107159

2. Estimations of oy

Females

.989470086
.927293013
. 442440266
.404445804
.992395348
.649877077
.166509278
.622173856
.928718298
.129531063
.234558488
.316128665
.519230046
.560274224
.504850055
.498853361
.559600207
.484473791
.13222094
.027223007
.983211785
.820436423
.679274844
.455011166
.337182194

Age
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

21

Males
.618123183
.569170566
.474258357
.489758885
.486965391
.463555998
.51628299
.466719417
.468521947
.492381124
.491742029
.494318601
.529897612
.50561661
.578247045
.640107858
. 784827008
.71538618
.841033286
.871609613
.876352502
.944958424
.943273963
.850948271
.84985682

Females

.63308312

.667533585
.651148081
.646427648
.660457184

Females

.187871525
.156596711
.090826926
.054592584
.093039163
.067280226
.156029884
.043714119
.096655593
.075411218
.152612356
.143782159
.207388642
.214076203
.269947499
.323920979
.493601998
.459624784
.585584107
.645821125
.641792413
.795475708
.84999956

.830100846
.886257435



Age
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Males

.830479078
.920377532
.722915918
. 75708249

.680836986
.741115685
.612001896
.641512709
.518886503
.523936701
.450118222
.537013474
.38017569

.345716215
.251069339
.143988007
.253222003
.23038108

.062470375
.0372435

.926539384
. 969225896
.781608491
.752335052
.696292135
.618168838
.574112216
.539421461
.456607765
.470775409
.388068186

Females

.859598421
.077658117
.934552033
.025012285
.996977392
.116786454
.023807562
.09629136

.005258398
.003759608
.922193913
.076665257
.920782536
.90798614

.885118341
. 74004098

.809382133
.770711407
.563753424
.462474372
.367066795
.412187376
.187799819
.126817077
.014982473
.92954453

. 842844623
.783325386
.6556215243
.61323437

.517785324

Age
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110+

22

-2.

Males

.447956531
. 259945996
.2061595632
.060233473
.063235918
.033222028
.000163626
.011784611
.003650919
.730636124
.837120518
.771152519
. 782204824
. 748975568
.497347545
.565194394
.446303037
.381883865
.185188857
.259950057
.274953832
.247872349
.716481988
.380329639
.550012318
.343152439
.5622729747
. 645506697
.792922708

62658354

N O O N

Females

.535117502
.33519572
.2610996
.094390792
.094107666
.047895064
.075140726
.093620018
.069586163
.768945901
.869461423
.836690787
.79188261
.797089968
.557844779
.471521647
.660900162
.575932491
.605379471
.263674126
.825585094
.888274508
.450301995
.200233179
.206897013
.410040803
.189181678
.20672437
.356951022

.448484316



Age

© 00 ~N o o b W N e

S S ST S T G T G T S~ S o o S e B e B o e s
o S W N B O ©W 0 N o 0 b W N = O

26
27
28
29
30

wwwwmwtowwwmwwwwwwwwwwwwwww»p.&ww

Males

.870401684
.216765725
.688123047
.437988277
.200743893
.811970384
. 712842329
.569920374
.396962869
.347082747
.276249224
.233779502
.077109445
.10236347

.185258706
.06473092

.932146671
.838435766
.749856164
.661044028
.647419376
.637732283
.619631506
.635053194
.690590012
.699827377
.721700886
. 778241328
. 738040757
.718249298
.719940721

NN NN NN DN NN NN DNDNNMDNDNM WO W bODN

NONDNDNNND NN

3. Estimations of (3,

Females

.913072841
.10800461

.541651873
.179973631
.901039783
.487184153
.233028808
.012425102
.890248793
.805224655
. 766283401
. 746850032
.596203364
.530357151
.492292501
.396584646
.161410026
.088514245
.276233621
.307506848
.307531403
.415029379
.520079422
.687613338
771477785
.887974365
.907316256
. 947292344
.962989023
.915918786
.918294442

Age
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

23

NONON NN N NN NN

Males

. 68455006
.658489669
.653474505
.590694417
.555851624
.517727121
.459854478
.405943439
.31542088
.233565783
.106197709
.051312695
.940485735
.876636567
.814249666
.710007788
.647546991
.650957922
.588422152
.556665896
.479994965
.513632009
.449363053
.438194781
. 385469485
.3840364
.31848553
.319820894
.260400918
.252542649
.164103669

(@]

O O O O O O o

Females

. 854036591
. 877434088
.8185072563
.79087059
.673408706
.655986224
.5623581

.48596007
.401039231
.309657515
.153380692
.064417918
.947351374
.849843222
.766626314
.601369025
.491875825
.441129216
.319890898
.279723598
.091179088
.080525635

.951172494
.90260531

. 781555858
.753707096
.640219817
.620952584
.558342881
.564673399
.417177637



Age
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

[EE

O O OO O O O O O O O O O O O o o o o o o

Males

.161829235
.11751987

.119194834
.125208861
.016097113
.942115805
.981052357
.926452422
.932025454
.863947718
.876687875
.821342702
. 784225142
. 772566106
. 728184621
.706442223
.679328301
.611130919
.600127216
.518872707
.552485686
.521029993
.539979253
.494637644
.440343638

OOOOOOOOOOOOOOOOOOOOOOOOO

Females

.424717737
.368704643
.314638088
.358667404
.287974555
.229080195
.310798857
.312500355
.332176287
.269928349
.318730092
.300974732
.311821767
.31810442
.309767294
.308746539
.327691158
. 297276697
.31826416
. 267347987
.313549317
.309261661
. 346761892
.307375602
.271616394

Age
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

O O O O O O O O O O O o o o o o

102
103

|
o

104 0.
105  -0.
106 0.
107  -0.

108 1

109 0.

110+ -1.

24

Males

.412504043
.36035656

.30664939

.428339164
.329506584
.304044911
.247350948
.227790933
.33623781

.237809179
.28519342

.264711414
.37607998

.273892899
.231370662
.224784737
.1563818917

116671104
17729093

491622899
144562406

.685894202

953475578
295952254

O O O O O o O o o o o o

|
(@]

Females

.202418015
.152774421
.111180424
.271792408
.172074105
.130458584
.120423047
.066523154
177727565
.176447266
.043463286
.048917908
.016978934
.194977313
.194900536
.326617114
.038898005
.566556224
.321766145
.88664423
.804259818
.120525857
. 715852723
.716894008









