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How the Co-Integration Analysis Can Help 
In Mortality Forecasting 

Abstract 

The method of mortality forecasting proposed in 1992 by Lee and Carter describes a time 

series of age-specific log-mortality rates as a sum of an independent of time age-specific 

component and a bilinear term in which one of the component is a time-varying parameter 

reflecting general change in mortality and the second one is an age-specific factor. Such 

a rigid model structure implies that on average the mortality improvements for different age 

groups should be proportional, regardless the calendar period. 

In this paper we investigate whether the mortality data for England and Wales follow 

this property or not. We perform the analysis by applying the concept of the Engle and 

Granger co-integration to the time series of log-mortality rates. We investigate the goodness 

of fit of the predictions to the historical data. We find that a lack of co-integration indeed 

can cause some problems in performance of the model. In the last section we propose several 

opportunities to omit the pitfalls. 

Keywords: the Lee-Carter model, time series analysis 
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1 Introduction and motivation 

During the 20th century the life time expectancy increased dramatically - for example for Eng­

land and Wales in 1900 the life expectancy at birth was 48.15 years for females and 44.23 for 

males, while in 1995 - 79.46 for females and 74.25 for males (the source: Human Mortality 

Database [11]). Usually we consider the mortality improvements as something positive and op­

timistic - we live statistically longer than our ancestors. On the other hand when we think about 

the assumptions of modern social security systems, such dramatic changes in the mortality may 

be also seen as one of the major threats to them. Thus they pose a great challenge for actuaries, 

especially those planning public retirement systems and private life annuities business. In fact all 

the components of social security systems are affected by mortality trends. Therefore nowadays 

reasonable mortality forecasting techniques are of paramount importance for the society. 

In the 20th century global mortality has declined at relatively constant rate. However significant 

heterogeneity was observed in a number of deaths by age, a cause of deaths and a calendar 

year. When one chooses an appropriate model for forecasting future trends, one must foresee 

whether the model would reflect this heterogeneity. One must also rise a more fundamental 

question: is using historical data theoretically sound at all? It is well-known that the mortality 

in the previous centuries declined much slower than in the 20th century. Can we thus assume 

that present trends will stand on for the next decades? One has also to determine whether 

arbitrarily small mortality can be reached in the model or rather some biological barriers should 

be imposed. All these questions undermine the sense of forecasting mortality in a very long time 

perspective. However for average time horizons such forecasts are necessary, so nolens-volens 

one has to choose the most suitable forecasting method. 

It has been empirically tested that the rate of improvement is age- and gender- specific, and 

thus most of modern methodologies concern the mortality rates separately for both genders 

and different ages. There are several approaches to develop suitable models. Some parametric 

methods can be easily obtained in the framework of Generalized Linear Models. It has been 

argued that the number of deaths when the central exposed-to-risk is given may be assumed 

to follow Poisson distribution (see [3]) and the promising estimates may be obtained by fitting 

the Poisson regression (see [19], [17] and [20]). An interesting alternative was proposed in 1992 

by Lee and Carter ([13]) who developed a method combining parametric approach with time 

series analysis. Recently the Lee-Carter model has been widely discussed in actuarial literature. 

Some essential improvements were introduced by Brouhns et al. ([4]) who estimated parameters 

by Poisson log-bilinear regression and Renshaw and Haberman ([18]) who described the model 
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in the GLM terms. 

In this contribution we evaluate performance of the Lee-Carter model from another perspective. 

In the first part of the analysis we examine whether age-specific log-mortality rates for England 

and Wales for years 1901-1995 are pairwise co-integrated. In the second part we make forecasts 

for years 1971-1995 based on the same data restricted to years 1901-1970, and compare them to 

the historical data to test the efficiency of the model. 

In Section 2 we briefly describe the assumptions of the Lee-Carter methodology and the es­

timation methods used to obtain the forecasts. Section 3 explains the relationship between 

the assumptions of the Lee-Carter model and the concept of co-integration. The data sources 

are described in Section 4. The results of the co-integration analysis are presented in Section 5. 

In Section 6 we compare obtained estimates and forecasts to the historical data. Next we make 

some suggestions about possible ways of improving the classical Lee-Carter methodology in 

Section 7. Finally, Section 8 briefly summarizes the paper. 

2 The Lee-Carter methodology with some modifications 

The model proposed in [13] (see also [12]) is a very powerful and elegant approach to mortality 

projections. It specifies log-linear form for the force of mortality f-tx(t). More precisely, in 

the model the following relation is assumed: 

(1) 

where flx(t) denotes the estimated mortality rate for people at age x in calendar year t, Ext 

- an error term, in classical approach assumed to be homoskedastic (the estimation methods 

considered more recently in actuarial literature, e.g. [4] allow to release this assumption), ax 

describes the shape of the age profile (can be computed for example by averaging over time), (3x 

- the pattern of deviations from the age profile, and ""t is an age-independent process describing 

time-deviations of mortality. The mortality rates are estimated here as a ratio of an actual 

number of deaths Dxt to a central exposed-to-risk Ext. 

One can easily check that the structure is invariant under either of the parameter transforma­

tions: 
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Usually for uniqueness of the model specification following constraints are imposed: 

L"'t = 0 and Lf3x = o. 
t x 

In classical settings parameters ax, f3x and "'t were estimated by minimizing the sum of squares: 

L (lniLx(t) - ax - f3x"'t) 2. 

x,t 

The estimation problem cannot be solved by a simple regression model because of the presence 

of a bilinear term. The minimization of the sum consists of taking ax as a raw average of 

lniLx(t)'s and then getting /3x and K,t from the first term of singular value decomposition (SVD) 

of the matrix [lniLx(t) - ax(t)]xt. Next the values "'t are re-estimated (taken ax and /3x as 

given) so that the following identity holds: 

LDxt = L Ext exp (ax + /3x'kt). 
x x 

This means that after re-estimation the resulting death rates applied to actual exposures-to-risk 

will produce total number of deaths actually observed each year. 

The estimated time-dependent parameter K,t can be seen as a stochastic process. Then the fore­

casts can be obtained by modeling 'kt as an ARIMA(p,q,s) process, using standard Box and 

Jenkins methodology (identification-estimation-diagnosis) (see [2]). Denoting the resulting pro­

jections beyond the data time horizon T as 'kT +s, the forecasted mortality rates will be expressed 

by the formula: 

However, as pointed out in [1], the classical methodology of estimating parameters imposes too 

restrictive conditions on the error structure in equation (1). For this reason in our numerical 

illustration we will adopt the Poisson log-bilinear regression developed in [4]. 

The method assumes that the number of deaths of people at age x in year t is Poisson-distributed 

(according to [3] this assumption is plausible), namely 

(2) 

The parameters ax, f3x and "'t are estimated by maximizing the Poisson log-likelihood function, 

which takes the following form: 

L(a,f3, "') = L (Dxt(ax + f3x"'t) - Ext exp (ax + f3x"'t)) + constant. 
x,t 
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Because of the presence of the bilinear term (3x/'t,t, in our estimations one has to use numerical 

procedures. Following [4], we use an iterative method proposed in [10], which is based on 

the following general scheme: 

&L (e(v)) e (v+1) = e (v) _ -,;&""'()::-'-::--'-

9§/1- (e(v)) . 

This leads to the following explicit algorithm: 

A (v) 
A (v+1) _ A (v) _ L-t(Dxt - Dxt ) 
ax - ax A (v) , 

- L-t Dxt 

'\"' ( A (V+1)){3(V+1) 
R,(v+2) _ R,(v+1) _ ux Dxt - Dxt x 

t - t _ L-t b~+l) (,Bf+1)) 2 ' 

'\"' ( A (V+2)) A (v+2) 
,8(v+3) = ,8(v+2) _ ut Dxt - Dxt /'t,t 

x x _ L-t b~) (R,~V+2))2 ' 

(3A(v+2) = (3A(v+1) 
, x x' 

A (v+3) _ A (v+2) 
, /'t,t - /'t,t , 

where b~) = Ext exp (&r) + ,8~v) R,~v)). As starting values we have taken &~O) = 0, ,8~O) = 1, 

R,~O) = 0 and we have stopped the iteration when the increase in log-likelihood function after all 

three steps was sufficiently smaller than 10-4 . 

3 The concept of co-integration and its relations with the Lee­

Carter model 

Suppose that one has have two time series variables X t and yt, which can be decomposed as 

follows: 

X t = a(t) + Ut, (3) 

yt = b(t) + Vt, (4) 

where processes aU and b(·) represent non-stationary time trends and Ut, Vt - the irregular 

stationary components. One says that variables X t and yt are co-integrated if there exist non­

zero values {31 and (32 such that the linear combination {31Xt + {32yt is stationary, which means 

that the term (31a(t) + (32b(t) has to vanish. 

The co-integration analysis is usually performed in economic sciences to determine whether 

there exist some unique relationships between economical variables resulting in a long-term 

equilibrium. 

In this contribution we deploy the method of co-integration analysis developed by Engle and 

Granger ([8]). Their testing methodology proceeds in two steps. In the first step it has to be ve­

rified whether the variables under consideration are indeed non-stationary. The non-stationarity 
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can be stated by means of so-called unit root tests. Usually it is required that the variables have 

exactly one unit root (i.e. the first differences are stationary) 

The most popular method of testing the existence of unit roots is the Augmented Dickey-Fuller 

test (ADF) (see [6], [7]). One tests the hypothesis of unit root against the alternative hypothesis 

that the series is autoregressive of order k + 1 (AR(k + 1)). In the ADF test the following 

equation is deployed: 

k 

X t - X t - 1 = bXt - 1 + I:: Cj(Xt - j - X t - j - 1) + ct, 
j=l 

(5) 

where ct is assumed to be a white noise process and k denotes the number of lagged first 

difference terms. In standard applications there are two modifications of the test; the first one 

including the constant term: 

k 

X t - X t - 1 = C + bXt - 1 + I:: Cj(Xt - j - X t - j - 1) + ct 
j=l 

and the second additionally including the trend variable: 

k 

X t - X t - 1 = C + at + bXt - 1 + I:: Cj(Xt - j - X t - j - 1 ) + ct· 
j=l 

(6) 

(7) 

The test relies on rejecting the null hypothesis of the unit root (Ho : b = 0) in favor of stationarity. 

To test this hypothesis, a negative and significant (non-normally distributed) t-ratio for b has 

to be computed and then compared to critical values reported in [6] or more recently in [14]. If 

the hypothesis of the unit root cannot be rejected, the test is repeated for first differences to 

check the existence of multiple unit roots (one has to determine whether the order of integration 

of the tested variables is equal exactly to 1). 

The Phillips-Perron (PP) test (see [16]) is an alternative approach to test existence of unit roots. 

While the ADF test corrects for higher order serial correlation by adding lagged difference terms 

on the right-hand side, the PP test makes the correction to the t-statistic of the b coefficient 

for one of the AR(l) regressions of the form (5), (6) or (7) (i.e. when k is equal to 0). More 

precisely, the following equation is employed: 

X t - X t -1 = a + (3Xt-1 + ct 

(with possible modifications when there is no intercept term and when we additionally consider a 

trend variable). The PP test is robust to heteroskedasticity and autocorrelation of unknown form 

of {ct}. In our application we deploy tests provided by EViews, which are based on the Newey­

West correction (see [15]). The asymptotic distribution of the PP t-statistic is the same as 

the ADF t-statistic, thus its value is again compared to the critical values reported in [6] or [14]. 
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After the existence of unit roots has been stated for variables X t and yt, one has to verify 

whether co-integrating constants J3l and J32 exist (it can be assumed that J3l =1). This is done 

by performing two symmetric OLS estimations: 

(8) 

(9) 

and testing the stationarity of Ult and U2t by the Augmented Dickey-Fuller test (in this case 

however the values of the t-statistic are compared to critical values reported in [9]). If the unit 

root hypothesis is rejected for Ult then one can take J3l = 1 and J32 = -bl , and as a conse­

quence J3lX t + J32 yt = al + Ult is stationary. The analogous reasoning may be carried out for 

the equation (9). 

Now let us return to the Lee-Carter model. We will consider log-mortality rates as a set of 

time series variables indexed by age {In tLx (t)} x (note that we perform whole analysis for both 

genders separately). According to the equation (1), the Lee-Carter model assumes the long­

term relationship between log-mortality rates and a common co-integrating variable "'t. In some 

sense this representation is similar to (3) and (4). Indeed, consider two ages Xl and X2 and let 

Xl = 10gfJ,x l(t) and X2 = log fJ, x 2 (t). Then 

and 

Note that in the original methodology of Lee and Carter the assumptions on error terms ext 

were very close to stationarity (homoskedasticity of variance and mean reversion). Despite 

in more recent works these assumptions are not so strict and allow even for some systematic 

patterns (the approach of [4]), the most important property of a stationary process, i.e. mean 

reversion, should be satisfied. Moreover a high number of parameters in the model imposes that 

the variability of error terms should be relatively small. Thus if the model is specified correctly 

it may be assumed that a possible co-integration relationship will not be affected by an error 

structure. 

For these reasons it is not the best practice to check the stationarity of the residuals directly. 

Their shape heavily depends on the employed estimation methodology. Moreover the systematic 

patterns which may appear in the time series variables describing error structure may result in 
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rejecting the stationarity hypothesis even if their real impact on long term relationships between 

log-mortality rates is negligible .. 

In exchange it seems to be a much better idea to test whether log-mortality rates for different 

ages are co-integrated. Indeed, consider two ages Xl and X2. Then the long-term relationship 

will be given by the formula: 

I A () {3xl (3xl I A () {3xl 
n /-LXl t = O:Xl - -{3 O:X2 + -{3 n /-Lx2 t + EXlt - -{3 Ex2 t· 

X2 X2 X2 
(10) 

If the error terms EXlt and EX2t are stationary than the co-integration follows immediately. If not 

- it is still very likely that co-integrating constants between the series of log-mortality rates can 

be found independently on the error structure given by a specific estimation model. Moreover, 

we expect that it should be much easier to find co-integrating relations for all possible pairs than 

to find one co-integrating process K,t for all log-mortality rates simultaneously (mathematically 

these properties are equivalent, but from the statistical point of view pairwise tests are much 

weaker). 

Summarizing, the assumptions of the Lee-Carter model and the Engle-Granger co-integration, 

despite not mathematically equivalent, have many points of tangency. In fact the logic of the Lee­

Carter model is based on the observation that time changes of mortality for log-mortality rates 

for different ages have always the same (up to an error term) proportions, regardless the calendar 

period. Despite the Engle and Granger co-integration analysis is formulated in a bit different 

language, we are convinced that it provides a very useful tool to make the diagnostic checks of 

validity of the Lee-Carter model. In this paper we illustrate our findings by applying the Lee­

Carter method and co-integration tests to the 20th century mortality data for England and 

Wales. 

4 The description and sources of the data 

The analysis is performed on the basis of population estimates and death counts for England 

and Wales in the period 1901-1995. More exactly, we use death counts Dxt for years 1901-1995 

and all ages between 0 and 110+ years, as well as the estimates of exposure-to-risk Ext and 

mortality rates ilx(t). All data are provided separately for both genders. 

The original data come from the following sources: 

1. Population estimates: 

• Office for National Statistics (1998). "Twentieth Century Mortality in England and 

Wales" (CD-ROM). Newport, South Wales: Office for National Statistics. 
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• Office for National Statistics. Population estimates unit. Unpublished data. 

2. Death counts: 

• Philipov, D. " Construction of the England and Wales population and mortality sur­

faces, 1841-1999". Unpublished manuscript. 

• Title of tables: "Deaths at Different Ages". Registrar's General Annual Report, 

1901-1910. 

• General Register Office (1911-1920). "Annual Report of the Registrar General". 

London: Her Majesty's Stationery Office. 

• General Register Office (1921-1973). "Registrar General's Statistical Review of Eng­

land and Wales". London: Her Majesty's Stationery Office. 

• Office of Population Censuses and Surveys (1974-1995). " Mortality Statistics" (Series 

DH1). London: Her Majesty's Stationery Office. 

The data were downloaded through the Human Mortality Database on 14 April 2003. In our 

analysis we used also estimates of exposure-to-risk and death rates obtained by HMD. 

5 The co-integration analysis for log-mortality rates 

In this section we investigate whether age-specific log-mortality rates for England and Wales are 

pairwise co-integrated. We perform the tests for all combinations of five different ages: 5, 25, 

40, 60 and 75 years, separately for males and females. We proceed with Engle and Granger's 

procedure in two steps, as described in Section 3. 

5.1 Testing for unit roots 

More careful analysis of the data indicates that log-mortality rates for England and Wales reveal 

significant variations for years of both world wars (1914 - 1918, 1939 - 1944) and epidemics 

(Spanish flu in 1918). Also in 1929 an unexpected increase in mortality was noted. Thus 

the assumption of heteroskedasticity and serial independence of error terms in the formula (5) 

is very difficult to satisfy even for a very large number of lagged differences on the right-hand 

side of the equation. For these reasons we use for our purpose Phillips-Perron test instead of 

Augmented Dickey-Fuller, for which the conditions for error terms are less rigid. 

In Table 1 there are numerical results of the test presented. 
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Table 1: Values of the t-statistic for log-mortality rates mx(t) = In(Px(t)) 

Males Females 

x mx(t) \7mx(t) mx(t) \7mx(t) 

5 -0.237162 -15.69261 0.007477 -12.39218 

25 -0.440493 -13.15585 -1.368653 -7.811529 

40 -0.835487 -16.98648 -0.894117 -11.30519 

60 -0.239665 -16.35535 0.528027 -13.35696 

75 -0.136543 -18.49173 -0.844876 -17.01046 

We compare the results to the critical values from Table 2. The hypothesis of existence of unit 

roots cannot be rejected for neither of tested time series variables. For first differences there is 

a clear indication of stationarity (the hypothesis of unit root is easily rejected for all variables). 

We conclude that all variables are integrated of order 1, and thus the assumptions necessary to 

proceed with estimating the co-integrating equations (8) and (9) are satisfied. 

5.2 The tests for co-integration 

We deploy the procedure of Engle and Granger described in Section 3. After OLS-estimation of 

(8) and (9), we test the stationarity of the residual series using the equation (5). Preliminarily 

we choose the number of lagged differences k which minimizes the Akaike Information Criterion 

(AIC). Next we check by usual Q-Statistic if the residuals are not serially correlated. If the hy­

pothesis of white noise is not rejected we use in the model the number k, otherwise - we aim to 

choose the smallest k' > k such that residuals from the equation (5) are not serially correlated. 

Because of a very big sensitivity of the results to the choice of the model, in ambiguous cases 

we also report the results for the model with increased number of lagged differences. 

The values of t-statistic are contained in Table 3. We use the following labels in the table: xSy 

means the co-integration test for the sex S (where S means "M" for males and "F" for females) 

of log-mortality rates for ages x and y. In the third column we report results when log-mortality 

Table 2: The critical values reported in [14] 

Confidence level 

90% 95% 99% 

mx(t) -2.5829 -2.8922 -3.5007 

\7mx(t) -2.5831 -2.8925 -3.5015 
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Table 3: The results of the co-integration tests 

Lags Eq. (8) Eq. (9) 

5M25 1 -2.609717 -2.635994 

5M40 2 -2.752887 -2.943339 

31 -2.593201 -2.848422 

5M60 1 -2.751095 -2.780564 

5M75 2 -2.754339 -2.550786 

25M40 1 -2.407018 -2.495128 

25M60 1 -2.220739 -2.200334 

25M75 1 -2.743430 -2.566435 

40M60 1 -3.034872 -2.976308 

2 1 -2.710061 -2.637798 

40M75 9 -1.696533 -0.925303 

60M75 9 -2.414889 -1.867568 

5F25 1 -3.152333 -3.587565 

5F40 0 -3.136495 -3.284172 

11 -2.360561 -2.579673 

5F60 1 -1.511879 -1.248186 

5F75 2 -2.340452 -2.000002 

25F40 0 -3.030436 -2.927567 

1 1 -3.393295 -3.149962 

25F60 0 -2.043662 -1.565188 

25F75 2 -2.130491 -1.004689 

40F60 3 -0.506666 0.212523 

40F75 4 -2.040707 -1.520733 

60F75 2 -2.599192 -2.373252 

for age x is the independent variable in the equation (8) and log-mortality for age y dependent, 

and in the fourth column the opposite case. The values of t-statistic are compared to the Engle 

and Yoo critical values reported in Table 4. 

5.3 Conclusions 

The analysis of results contained in Table 3 reveals that for most of the tested pairs log-mortality 

rates are not co-integrated. The results strongly support co-integration for only two pairs: 

females aged 5 with females aged 25 (for the equation (9) the test rejects the hypothesis of 

1 An explaining test 
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Table 4: The critical values reported in [9] 

Confidence level 

90% 95% 99% 

No lags -3.03 -3.37 -4.07 

Lags -2.91 -3.17 -3.73 

a unit root at the confidence level 5%, while for the equation(8) at 10%) and females aged 25 

with females aged 40 (the hypothesis is rejected only for the equation (8) at the confidence 

level 10%. The explaining tests with one additional lagged difference in the equation 5 reject 

the hypothesis once again - for (8) at 5% and for (8) at 10%). The results for females aged 5 

with females aged 40 also support the co-integration - the hypothesis of a unit root is rejected 

at 10% both for (8) and (9) (explaining tests did not allow to reject the hypothesis). Note that 

these results are consistent with the theoretical property of transitivity of the co-integration 

relation. 

From all remaining pairs only the tests for males aged 40 with males aged 60 allow for rejecting 

the hypothesis of unit root at the level 10% (however explaining tests did not allow for rejecting 

the hypothesis). For remaining sixteen combinations neither of 32 tests allowed for rejecting 

the null hypothesis. Although the p-values of the tests usually seem to be relatively small, the 

results make the assumption of co-integration of log-mortality rates for all ages doubtful, at least 

in the case the tested data set. 

The results of the tests suggest that the Lee-Carter methodology, is not fully applicable to 

the 20th century mortality data for England and Wales. In the next section we compare the pre­

dictions obtained from the Lee-Carter forecasts to the historical data. It is possible to notice 

that indeed the proportions of mortality improvements between different ages do vary with time, 

what is linked to the lack of co-integration. In Section 7 we discuss how it is possible to modify 

the Lee-Carter methodology to make the mortality forecasts more reliable. 

6 The forecasts obtained by the model 

Apart from the co-integration analysis, we make also the forecasts to look at the results of 

the model. The forecasts are derived for the period 1971-1995 on the basis of the mortality data 

for England and Wales for years 1901-1970. Then the estimates for the period 1901-1995 are 

compared graphically to the historical data. We employ the methodology of [4] described in 

Section 2. 
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Table 5: Estimated parameters of the model (11) 

Males Females 

Coef. St.er. Coef. St.er. 

C -0.011035 0.001597 -0.010099 0.001761 

).. -0.501670 0.101670 -0.369395 0.114339 

The raw estimates of ax, (3x and /\'t are inserted in the Appendix. However obtained estimates of 

K,t are not easy to model as an ARlMA process because of an excessive variability of mortality in 

the periods of wars (1914-1918, 1939-1944) and epidemics (1918 and probably 1929). Therefore 

we used the smoothed process fit obtained from the following formula: 

t; ((1919 - t)K,1913 + (t - 1913)/\'1919) for t = 1914, ... , 1918 

~ (/\,1928 + /\'1930) for t = 1929 
/\'t = 

H(1945 - t)/\'1938 + (t - 1938)/\'1945) for t = 1939, ... ,1944 

"'t otherwise 

After these adjustments the Box and Jenkins methodology (identification - estimation - diagno­

sis) was employed to generate an appropriate ARIMA time series model for mortality index fit. 

Both indices for males and females were modelled as ARIMA(l,l,O) process, i.e.: 

(11) 

where lOt forms a white noise process. In Table 5 we insert the estimated parameters. 

We depict the results on two sets of graphs. In Figure 1 we depict the historical evolution of 

the mortality rates for chosen ages, both for the historical data and for the Lee-Carter estimates 

and forecasts. In Figure 2 the global age-specific log-mortality rates are depicted for chosen 

calendar years. 

At a first view the fit of the Lee-Carter estimates to the historical data seems to be reasonably 

good. However the lack of co-integration leads to several inconsistencies. For the year 1951 

for example the model seems to overestimate mortality for males aged between 5 and 30. This 

tendency is kept for the following years, but the predictions for 1995 do not reveal it any 

more. However then the mortality for elderly males is overestimated significantly. This may 

suggest that from 1970 the pace of improvement for represented by the parameters (3x should be 

decreased for ages 20-30 while should be increased for elderly ages. For females this phenomenon 

is illustrated even more clearly. For most of the years the fit for females is even better than 

for males. However on the last graph of Figure 2 (i.e. for year 1995) the fit for females is very 
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bad - the mortality is significantly underestimated for years 20-40 and overestimated for elderly 

women. Those phenomena result from the fact that the assumption of constant f3x is not always 

plausible and thus the long-term relationship (10) does not hold. 

We want to stress that in short time despite these problems the forecasts still may perform 

reasonably good. Moreover in some applications (for example reserving in life-annuity business) 

overestimation of the mortality for some ages may be compensated by underestimation for 

others. However the lack of co-integration of the log-mortality series suggests that the model is 

not enough flexible and that it cannot be used in very long perspective (the example for females 

that already 25-year age-specific forecasts turn out to be very inadequate). 

7 How to omit pitfalls? 

The Lee-Carter model can be made more efficient in several ways. 

One of possible reasons for which log-mortality rates for different ages may not be pairwise 

co-integrated is too long time perspective. Indeed, in the classical Lee-Carter model the same 
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Figure 1: Changes of Mortality for England and Wales over Time for Chosen Ages 
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weight is put to the observations at the beginning as at the end of the period. It does not 

always reflect the reality - it is well known that for example mortality trends in the thirties 

were influenced mostly by improvements in mortality caused by infectious diseases, from which 

infants and young people benefited relatively more than elderly people. Thus probably the time 

period taken for the analysis is too long. It is also possible to use similar approach to this of 
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Renshaw and Haberman ([18]). In their generalized linear modelling based regression approach 

to mortality forecasting they propose to add a time break-point for greater structural flexibility. 

Translating their idea into the classical Lee-Carter model settings, the addition of the break­

point means that we choose a time point to and estimate two sets of parameters: (3x for t < to and 

(3~ for t :2: to. The motivation is to put greater emphasis on more recent trends. Obviously such 

an approach will produce better fit to the historical data, but on the other hand the modification 

substantially increases number of parameters involved. 

Also disaggregation of the data may lead to a substantial improvement of the results. There are 

two possible ways of disaggregation. For the first one all calculations are performed for every 

group separately, in particular death rates are modelled separately. The disaggregation with 

respect to gender is of this type. Geographical disaggregation is another example. A division of 

the population into smaller age-groups is also possible (for example for calculating the present 

value of life annuity the analysis can be restricted to elderly people). 

In some cases it is possible to disaggregate only death counts, keeping the central exposed-to-risk 

Ext at global level. The death rates in disaggregation with respect to an underlying cause of 
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Figure 2: Log-Mortality Rates for England and Wales for Chosen Calendar Years 

death may be performed this way. The main advantage of this approach is that the death rates 

modeled separately can be added together to get global estimates of death rates. 

D(i) 
~for,;=l n " , ... , 
Ext 
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and thus 

However one has to remember to take possible dependencies between the numbers of deaths 

between different subgroups into account. 

The common feature of both types of disaggregation is estimation of separate sets of parameters 

a~i), a~) and K;~i) which may catch some specific differences in mortality for analyzed subgroups. 

Especially disaggregation with respect to the cause of death seems to be a very promising 

improvement in the model. The main advantage of this approach is that it really explains 

the reasons of the lack of co-integration, unlike other methods which aim only to improve the fit 

by some manipulation with the data or parameters. Indeed, while in the first half of the 20th 

century the mortality improvements followed from rapid decrease in the mortality caused by 

infectious diseases, in the second half of the century improvements resulted mainly from decrease 

in number of deaths caused by cardiovascular diseases (see e.g. [5]). These facts could explain 

why in the first years of the century infants benefited the most from mortality improvements, 

while recently especially elderly people did. 

Disaggregation with respect to the cause of death has also some disadvantages. The results of 

such forecasts cannot be reliable in a very long time perspective because usually old causes of 

death are replaced by new ones, for example recently AIDS became the one which should be 

analyzed separately. Also proper data are often unavailable. 

However we consider examining disaggregation with respect to the cause of death as an inte­

resting topic for future research which can increase our knowledge about behavior of mortality 

rates in time. 

8 Summary 

In the paper we have made an attempt to evaluate the Lee-Carter model of forecasting future 

mortality. In the analysis we have used the concept of the Engle and Granger co-integration 

and have applied it pairwise to the log-mortality rates. 

We have performed the analysis for 20th century data for England and Wales. The tests that 

we have used did not allow for stating perfect pairwise co-integration between age-specific log­

mortality rates what undermined the reliability of the Lee-Carter model for this particular data 

set. The comparison of the Lee-Carter forecasts with the historical data seems to confirm 

conclusions derived from the co-integration analysis. 
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In practical applications we suggest making co-integration tests before deploying the Lee-Carter 

model as a method of diagnostic checking. The lack of co-integration may be a kind of warning 

signal that the obtained predictions may not be reliable. It may be also an indication that more 

weight should be put on more recent observations in the model or that a more disaggregated 

analysis is required, for example with respect to a cause of death. 
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Appendix 

1. Estimations of "'t 

Year Males Females Year Males Females 

1901 -0.97430559 -0.958104082 1931 -1.216216948 -1.205971396 

1902 -0.99027241 -0.974269994 1932 -1.231579354 -1.225761779 

1903 -1.008666032 -0.992290267 1933 -1.226009201 -1.221947415 

1904 -0.986613478 -0.972095934 1934 -1.249588039 -1.24118375 

1905 -1.015198594 -1.002461809 1935 -1.27425508 -1.265146559 

1906 -1.011420245 -0.998083218 1936 -1.272134314 -1.258777394 

1907 -1.024521078 -1.014063799 1937 -1.273252529 -1.262292297 

1908 -1.034699659 -1.020292117 1938 -1.319566742 -1.296961205 

1909 -1.044487163 -1.03672619 1939 -1.326620825 -1.31504895 

1910 -1.073830793 -1.062839727 1940 -1.251860885 -1.222294395 

1911 -1.034785807 -1.020388652 1941 -1.285961335 -1.231432388 

1912 -1.085226528 -1.077676314 1942 -1.370988783 -1.312498501 

1913 -1.073419504 -1.058270761 1943 -1.365532173 -1.318329955 

1914 -1.069837085 -1.049796109 1944 -1.397726122 -1.337062245 

1915 -1.043832253 -1.004458296 1945 -1.421440492 -1.372975934 

1916 -1.096844574 -1.043184417 1946 -1.441280236 -1.406624158 

1917 -1.096122439 -1.02936574 1947 -1.437027614 -1.407601818 

1918 -0.961929332 -0.914803598 1948 -1.514874179 -1.491054728 

1919 -1.086127366 -1.045447573 1949 -1.495239337 -1.491003813 

1920 -1.130387126 -1.102782603 1950 -1.52149409 -1.511645528 

1921 -1.162554216 -1.149898735 1951 -1.503266271 -1.495100076 

1922 -1.146006203 -1.139435872 1952 -1.580296797 -1.546229624 

1923 -1.195304455 -1.183502215 1953 -1.585247293 -1.560233067 

1924 -1.172252865 -1.161512647 1954 -1.611651573 -1.578428701 

1925 -1.175760205 -1.166099545 1955 -1.607191768 -1.578142882 

1926 -1.204205221 -1.192292801 1956 -1.621742746 -1.589252898 

1927 -1.187098462 -1.176541902 1957 -1.63714992 -1.592647397 

1928 -1.216307455 -1.202971375 1958 -1.645503413 -1.601395485 

1929 -1.154164596 -1.147982019 1959 -1.652902364 -1.610483914 

1930 -1.241019442 -1.223324843 1960 -1.670147532 -1.614248975 
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Year Males Females Year Males Females 

1961 -1.651045988 -1.605536763 1966 -1.708026196 -1.63308312 

1962 -1.660026179 -1.60752804 1967 -1.743908519 -1.667533585 

1963 -1.655077903 -1.603523958 1968 -1.718527936 -1. 651148081 

1964 -1.71234977 -1.636153364 1969 -1.723902053 -1.646427648 

1965 -1.712736555 -1.6362825 1970 -1.74107159 -1.660457184 

2. Estimations of CXx 

Age Males Females Age Males Females 

0 0.756053556 0.989470086 25 -2.618123183 -2.187871525 

1 2.065584527 1.927293013 26 -2.569170566 -2.156596711 

2 0.642585944 0.442440266 27 -2.474258357 -2.090826926 

3 -0.056939177 -0.404445804 28 -2.489758885 -2.054592584 

4 -0.60176891 -0.992395348 29 -2.486965391 -2.093039163 

5 -1.231736069 -1.649877077 30 -2.463555998 -2.067280226 

6 -1.597217368 -2.166509278 31 -2.51628299 -2.156029884 

7 -1.976874715 -2.622173856 32 -2.466719417 -2.043714119 

8 -2.345146713 -2.928718298 33 -2.468521947 -2.096655593 

9 -2.535604251 -3.129531053 34 -2.492381124 -2.075411218 

10 -2.682436986 -3.234558488 35 -2.491742029 -2.152612356 

11 -2.769015215 -3.316128665 36 -2.494318601 -2.143782159 

12 -2.912388993 -3.519230046 37 -2.529897612 -2.207388642 

13 -2.81073017 -3.560274224 38 -2.50561661 -2.214076203 

14 -2.621847699 -3.504850055 39 -2.578247045 -2.269947499 

15 -2.660962679 -3.498853361 40 -2.640107858 -2.323920979 

16 -2.706419281 -3.559600207 41 -2.784827008 -2.493601998 

17 -2.756150577 -3.484473791 42 -2.71538618 -2.459624784 

18 -2.803776125 -3.13222094 43 -2.841033286 -2.585584107 

19 -2.84754822 -3.027223007 44 -2.871609613 -2.645821125 

20 -2.839806971 -2.983211785 45 -2.876352502 -2.641792413 

21 -2.794461194 -2.820436423 46 -2.944958424 -2.795475708 

22 -2.802444332 -2.679274844 47 -2.943273963 -2.84999956 

23 -2.747762913 -2.455011166 48 -2.850948271 -2.830100846 

24 -2.649795248 -2.337182194 49 -2.84985682 -2.886257435 
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Age Males Females Age Males Females 

50 -2.830479078 -2.859598421 81 -1.447956531 -1.535117502 

51 -2.920377532 -3.077658117 82 -1.259945996 -1.33519572 

52 -2.722915918 -2.934552033 83 -1.206159532 -1.2610996 

53 -2.75708249 -3.025012285 84 -1.060233473 -1.094390792 

54 -2.680836986 -2.995977392 85 -1.053235918 -1.094107666 

55 -2.741115685 -3.116786454 86 -1.033222028 -1.047895064 

56 -2.612001896 -3.023807562 87 -1.000163626 -1.075140726 

57 -2.641512709 -3.09629136 88 -1. 011784611 -1.093620018 

58 -2.518886503 -3.005258398 89 -1.003650919 -1.069586163 

59 -2.523936701 -3.003759608 90 -0.730636124 -0.768945901 

60 -2.450118222 -2.922193913 91 -0.837120518 -0.869461423 

61 -2.537013474 -3.076665257 92 -0.771152519 -0.836690787 

62 -2.38017569 -2.920782536 93 -0.782204824 -0.79188261 

63 -2.345716215 -2.90798614 94 -0.748975568 -0.797089968 

64 -2.251069339 -2.885118341 95 -0.497347545 -0.557844779 

65 -2.143988007 -2.74004098 96 -0.565194394 -0.471521647 

66 -2.253222003 -2.809382133 97 -0.446303037 -0.660900162 

67 -2.23038108 -2.770711407 98 -0.381883865 -0.575932491 

68 -2.062470375 -2.563753424 99 -0.185188857 -0.605379471 

69 -2.0372435 -2.462474372 100 -0.259950057 -0.263674126 

70 -1.926539384 -2.367066795 101 -0.274953832 -0.825585094 

71 -1.969225896 -2.412187376 102 -0.247872349 -0.888274508 

72 -1.781608491 -2.187799819 103 -0.716481988 -0.450301995 

73 -1.752335052 -2.126817077 104 -0.380329639 -1.200233179 

74 -1.696292135 -2.014982473 105 -0.550012318 0.206897013 

75 -1.618168838 -1.92954453 106 0.343152439 -1.410040803 

76 -1.574112216 -1.842844623 107 -0.522729747 2.189181678 

77 -1.539421461 -1.783325386 108 2.645506697 5.20672437 

78 -1.456607765 -1.655215243 109 1.792922708 6.356951022 

79 -1.470775409 -1.61323437 110+ -2.62658354 2.448484316 

80 -1.388068186 -1.517785324 
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3. Estimations of f3x 

Age Males Females Age Males Females 

0 2.870401684 2.913072841 31 2.68455006 2.854036591 

1 5.216765725 5.10800461 32 2.658489669 2.877434088 

2 4.688123047 4.541651873 33 2.653474505 2.818507253 

3 4.437988277 4.179973631 34 2.590594417 2.79087059 

4 4.200743893 3.901039783 35 2.555851624 2.673408706 

5 3.811970384 3.487184153 36 2.517727121 2.655986224 

6 3.712842329 3.233028808 37 2.459854478 2.5623581 

7 3.569920374 3.012425102 38 2.405943439 2.48596007 

8 3.396962869 2.890248793 39 2.31542088 2.401039231 

9 3.347082747 2.805224655 40 2.233565783 2.309657515 

10 3.276249224 2.766283401 41 2.106197709 2.153380692 

11 3.233779502 2.746850032 42 2.051312695 2.064417918 

12 3.077109445 2.596203364 43 1.940485735 1. 947351374 

13 3.10236347 2.530357151 44 1.876636567 1.849843222 

14 3.185258706 2.492292501 45 1.814249666 1.766626314 

15 3.05473092 2.396584646 46 1.710007788 1.601369025 

16 2.932146671 2.161410026 47 1.647546991 1.491875825 

17 2.838435766 2.088514245 48 1.650957922 1.441129216 

18 2.749856164 2.276233621 49 1. 588422152 1.319890898 

19 2.661044028 2.307506848 50 1.556665896 1.279723598 

20 2.647419376 2.307531403 51 1.479994965 1.091179088 

21 2.637732283 2.415029379 52 1.513632009 1.08052535 

22 2.619631506 2.520079422 53 1.449363053 0.951172494 

23 2.635053194 2.687613338 54 1.438194781 0.90260531 

24 2.690590012 2.771477785 55 1.385469485 0.781555858 

25 2.699827377 2.887974365 56 1.3840364 0.753707096 

26 2.721700886 2.907316256 57 1.31848553 0.640219817 

27 2.778241328 2.947292344 58 1.319820894 0.620952584 

28 2.738040757 2.962989023 59 1.260400918 0.558342881 

29 2.718249298 2.915918786 60 1.252542649 0.564673399 

30 2.719940721 2.918294442 61 1.164103669 0.417177637 
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Age Males Females Age Males Females 

62 1.161829235 0.424717737 87 0.412504043 0.202418015 

63 1.11751987 0.368704643 88 0.36035656 0.152774421 

64 1.119194834 0.314638088 89 0.30664939 0.111180424 

65 1.125208861 0.358667404 90 0.428339164 0.271792408 

66 1.016097113 0.287974555 91 0.329506584 0.172074105 

67 0.942115805 0.229080195 92 0.304044911 0.130458584 

68 0.981052357 0.310798857 93 0.247350948 0.120423047 

69 0.926452422 0.312500355 94 0.227790933 0.066523154 

70 0.932025454 0.332176287 95 0.33623781 0.177727565 

71 0.863947718 0.269928349 96 0.237809179 0.176447266 

72 0.876687875 0.318730092 97 0.28519342 0.043463286 

73 0.821342702 0.300974732 98 0.264711414 0.048917908 

74 0.784225142 0.311821767 99 0.37607998 -0.016978934 

75 0.772566106 0.31810442 100 0.273892899 0.194977313 

76 0.728184621 0.309767294 101 0.231370662 -0.194900536 

77 0.706442223 0.308746539 102 0.224784737 -0.326617114 

78 0.679328301 0.327691158 103 -0.153818917 -0.038898005 

79 0.611130919 0.297276697 104 0.116671104 -0.566556224 

80 0.600127216 0.31826416 105 -0.17729093 0.321766145 

81 0.518872707 0.267347987 106 0.491622899 -0.88664423 

82 0.552485686 0.313549317 107 -0.144562406 1.804259818 

83 0.521029993 0.309261661 108 1.685894202 4.120525857 

84 0.539979253 0.346761892 109 0.953475578 4.715852723 

85 0.494637644 0.307375602 110+ -1.295952254 1.716894008 

86 0.440343638 0.271616394 
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