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Efficient 'V-optimal Designs under 
Multiplicative Heteroscedasticity 

L. Tack 
P. Gaas 

M. Vandebroek 

Katholieke Universiteit Leuven, Belgium 

In optimum design theory designs are constructed that maximize the information 
on the unknown parameters of the response function. The major part deals with 
designs optimal for response function estimation under the assumption of homo
scedasticity. In this paper, optimal designs are derived in case of multiplicative 
heteroscedasticity for either response function estimation or response and variance 
function estimation by using a Bayesian approach. The efficiencies of Bayesian 
designs derived with various priors are compared to those of the classic designs with 
respect to various variance functions. The results show that any prior knowledge 
about the sign of the variance function parameters leads to designs that are con
siderably more efficient than the classic ones based on homoscedastic assumptions. 

1 Introduction 

Delivering reliable, high quality products and processes at low cost has become the 
key to survival in today's global economy. Driven by the need to compete on cost 
and performance, many quality-conscious organizations are increasingly focusing on the 
optimization of product design. This reflects the realization that quality can not be 
achieved economically through inspection. Designing in quality is cheaper than trying to 
inspect and re-engineer it after the product hits the production fioor, or worse, after it 
gets to the customer. Experimental design is a powerful quality improvement technique. 

Atkinson (1996) gives a selection of the existing literature on experimental design theory. 
The origins of mathematical work on the design of experiments go back at least to Smith 
(1918) who found optimal designs for a series of single-factor polynomial models. Fisher 
(1960) gives a mathematical treatment of the determination of designs for some nonlinear 
models. The first extended presentation of the ideas of optimum experimental design was 
in Kiefer (1959). A brief history of statistical work on optimum experimental design is 
given by Wynn (1985) and the subject continues to develop, recently at an increasing rate. 
The two most cited books in the field are from Fedorov (1972) and from Silvey (1980). 
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The recent book by Pukelsheim (1993) emphasizes connections with convex programming, 
whereas that of Atkinson and Donev (1992) stresses more statistical aspects. One major 
strand of development since Kiefer (1959) includes the various equivalence theorems for 
optimal designs. Kiefer and Wolfowitz (1960) published the equivalence theorem between 
Q- and V-optimality the following year. Another is the construction of algorithms for 
numerical calculation of both exact and continuous designs. 

Since the late 1950s Taguchi (Taguchi, 1986 and Taguchi, 1987) has introduced several new 
statistical tools and concepts of quality improvement that depend heavily on statistical 
theory for design of experiments. He highlighted the necessity to develop experimental 
strategies to achieve some target values for the expected value of certain characteristics 
while at the same time minimizing their variance. This so-called robust design is a 
method for making a manufacturing process less sensitive to manufacturing variations 
and is extensively described by Huele (1998). Because it reduces variation by limiting the 
influence of sources of variation, not by controlling them, robust design is a cost-efficient 
technique for improving process quality. Only recently, industrial statisticians became 
aware of the fact that they can no longer concern themselves only with the expected 
value of the response of interest. Instead they must also consider the response variability. 
An interesting approach assumes that the response variance, or a suitable transformation 
thereof, may be well approximated by a linear model in the independent variables. Sepa
rate linear models for the response and variance structure are estimated. Separate models 
have the advantage of providing the analyst with a better scientific understanding of the 
total process. The analyst is better able to see what levels of the independent factors will 
lead to acceptable response values as well as acceptable variability. 

The essence of robust design is to reduce variation of product's or process's functional 
characteristics. These functional characteristics are basic, measurable quantities that 
determine how well the final product functions. According to a manufacturing process, the 
functional characteristics are usually measurements that can be made on the incomplete 
product soon after each specific step. 
There are three types of variables that affect functional characteristics: control parameters, 
signal factors and sources of noise. Control parameters are the controllable process 
variables of which the operating standards can be specified by the process engineers. 
Signal factors are those factors whose levels are set by the user or operator to attain the 
target performance or to express the intended output. For example, the steering angle is a 
signal factor for the steering mechanism of an automobile. In contrast, sources of noise are 
the variables that are impossible or expensive to control. They, in turn, cause variations in 
the product's functional characteristics. External noise factors are those factors external 
to the product such as load conditions, temperature, humidity, dust, supply voltage, vi
brations due to nearby machinery, human errors in operating the product, etc. Noise can 
also be induced by manufacturing imperfection. This causes product parameter variation 
from unit to unit and is inevitable in a manufacturing environment. A third type of noise 
is called deterioration and refers to the fact that the values of performance characteristics 
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of a product sold may change as time passes by. In practice it is often possible to take ad
vantage of certain control factors, which can be adjusted, to achieve the desired functional 
relationship between the signal factors and the response. One such commonly encoun
tered factor is a scaling factor. The gearing ratio in the steering mechanism of a car 
is an example of a scaling factor. The objective of robust design is to find those control 
parameter settings where noise has a minimal effect on the functional characteristics. The 
key idea is to reduce functional characteristic sensitivity by making the process insensi
tive to noise rather than by controlling the sources of noise. To attain this objective, the 
control parameters are systematically varied in an experiment and the effect of noise is 
measured for each experimental run. Finally, the results are used to predict which control 
parameter settings will make the process insensitive to noise. As an example, Kackar and 
Shoemaker (1986) applied these principles to the improvement of the process for making 
optical fibers. 

According to the Taguchi philosophy, the three major steps in designing a quality product 
are system design, parameter design and tolerance design. System design is the process 
of applying scientific and engineering knowledge to produce a basic functional prototype 
design. The next step, parameter design, is an investigation conducted to identify the 
settings of design parameters that optimize the performance characteristics and reduce 
the sensitivity of the engineering design to the sources of variation. Four operational steps 
complete this robust design method. In the first step, functional characteristics, control 
parameters, signal factors and sources of noise are determined. In the second step the 
experiment is planned by determining the levels of the control parameters and the signal 
factors. Conducting the experiment is done in the third step and the obtained results are 
used to predict the improved control parameter settings by minimizing the variance. To 
achieve this, the robust design method uses a statistical measure of performance called 
signal-to-noise (SjN) ratio. This SjN-ratio has been criticized for being a performance 
statistic of ambiguous nature that may deliver unreliable results. Some authors argue 
that it is better to separate performance statistics for mean and variance, since sometimes 
variability changes as a function of the mean value, while for other response variables, aver
age and variability appear to be independent. Often one runs a confirmation experiment in 
the fourth step to check the prediction. Afterwards, the process of determining tolerances 
around the nominal settings identified in the parameter design process, is called tolerance 
design and is only required if robust design can not produce the required performance 
without costly special components or high process accuracy. Unal and Daen (1991) apply 
these steps to the optimization process of a heat exchanger. Phadke and Dehnad (1987) 
developed a two stage approach whereby the signal-to-noise ratio is maximized at first 
and then the performance is brought on target by special adjustment parameters. 

This paper will focus on step two of the parameter design stage: planning the experiment. 
Most literature on optimal designs assumes errors with constant variance. The case of 
multiplicative heteroscedasticity for either response function estimation or response and 
variance function estimation is considered here. The resulting designs depend on the 
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unknown parameters of the variance function and Bayesian experimental design theory 
provides design criteria reflecting prior knowledge of these parameters. The purpose of 
this paper is to give a more thorough analysis of the impact of the prior information on 
the efficiencies of Bayesian designs. Various priors are used and the efficiencies of the 
resulting designs are compared to the classic ones, based on homoscedastic assumptions, 
with respect to various variance functions. 

2 Bayesian V-optimal designs 

The section starts with the formulation of the assumed heteroscedastic model for both 
response and variance function estimation. Henceforth y denotes the response of interest 
and x and z are the (p xl) and (q xl) vectors of control variables presumed to influence 
the response function and variance function respectively. Denote by f(x) the (Pr x 1) 
vector representing the polynomial expansion of x for the response model and by g(z) the 
(qv xl) vector representing the polynomial expansion of z for the variance model. Both 
f(x) and g(z) contain an intercept. With {3 and / the (Pr x 1) and (qv x 1) vectors of 
unknown parameters, the following heteroscedastic model is assumed: 

(1) 

Note that v > 0 is a known twice-continuously differentiable function. The error term E 

is standardized such that E(E) = 0 and VAR(E) = 1 which yields the following mean and 
variance functions: 

E(y) 

VAR(Y) 

e(x){3, 
v[gT(zhl· 

(2) 
(3) 

The optimum design problem is concerned with the selection of the number of observations 
at the different design points at which to observe the response y in order to provide 
maximal information on ({3, /) or some subset thereof. One of the many optimality 
criteria is the widely spread V-optimality criterion in which designs with the greatest 
determinant of the total information matrix for the parameters will be preferred. With 
a the significance level, the 100(1 - a)% confidence region for all elements of {3 or / 
is an ellipsoid in the Pr or qv dimensional space respectively, of which the volume is 
inversely proportional to the square root of the determinant of the information matrix. In 
consequence, the V-optimality criterion minimizes the volume of the ellipsoid representing 
the confidence region. The per observation information matrix on ({3, /) equals 

I(x, z) = -E 8ffo L %210'1 ' [ 
8210§L 8j30gL 1 
8/:(3 ~ 

(4) 

where L is the likelihood function, written as 

1 {l[y-fT (X),BF} 
L(y,x,zl{3,/) = / y'27fexp 2 V [gT(Z)'"V] . 

V v[gT(zhl 271' I 

(5) 
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Substituting the expression of the likehood function (5) into the expression of the per 
observation matrix (4) yields 

[ 

f(x)fT(x) 

I(x, z) = v[g1 ~Zl/[ 
1 {VI[g~(Z)J'J O}2 g(z)gT(z) 1 ' 
2 v[g1 (zl/J 

(6) 

where v' indicates the first derivative of v with respect to f. After summation of the 
per observation matrices (6) over all N observations, the total information in the design 
{x, z };';"1 equals 

N 

L I(xi' Zi) = 
i=l 

o l 

"N 1 {VI[gT(Zi l/J}2 ( .) T( .) J . 
wi=l 2 v[gT(Zil/J g z,. g z,. 

(7) 

The determinant of the information matrix (7) becomes 

IN I IN f(Xi)fT(x;) I liN {VI[gT(Zihl}2 T I L I(xi' Zi) = L v[ T(z) 1 x 2 L v[ T(z.) 1 g(Zi)g (Zi) . 
,.=1 ,=1 g ,. 'Y ,.=1 g. ,. 'Y 

(8) 

Considering the case of multiplicative heteroscedasticity by replacing function v by the 
exponential function, expression (8) simplifies to 

1 N I I N f (x ) fT (x ) I 1 I N I 
!LI(Xi,zi) = L ex [" T(Z)' 1 x 2 Lg(z;)gT(Zi) . 
,.=1 ,.=1 P g ,'Y ,.=1 

(9) 

Unfortunately, the determinant of the information matrix depends on the unknown vector 
f. Aitkin (1987) avoids this problem by using the previous collected data to estimate f. 

Another possibility is a Bayesian approach to design optimality. An extensive review of 
developments in Bayesian design theory can be found in Chaloner and Verdinelli (1995) 
and Broemeling (1985). Chaloner (1984) derived Bayesian design optimality criteria for 
the linear model when the parameters of the mean function are supposed to follow a 
normal distribution. Chaloner and Larntz (1989) extended these findings to nonlinear 
models. DuMouchel and Jones (1994) proposed Bayesian V-optimal designs with reduced 
dependence on regressor specification and Atkinson and Cook (1995) supposed a discrete 
prior distribution for 'Y. Vining and Schaub (1996) made use of a multivariate normal 
distribution Nbo, pI) as a prior for 'Y and proposed a semi-Bayesian approach in that they 
maximized the determinant of the expected information matrix. Vandebroek and Goos 
(1997) studied the impact of the mean 'Yo of the prior distribution and of the uncertainty 
p about this mean for that approach. The approach of Vining and Schaub (1996) is 
susceptible to discussion in that they used a semi-Bayesian approach by maximizing the 
determinant of the expected information matrix rather than using the correct criterion 
of maximization of the expected determinant of the information matrix. Furthermore, 
they omitted the parameter p in the determinant of the expected information matrix 
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for no obvious reason. Maximization of the expected determinant of the information 
matrix is elaborated in our paper. It is worth mentioning that both approaches give 
rather different results. In the remainder of this exposition a discrete approximation of 
the multivariate normal distribution N(ro, pI) is used as prior distribution for f. This 
discrete approximation contains 9 support points ,OJ and corresponding probabilities 
Pp(rOj) , with j E {I, ... ,g}. The expected determinant of the information matrix (9) 
then becomes equal to 

(10) 

When the design is built up with l different design points i and design point i is replicated 
ni times, the expected determinant in expression (10) can be rewritten as 

(11) 

The computation of Bayesian V-optimal designs for both response and variance function 
estimation is based on maximization of expression (11). When only the response function 
is of interest, the computation is based on maximization of 

(12) 

Note that 2::;=1 ni = N. The degree of uncertainty attached to the prior is expressed by 
parameter p with increasing p indicating higher uncertainty. Each value of p yields another 
discrete prior distribution for, with probabilities Pp(rOj) for j E {I, ... ,g}. Imposing 
the condition p = 0 is nothing else than stating the parameter vector , is known in 
advance with certainty. High values of p correspond to an almost uniform discrete prior 
distribution for the parameter vector ,. 
The classic homoscedastic approach corresponds to choosing the mean ,0 of the prior 
distribution equal to (1 0 .,. Of and p = O. The experiment is then planned assuming 
a constant variance over the region of interest, as can be seen from expression (3). 

In the next sections, V-optimal designs will be computed for different prior distributions 
for, and the efficiencies of the obtained designs will be compared with those of classic 
designs, in order to stipulate whether any prior information leads to considerably more 
efficient designs. 

3 Efficiencies under multiplicative heteroscedasticity 

The degree to which the experimental goals are achieved with the number of observations 
allotted is measured by the efficiency. The V-efficiency of an arbitrary design, represented 
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by a measure ~ referring to the chosen design points and their corresponding number of 
replicates, is defined in Atkinson and Donev (1992) as 

1 

( IM(~)I)P 
Deff = IM(e)1 ' (13) 

where M denotes the information matrix, C stands for a measure referring to the V
optimal design and p is the number of parameters in the model. Taking the ratio of the 
determinants in (13) to the power lip results in an efficiency measure which is proportional 
to design size, irrespective of the dimension of the model. This means for instance that 
two replicates of a design measure for which D eff = ~ would be as efficient as one replicate 
of the optimum measure. 
Denote the number of replications of design point i for the V-optimal design under hetero
scedasticity and for the V-optimal design in case of homoscedasticity respectively as 
nl'Yo, p) and nf, where c refers to the constant variance. Remark that for the Bayesian 
design the numbers of observations depend on the prior mean '/0 and the degree of un
certainty p. For sake of briefness, from this time on, the dependence of n; on '/0 and p 
will no longer be rendered. 
According to expression (ll), the computation of classic homoscedastic V-optimal designs 
for both response and variance function estimation is based on maximization of 

I~ f(x;)fT(x;)n; 1 1 I~ ( ) T( ) cl 
L [T() 1 x - 'lL g z; g z; n; 
i=l exp g z; '/0 2 ;=1 

(14) 

and when attention is restricted to only response function estimation, the computation is 
based on maximization of 

1

1 f(x;)fT (x;)n;, I 

~ exp[gT(z;hol . 
(15) 

The efficiency measure of the computed Bayesian V-optimal design for a prior distribution 
of the parameter vector '/ relative to the classic design and for a particular variance 
function vector '/* equals 

1 

( IL~=l :;:i~~~~~;t;] 1 x ~ IL~=l g(Zi)gT(Z,)n,l) Pr+qv 

1,\,1 f(x,)fT(x,)l1; 1 1 1'\'1 () T( ) cl 
L..,=1 exp[gl (z,)'/*] x 2 L..,=1 g Z, g z, n, 

(16) 

Expression (16) measures how well the Bayesian V-optimal design derived with prior 
mean '/0 and degree of uncertainty p (numerator) performs relative to the classic design 
(denominator), for a particular variance function vector '/* that is unknown in practice 
and assessed by the discrete distribution with prior mean '/0. 
When we confine ourselves to response function estimation, the efficiency measure (16) 
becomes equal to 

(17) 
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This paper deals with the question whether any prior knowledge about the variance 
function leads to considerably more efficient designs compared to the classic ones where 
constant variance is assumed. Henceforth, for reasons of simplification, x = z is supposed. 
In other words, the factors possibly influencing the mean and variance function are the 
same. Besides, only two factor cases will be reported of which the design region is of a 
discrete form and restricted to a 3 x 3 grid on X = [-1, 1 j2. The adopted mean function 
is the full-second order polynomial defined by 

(18) 

This paper both deals with first order variance functions without interaction and first 
order variance functions augmented with an interaction term X1X2. The corresponding 
polynomials are respectively defined as 

(19) 

(20) 

V-optimal designs will be computed for different prior distributions for I with prior mean 
10 and degree of uncertainty p. Special attention will be given to the case where constant 
variance is supposed and no possible misspecification (p = 0) of the variance function 
parameters is taken into account. The vector representations for the parameters of the 
first order variance function and the parameters of the first order variance function with 
interaction effect are respectively: 

(21) 

(22) 

The prior means are represented as lOT = (1,61) ,62)) or lOT = (1,61) ,62) ,63)) depending 
on whether an interaction term is present or not. 

The V-optimal designs are calculated for various values of p and the efficiency is measured 
relative to the classic V-optimal design, for particular variance function vectors 1* from 
which the components ,i1), ,i2) and ,i3) vary between -3 and +3. As already said, 
increasing p means introducing larger variance in the multivariate distribution N(fo, pI) 
and corresponds to increased uncertainty about the prior mean. Suppose the discrete 
prior distribution for a variance function without interaction contains 9 = w 2 support 
points 10j with j E {I, ... ,W2} on a square w x w grid. However, the discrete prior 
distribution for a variance function with interaction contains 9 = w 3 support points 10j 

with j E {I, ... ,W3} on a cubic w x w x w grid. Furthermore, w is supposed to be an odd 
number such that j = I ~ 1 corresponds with prior mean 10. The discrete approximation 

8 



to the multivariate normal density function can be written as 

f(TOj; "YO, pI) = !l1!. [1 qv-1 ((k) (k))2] , 
(27rp) 2 exp 2P 2:k=o 'YOj - 'Yo 

1 
(23) 

where 'Y~k) is the (k+ l)th component of prior mean '/'0 and 'Y~;) is the (k+ l)th component 

of "YOj' In accordance with the previous notations, 'Y~O) = 1 and 'Y6~) = 1 for all j. The 
probability Pp(Tos) attached to support point s, with s E {I, ... ,g}, can be calculated as 

( ) _ f (Tos; "Yo, pI) 
Pp '/'Os - ,,9 f( . J)' 

6j=1 '/'OJ, '/'0, P 
(24) 

taking into account that 2:3=1 Pp (TOj) must add up to one. Simplifying and rewriting the 
above expression for '/'Os equal to the prior mean '/'0 gives 

(25) 

where d(Toj, "Yo) denotes the Euclidean distance between vector '/'OJ and prior mean '/'0. 

Because p is a rather theoretical concept and hard to interpret, equation (25) enables the 
industrial statistician to translate the more practical and meaningful probability Pp(To) 
to the degree of uncertainty p. Note that in industrial environments Pp(To) often can be 
estimated by former experience. Relationship (25) is shown in Table 1 and Figure 1. 

p Pp(To) P Pp(To) P Pp(To) P Pp(To) 
0.000 1.00 0.030 0.48 0.1 0.143 1 0.029 
0.010 0.96 0.035 0.41 0.2 0.074 2 0.024 
0.015 0.83 0.040 0.36 0.3 0.053 3 0.023 
0.020 0.68 0.045 0.32 0.4 0.044 4 0.022 
0.025 0.56 0.050 0.29 0.5 .0.038 00 0.020 

Table 1: Relation Between p and Pp(To) 

Note that the case p = 00 corresponds to a uniform prior distribution with Pp(To) = ~. 

9 



0.7 

0.6 

prob. 0.5 

0.4 

0.3 

0.1 

0 

Figure 1: Discrete Prior Distributions for p E {O; 0.015; 0.04; 0.1; 0.3; 3} 

4 Discussion of results 

This section deals with the calculation of V-optimal designs for various prior distributions 
which are compared with the classic designs that assume homoscedasticity. The V-optimal 
designs are presented for N = 36 observations but the results can be generalized to other 
numbers of observations. Different values for w were investigated but the results do not 
change significantly with varying w. 

4.1 First order variance functions without interaction 

In this section our attention is restricted to first order variance functions with the poly
nomial expansion given in expression (19). Several degrees of uncertainty p increasing 
from 0 to 4 were investigated. Only those degrees of uncertainty by which changes in the 
computed V-optimal design arised will be discussed. By this, five degrees of uncertainty 
about the mean of the prior distribution are mentioned, namely p E {O; 0.3; 0.5; 1; 3}. 
The classic V-optimal designs assume constant variance b~l) = 162) = 0 in (21)) and 
do not take into account any misspecification (p = 0). For response function estimation, 
the classic V-optimal designs are computed according to expression (15) and for response 
and variance function estimation, they are computed according to expression (14). These 
classic V-optimal designs are displayed in Figure 1.1 of Appendix 1. The numbers indicate 
the number of replications of the different design points in the V-optimal design. The 
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horizontal axis refers to the factor levels of Xl, whereas the vertical axis refers to the factor 
levels of X2. 

Different prior means were investigated but only a few examples are taken in for discussion 
(Table 2). 

Prior (1) 
1'0 

(2) 
1'0 

(3) 
1'0 

Mean [1] 0.400 0.230 
Mean [2] 0.033 0.033 
Mean [3] 0.400 0.230 0.200 

Table 2: Prior Means 

Suppose that due to prior knowledge, one assumes that the variance function vector 1 has 
mean 10 = (1 0.400 0.230f (mean [1] in Table 2). The corresponding V-optimal designs 
for response function estimation and for response and variance function estimation are 
shown in Figure 1.2. These designs are computed by maXimizing expression (12) and (11) 
respectively. The V-optimal designs for response function estimation and for response 
and variance function estimation depend on the uncertainty attached to the prior mean. 
For increased p the observations have the tendency to move from the corner points or the 
centre to the midpoints of the outer sides of the design region. From these figures it can 
be seen that when also the variance function is of interest, the observations tend to shift 
towards the cornerpoints of the design region. By this, more information for variance 
function estimation is obtained because a first order variance function is assumed. The 
same graphical insight can be observed for other prior means. The efficiency plots in 
Appendix 2 display the efficiency ratios for response function estimation and for response 
and variance function estimation for various vectors 1* with components belonging to 
[-3,3]' according to expression (17) and expression (16) respectively. Figure 2.1a shows 
that the Bayesian V-optimal design for prior mean [1] is more efficient than the classic one 
(efficiency ratio (17) larger than one) for variance function vectors 1* with components I'il ) 

and l'i2) that have the same sign as those of the prior mean, i.e. both components positive. 
Maximal efficiency improvements of about 9.6% were observed. When uncertainty about 
the prior mean grows, the surface across which the Bayesian design is more efficient 
expands (Figure 2.1b and Figure 2.1c). 
The importance of such efficiency improvements can be seen when deriving the relationship 
between efficiency improvement and reduction in the volume of the confidence ellipsoid of 
the parameter estimates. It was already stated that the 100(1- 0')% confidence region for 
the parameter estimates is an ellipsoid of which the volume V is inversely proportional to 
the square root of the determinant of the information matrix of a design with measure ~: 

(26) 
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Furthermore, for two design measures 6 and 6 it follows that, according to expression 
(13) , 

(27) 

From (26) and (27): 

(28) 

or the volume 1;(, is (Deff) -~ times smaller than 1;(2 if (Deff) -~ > 1. Note that for 
response function estimation and for response and variance function estimation p = 6 and 
p = 9 respectively, for the polynomial expansions given in (18) and (19). The parameter 
p equals 10 when an interaction term is introduced in the polynomial expansion of the 
variance function. Table 3 shows the reduction in volume of the confidence region for 
different values of Deff: 

Deft: p=6 p=9 p = 10 
1.02 0.06 0.09 0.09 
1.04 0.11 0.16 0.18 
1.06 0.16 0.23 0.25 
1.08 0.21 0.29 0.32 
1.10 0.25 0.35 0.38 
1.12 0.29 0.40 0.43 
1.14 0.33 0.45 0.48 
1.16 0.36 0.49 0.52 
1.18 0.39 0.53 0.56 
1.20 0.42 0.56 0.60 

Table 3: Reduction (1 - (D eff) -~) in Volume of Confidence Region 

Reductions of 20% and more are easily attainable with limited efficiency improvements. 
The efficiency plots for the V-optimal designs for mean [1] for response and variance 
function estimation are shown in Figure 2.2. Again, the Bayesian design performs better 
(efficiency ratio (16) larger than one) for variance function vectors "1* with positive com
ponents ,ill and ,i2). Efficiency improvements of about 12.7% are observable in Figure 
2.2a. 

The next question to be addressed is whether the above mentioned conclusions also apply 
to prior means close to the origin, i.e. when prior knowledge indicates that the prior mean 
only differs little from (1 0 O)T representing constant variance. This will be investigated 
on the basis of prior mean (1 0.033 0.033)Y (mean [2] in Table 2). The corresponding 
V-optimal designs are given in Figure 1.3. Remark that when only the response function 
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is of interest, the V-optimal design for this prior mean and p = 0 equals that of the 
classic design in Figure 1.1a. In case of increased p (Figure 1.3b), the Bayesian design 
again outperforms the classic one for variance function components with the same sign as 
those of prior mean [2]. 
Figure 2.3 displays the efficiency plots for prior mean [2] for both response and variance 
function estimation. These plots indicate that even for small prior means the Bayesian 
design outperforms the classic one for a wide ranBe of variance function vectors 1*, in our 
case those with positive components ,ill and ,.2). The maximal improvement is about 
7.6%. When p grows, the surface across which the relative efficiency is larger than one 
enlarges. 

We conclude that even for prior means close to the origin and thus representing nearly 
constant variance, Bayesian V-optimal designs can be constructed that are significantly 
more efficient than the classic ones for a wide range of variance function vectors 1* of 
which the components ,ill and ,i2 ) have the same sign as the components of the prior 
mean. This range even grows larger when uncertainty about the prior mean is taken into 
account. But the closer the prior mean to the origin, the smaller the maximal efficiency 
improvements. 

4.2 First order variance functions with interaction 

In this section a first order variance function with interaction term XIX2 is used as given 
in (20). This corresponds to a vector for the variance function parameters composed of 
four components as in (22). Again, several degrees of uncertainty p increasing from 0 to 
the one representing a nearly uniform prior distribution were investigated. Only those 
degrees of uncertainty at which changes in the computed V-optimal design arised, will 
be discussed. Five degrees of uncertainty about the mean of the prior distribution are 
mentioned, namely p E {O; 0.015; 0.02; 0.04; 1}. 
The classic V-optimal designs, in case of lOT = (1 000) and p = 0, are shown in Figure 
1.4. The question is whether the above derived rules for first order variance functions 
without interaction also hold for variance functions with an interaction term. 

As an example, the V-optimal designs for prior mean (1 0.4 0.23 0.2)T (mean [3] in Table 
2) are shown in Figure 1.5. Figure 2.4 displays the efficiency plots for response function 
estimation and p E {O, 0.015, 0.02} for various values of the interaction effect l'i3) One 
establishes that, similar to the first order case without interaction, the Bayesian design 
performs better than the classic one for components ,il ) and ,i2) of 1* with the same 
sign as the components ,61) and ,62) of the prior mean. The above rule holds for any 
interaction effect ,i3) (even if it is opposite signed to the interaction effect ,63) of the prior 
mean) and especially comes true when the interaction effect ,i3 ) is in the neighbourhood 

of the interaction effect ,63) of the prior mean. Maximal efficiency improvements of about 
10% were observed. 
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Increased uncertainty about the prior mean - reflected by rised p - again leads to expanded 
surfaces across which the efficiency ratio becomes larger than one. Other interaction 
effects, estimation of both response and variance function and prior means close to the 
origin gave similar results. 

4.3 Summary of results 

The computational results show that for any prior knowledge about the mean of the 
variance function vector, the Bayesian V-optimal designs perform better than the classic 
ones for a wide range of variance function parameters 'Yi1) and 'Yi2) that have the same 
sign as the respective components 1'61) and 1'62) of the prior mean. This phenomenon even 
strengthens when uncertainty about the prior mean is increased, reflected by augmented 
p. The farther away the prior mean from the origin, the larger the maximal relative 
efficiency improvement. Efficiency improvements of more than 12% are observed, resulting 
in reductions in the volume of the confidence ellipsoid of at least 30% and up to 40% in 
case of both response and variance function estimation. 

The case of first order variance functions with an interaction effect is also considered. 
Incorporation of prior knowled~e leads to Bayesian designs that outperform the classic 
ones for components 'Y~1) and 'Yi2 of the variance function vector with the same sign as the 
components 1'61) and 1'62) of the prior mean and for interaction effects 'Yi3) in the neigh
bourhood of the interaction effect 1'63) of the prior mean. The surfaces of efficiency ratio 
larger than one enlarge when uncertainty about the prior mean - reflected by increased p 
- is taken into account. 

5 Conclusion 

This paper analyzes the benefit of prior knowledge about the variance function parameters 
in V-optimal design construction. For discrete approximations of multivariate normal dis
tributions of the variance function parameters, V-optimal designs are derived for response 
function estimation and both response and variance function estimation. The efficiencies 
of the computed designs are compared with those obtained by the assumption of constant 
variance, the so-called homoscedastic classic designs. The effect of the presence of an 
interaction term in the variance function on the design efficiency is also studied. It turns 
out that any prior knowledge about the sign of the variance function parameters leads to 
V-optimal designs that outperform the classic ones for. a wide range of actual variance 
function parameters. This phenomenon is even stronger when uncertainty about the prior 
mean is taken into account. In practice, this means that incorporating knowledge about 
the sign of the parameters of the variance function leads to designs that outperform the 
designs based on assumptions of constant variance. 
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Appendix 1. V-optimal Designs 

5 3 5 

RESPONSE 3 4 3 

FUNCTION 
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-1 0 +1 

6 3 6 

RESP'/VAR. 2 2 3 

FUNCTION 

6 2 6 

-1 0 +1 

Figure l.1: Classic V-optimal Designs (Constant Variance and p = 0), No Interaction 
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Figure l.2: V-optimal Designs for Prior Mean [1] 
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(a) p = 0 (b) p E {0.3; 0.5; I} (c) p = 3 (d) p = 0 (e) p E {0.3; 0.5; 1; 3} 
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(c) (d) 
Figure 1.3: V-optimal Designs for Prior Mean [2] 

(a) p = 0 (b) P E {0.3; 0.5; 1; 3} (c) P E {O; 0.3; 0.5} (d) P E {I; 3} 
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Figure 1.4: Classic V-optimal Designs (Constant Variance and p = 0), Interaction 
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-1 0 +1 -1 0 +1 

(a) (b) 
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FUNCTION 

6 3 'l 

-1 0 +1 

( c) 

Figure 1.5: V-optimal Designs for Prior Mean [3], 1'63) = 0.2 
(a) P E {O; 0.015; 0.02} (b) P E {0.04; I} (c) P E {O; 0.015; 0.02; 0.04; I} 

Appendix 2. Efficiency Plots 
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Figure 2.1: Efficiency plots for Prior Mean [1], Response Function 
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Figure 2.2: Efficiency plots for Prior Mean [1], Response and Variance 
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Figure 2.3: Efficiency plots for Prior Mean [2], Response and Variance 
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Figure 2.4: Efficiency plots for Prior Mean [3], Response Function, p E {O; 0.015; 0.02} 
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