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Abstract 

The main drawback of the optimal design approach is that it assumes the statistical model 

is known. In this paper, a new approach to reduce the dependency on the assumed model is 

proposed. The approach takes into account the model uncertainty by incorporating the bias 

in the design criterion and the ability to test for lack-of-fit. Several new designs are derived 

in the paper and they are compared to the alternatives available from the literature. 

Keywords: precision, bias, lack-of-fit, model-robustness, model-sensitive, model-discrimination, 

D-optimality, A-optimality 

1 Introduction 

The assumption that underlies most research work in optimal experimental design is that the 

proposed model adequately describes the response of interest. It is unlikely however that the 

experimenter is completely certain that the model will be correct and this should be reflected 
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in the experimental design. Instead of searching for the optimal design to estimate the stated 

model several approaches have been proposed to account for model uncertainty, ranging from 

model-robust to model-sensitive strategies. For a nice overview, see for example Steinberg and 

Hunter (1984). 

In a model-robust approach, one looks for designs that yield reasonable results for the true 

model even if the postulated model is different. The pioneering work in this area is from Box 

and Draper (1959). They assume that the true model is composed of a primary model - the 

one that will eventually be estimated - plus some potential terms. The design strategy they 

propose minimizes the integrated mean squared error over the region of interest. This criterion 

can be decomposed into the sum of a bias component and a variance component. The problem 

with this and similar criteria is that the optimal design will depend on the parameters of the 

potential terms. Several authors who have worked on the problem of balancing precision and 

bias have proposed solutions to overcome this dependency on the parameters. Welch (1983) 

for instance minimized the average variance and the average bias in the extreme points of the 

design region for maximal parameter values, whereas Montepiedra and Fedorov (1997) develop 

a method to find designs that strike a balance between the variance and the bias. DuMouchel 

and Jones (1994) used a Bayesian approach to obtain designs that are less sensitive to the model 

assumption. The authors claim that their criterion leads to designs that are more resistant to 

the bias caused by the potential terms, and at the same time yields precise estimates of the 

primary terms. Inspired by the papers of Box and Draper (1959) and DuMouchel and Jones 

(1994), Kobilinsky (1998) developed a design criterion combining bias and variance properties 

in a more explicit way. 

On the other hand, model-sensitive design approaches lead to designs that facilitate the im

provement of the model by detecting lack-of-fit. Examples of such approaches can be found in 

Atkinson (1972), Atkinson and Cox (1974) and Atkinson and Fedorov (1975a and 1975b). These 

authors searched for designs that were good in detecting lack-of-fit by maximizing the dispersion 

matrix somehow. Jones and Mitchell'(1978) elaborated on this idea by maximizing the minimal 

or average noncentrality parameter over a region of possible values for the potential parameters. 

Studden (1982) combined the detection of lack-of-fit with the precise estimation of the primary 

terms. This combined approach was also used in the book on optimum experimental design of 

Atkinson and Donev (1992). 

Experimenters often have multiple desires with respect to the design as they want to generate a 
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maximum of information over the region of interest, ensure that the fitted response value at each 

point of the design region is close to the true response value and they want possible lack-of-fit 

to be detectable. Combining all these aspects in a design criterion will therefore lead to useful 

designs. A first attempt to combine bias and lack-of fit aspects is given by DeFeo and Myers 

(1992) who minimize bias and at the same time maximize the power of the lack-of-fit test of 

the potential terms. They show that a rotated design has the same bias properties as the initial 

design and use this result to maximize the power of the lack-of-fit test. 

In this paper we develop two new design criteria that take into account both model-robust and 

model-sensitive aspects, combining efficiency in estimating the primary terms, protection against 

bias caused by the potential terms and ability to test for lack-of-fit and thereby increasing the 

knowledge on the true model. In Section 2 we will introduce the notation and describe some 

existing approaches. In Section 3 we develop our generalized criteria and in Section 4 we illustrate 

their use with some theoretical examples. Section 5 is devoted to a practical example and Section 

6 contains the conclusion. 

2 The model 

We assume there exists a relationship between the expected response and the experimental 

factors Xl, X2, ... , Xk. The model that will be fitted is 

(1) 

with Xl a p-dimensional vector of powers and products of the factors and 131 the p-dimensional 

vector of unknown parameters. We further assume that the expected response was possibly 

misspecified and that the true model is given by 

(2) 

with X2 the q-dimensional vector containing powers a.nd products of the factors not included in 

the fitted model, x, = [ xi x21 and 13' = [f3i 1321. We will refer to xif3l as the primary terms 

and to X2f32 as the potential terms. To simplify the notation, we will assume that the model has 

been reparametrized in terms of the orthonormal polynomials with respect to a measure jJ, on 
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the design region. In the examples of Section 4 and Section 5, we will use the uniform measure 

on the design region. The orthonormalization ensures that the effects are well separable and 

independent so that a simple prior distribution on the potential terms can be used. 

2.1 Model-robust design strategies 

Box and Draper (1959) were the first to investigate the effect of model misspecification. They 

introduced the integrated mean squared error (IMSE) with respect to a measure J-L on the design 

region. If we denote the fitted response value for factor settings Xl under the primary model (1) 

by Y(XI), the IMSE can be defined as 

IMSE EI"EE [7](x) - Y(Xl)]2 , 

EI"EE [7](x) - EE[Y(Xl)]]2 + EI'EE [Ec[Y(Xl)]- Y(Xl)]2 , 

which consistfl of the expected squared bias and the expected prediction variance. If we denote 

by Xl the n x p model matrix for the primary terms and by X2 the n x q model matrix for 

the potential terms, we have that Y(Xl) = xi- (XiXl)-l Xi Y and EE[Y] = X I,(31 + X2,(32' As a 

result, 

IMSE EI"[X~,(31 + x~,(32 - x~ (X~ Xl) -1 X~ (Xl ,(3l + X2,(32)];' EI' H (X~Xl)-IXl0'2], 
EI'[X~,(32 - X~ (X~Xl)-1 XiX2,(32f + EI' [Xi(X~X1)-1X10'2]. 

In this expression, (Xi Xl) -1 Xi X 2 is the so-called alia.s matrix. We will denote it by A in the 

sequel of the paper. Now, denoting J-Lij = EI'(Xixj) and using the well-known result that 

we obtain 

IMSE 

EI' [trace{x~(XiXl)-lxl}] = EI' [trace{x1x~(XiXl)-1}] , 

trace [J-Ll1(XiXl)-l] , 
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f3~ EI" [(x~ - x~A)'(x~ - x~A)] f32 + a2 trace [J1.n(X~Xl)-l] , 

f3~ [A' /-LllA - A' /-L12 - /-L21A + /-L22] f32 + a 2 trace [/-Ln (X~ X1)-1] . 

As we have assumed orthonormal polynomials, we have that J1.n = Ip, /-L12 = Opxq, J1.21 = Oqxp 

and /-L22 = I q . As a consequence, 

From this result, Box and Draper (1959) concluded that bias can be minimized by looking for 

designs for which that A = Opxq. In general however the design that minimizes IMSE will 

depend on the values of f32' To cope with this dependence, Kobilinsky (1998) suggested to put 

a prior distribution on the potential parameters. As it is unlikely that these terms are large, the 

following distribution was considered to be appropriate: 

Because X2 is orthonormalized, it is reasonable to assume that all elements in f32 have equal 

variances and that they are un correlated with each other. Under this assumption, we obtain 

that 

Ef3[IMSE] Ef3 [f3~ [A'A + Iq] f32 + a2 trace(X~Xl)-l] 
trace(A/A1'2a2Iq + 1'2a 2Iq) + a2 trace(X~Xl)-l 

1'2a2 trace (A'A + Iq) + a2 trace(X~Xl)-l. 

It is clear that 1'2 = 0 indicates that the primary model is the true model. In that case, 

minimization of the expected IMSE will lead to the minimization of trace(X~ X1)-1 and thus to 

an A-optimal design for the primary model (1). 

Based on a similar prior distribution of the potential terms, DuMouchel and Jones (1994) pro

posed a Bayesian D-optimality criterion to find designs that yield precise estimates for the 

primary terms and give some protection against the existence of the potential terms. As the 

5 



posterior covariance matrix of /3 is 

• [XIX K ]-1 
COV({3) = -2- + 22 ' 

0- 70-

with Xl = [ Xi X2 land 

K = (Opx p Opx q ), 
Oqxp Iq 

they proposed to maximize the following determinant: 

1 II KI 0"2 X X + 7 2 . 

This criterion has the clear advantage that the information matrix for the full model (2), i.e. 

XIX, can be singular without causing problems. Therefore it is possible to use this criterion for 

design problems in which p S; n < p + q, that is in cases where the number of observations n 

available is insufficient to estimate the full model. 

The choice of 7 2 is of course an arbitrary one. Kobilinsky (1998) suggests 7 2 = l/q so that the 

global effect of the q potential terms is of the same order of magnitude as the residual error. 

DuMouchel and Jones (1994) suggest to take 7 2 = 1 so that the effect of any of the potential 

terms is not larger than the residual standard error. They use a less stringent orthogonalization 

procedure which only orthogonalizes the potential terms with respect to the primary terms. The 

primary terms are not orthogonalized relative to each other, nor are the potential terms. The 

orthonormalization used in this paper leads to simpler mathematical derivations. 

The approaches of Box and Draper (1959), DuMouchel a.nd Jones (1994) and Kobilinsky (1998) 

aim at finding designs that yield precise estimates of the primary terms and ensure that pre

dictions are close to the expected response. They do not explicitly consider the possibility of 

performing a lack-of-fit test and therefore do not provide information on the appropriateness of 

the primary model. In the next section we consider some existing approaches to deal with this 

discrimination problem. 
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2.2 Model-sensitive design strategies 

An approach which takes into account both the experimental effort for determining which model 

is true and the effort for precise estimation of the parameters is given by Atkinson and Donev 

(1992). They proposed to combine the D-optimality criterion for the primary model and the 

D.-optimality criterion for the potential terms. The resulting criterion is given by 

where a E [0,1J represents the belief in the primary model (1). When a = 1, this criterion 

reduces to the D-optimality criterion for the primary model, whereas for a = ° it becomes 

the D.-optimality criterion for the potential model parameters (32' When a = p/(p + q), the 

combined criterion leads to D-optimal designs for the full model (2). 

Note that the D.-optimality criterion for the potential terms is related to the noncentrality 

parameter 

8 = (3~ [X~X2 - X~Xl(XiXl)-lXiX2l (32 
(T2 -

(3) 

to test for lack-of-fit in the direction of the potential terms. Therefore, it is likely that the power 

ofthe lack-of-fit test will increase with decreasing a. The matrix X~X2-XSX1(XiXl)-1 XiX2 is 

well known in the literature on model-sensitive designs. It is usually referred to as the dispersion 

matrix. In the sequel of this paper, we will denote it by L. 

3 A combined approach 

The advantages of the approaches described in the previous section will be combined in a flex

ible criterion that includes three important aspects: precise estimation of the primary model, 

minimization of the bias caused by the potential terms and possibility to test for lack-of-fit. 

The criterion of Kobilinsky (1998) that was derived in the previous section 
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takes into account precision and bias but not lack-of-fit. As this criterion was derived by com

puting the expected IMSE over the prior distribution of potential terms, it is natural to apply 

the same idea to the lack-of-fit term. As the noncentrality parameter also depends on the values 

of (32' we will maximize the expected noncentrality parameter over the prior distribution. The 

expected noncentrality parameter can be computed as 

E(3 [8] E [(3~{X2X2 - X2Xl(X~Xl)-lX~X2}(32] 
(3 ~ , 

7 2 trace [X~X2 - X~Xl(X~Xl)-lX~X2]' 

7 2 trace [L]. 

To combine the three aspects in one criterion we specify weights a2 and a3 to attach more or 

less importance on the different properties. A possible criterion is then given by 

mm -trace (X~Xl)- - -trace (L) + -trace (A'A+ Iq) . . {I 1 a2 as } 
p q q 

Similarly, the criterion 

of Atkinson and Donev (1992), which takes into account precision and lack-of-fit, can be aug

mented with a term that represents the bias. As this criterion deals with determinants, a natural 

extension is given by 

Because these criteria do not allow for singular design matrices for the full model, we can use the 

idea of DuMouchel and Jones to allow for smaller designs and generalize the previous criteria to 

the following generalized A- and D-optimality criteria: 

GA: min 

8 



and 

It is easy to see that these criteria generalize those proposed by Atkinson and Donev (1992), 

DuMouchel and Jones (1994) and Kobilinsky (1998) as well as the ordinary D- and A-optimality 

criteria. For Q2 = 0!3 = 0 the GD-optimality criterion produces the D-optimal design for the 

primary model. We will refer to this design as D1-optimal in the sequel. For Q3 = 0, 0!2 = ~ and 

7 2 = 00, we obtain the D-optimal design for the full model, denoted by Dfull' For 0!3 = 0, 0!2 = ~ 

and finite values for 7 2, we find the Bayesian D-optimal designs introduced by DuMouchel and 

Jones (1994). This is because 

4 Illustrations 

In this section, we will illustrate the use of the GD-optimality criterion in a number of simple 

experimental situations. The GA-optimality criterion leads to different designs but to similar 

results. 

4.1 One explanatory variable 

Firstly, assume that the primary model consists of p = 3 terms /30 + /31 X + /32x2 and that there is 

q = 1 potential term /33x3. Asa result, /31 = [/30/31 /32]' and f32 = [/33J. Also, assume that n = 8 

and 7 2 = 00. By varying the values of Q2 a.nd 0!3 we obtain several designs, the extreme ones 

are displayed in Figure 1. The designs were computed using a grid of 21 equidistant points on 

[-1, +lJ. The values of the different determinants in the GD-optimality criterion are given in 

Figure 1 as well. DX1 represents IX~X11-1/p, the measure used for the precision of the primary 

terms, Dlof=ILI-1/q provides an idea of the ability to detect lack-of-fit and Dbias=IA' A + 1q11/q 

represents the degree of bias. These terms were defined such that the smaller the value obtained, 

the better the design performs with respect to this criterion. Remark that several designs can 
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be obtained for large a2 and a3. The one presented is one of the symmetric designs we have 

found. 

For a2 = a3 = 0, the D-optimal design for the primary model was obtained. This design 

is displayed in Panel 1 of Figure 1. When either a2 or a3 is increased, different designs are 

obtained. For example, choosing a large value for a3 produces the design in Panel 2. This 

design leads to a small bias. Choosing a2 = q/p = 1/3 and a3 = 0 leads to the D-optimal design 

for the full model (see Panel 3). The Dlof-value shows that this design allows a good detection 

of lack-of-fit. Further increasing 002 allows an even better detection of the lack-of-fit. Choosing 

large values for both a2 and 003 produces a design tha.t is good for detecting lack-of-fit and tha.t 

leads to a limited amount of bias. Introducing finite values for 7 2 creates no new designs for 

this example. Probably, this is due to the fact that n> p + q. 

The average squared prediction variance and average squared bias for an arbitrary value of f33 

are given in Table 1. The value chosen is f33 = 1. The table also contains the noncentrality 

parameter for the lack-of-fit test. The table shows tha.t the loss of precision in the estimation 

of the primary model is compensated by substantial reductions in the bias and by the ability to 

test for lack-of-fit. Table 1 also shows that choosing positive values for both a2 and 003 leads to 

a design that performs excellently with respect to both bias and detection of lack-of-fit. Using 

a positive 002 and setting 003 = ° provides a design that allows a good detection of the lack

of-fit but it also leads to a substantial reduction in the bias. Using a positive a3 and setting 

a2 = ° leads to a small bias, but the resulting design does not perform that well as to detection 

of the lack-of-fit. As a result, designs that perform well with respect to lack-of-fit detection 

also perform reasonably well with respect to the bias, but the opposite is not necessarily true. 

DuMouchel and Jones (1994) point out that an idea of the significance of the lack-of-fit test can 

be obtained by assuming that the expectation of the F -statistic 

SSEcprimary model)-SSECfull) 
F= ________ ~~d~l~~ ______ _ 

SSECfull) 
n-d2 

with SSE(M) the sum of squared errors of model M and d1 and d2 the degrees of freedom for 
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1. a2 = 0,a3 = 0 2. a2 = 0, a3 large 

=} D1-optimal =} minimal bias 

DXl 544 x 10 5 DXl 1831 x 10 5 

Dlof Dlof 0.26928 

Dbias 2.44570 Dbias 1.00002 

3 2 3 • • • •• 0 0 0 0 •• 
-1 0 1 -1 0 

3. a2 = ~,a3 = 0 

=} Dfuwoptimal 

DXl 798 x 10-5 

Dlof 0.07046 

Dbias 1.53696 

2 2 

• •• •• • -1 1 

4. a2 large, a3 = 0 5. a2 & a3 large 

=} good LOF =} good bias & LOF 

DXl 1658 x 10-5 DXl 1915 x 10 5 

Dlof 0.06153 Dlof 0.06974 

Dbias 1.00523 Dbias 1.00116 

3 3 9 9 
0 • • • 0 • • 0 
-1 1 -1 1 

Figure 1: GD-optimal designs for several values of a2 and a3, and for 7 2 = 00. 
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Table 1: Bias, variance and lack-of-fit measures 

design bias2 avg var is p-value for lof 

1 2.4457 0.134476 

2 1.0000 0.170827 3.77366 0.08203 

3 1.5370 0.113033 14.19280 0.01144 

4 1.0052 0.156178 16.252114 0.00888 

5 1.0012 0.202589 14.337984 0.01122 

the test, is equal to 

E (SSE(Primary mOdell-SSE(fulll) 
dJ (}'2+ is(}'2/d1 is 

Fo ~ -~----,-------,,...----'-- = = 1 + -
E (SS~~Ulll ) (}'2 d1 ' 

where is is the noncentrality parameter introduced in (3). The number d1 is equal to q if it is 

possible to test the full model, whereas d2 = n- total number of independent parameters in 

the full model. The p-values obtained using the F.-statistic are displayed in the last column of 

Table 1. 

4.2 Two dimensions 

As another illustration, consider the 2-dimensional problem where the primary model consists 

of p = 4 terms f30 + f31xl + f32x2 + f312xlx2 and the full model has q = 2 extra potential terms: 

f3u x~ + (322 x~. The design region that we considered is the 5 x 5 grid on [-1, +1]2. 

For n = 5 we find only the two designs displayed in Figure 2. The first design is the D-optimal 

design for the primary model. The second design is obtained as soon as the values of a2 and/or 

a3 become large enough to have some impact. Remark that, as n < p + q, 7 2 is given a finite 

value to obtain a nonsingular dispersion matrix L. These designs, which were also found by 

DuMouchel and Jones (1994), support the common practice of adding center points to a design 

in order to carry out a lack-of-fit test. 

For n = 8 and 7 2 = 00, we find a lot of different designs, the most important ones are represented 
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2 . a2 and/or a3 large 

• I ! 
_ .... I- • 

--I L.._ 
T" -i'" .... :. 

t·· ''!"' ·-f "r-- • ... ~. 

I I L -\ 
'2 
•. ..J ..... !_ L_. 

, ...... .i .... I 
, 

, ·····1 

• _._1 ... - i 'H'" t .... • 
Figure 2: GD-optimal 5-point designs for several values of a2 and a3, and for 72 = 1. 

in Figure 3. Panel 1 shows a duplicated 22 factorial design, which is the Dl-optimal 8-point 

design for the primary model. When a3 is increased, this design gradually changes into a 22 

factorial design with 4 center points. When a2 is increased, then most design points move away 

from the cornerpoints. This allows the lack-of-fit to be tested and the bias is reduced to some 

extent. For a good performance on both criteria, it is necessary to choose positive values for 

both a2 and a3. Introducing finite values for 72 does not lead to new designs in this example. 

4.3 A constrained design region 

We reconsider the second example of DuMouchel and Jones (1994) with two constrained vari

ables. In the example, Xl + X2 ::; 1 so that the set of candidate points only contains 15 points 

on a triangle. The primary model is the full quadratic model, so p = 6, and there are q = 4 

potential cubic terms, xy, XrX2, X1X~, x~. The number of observations is equal to 9. 

As n < p + q, a finite 7-value had to be used. For the same reason, Dlof will not exist for 

the designs shown. Therefore, Dlofr-values that are defined as [L + Iq/72 [-1/q will be reported 

instead. The results for 7 = 1 are displayed in Figure 4. It turns out that the same designs can 

be found for other values of 7. 

From Panel 1 in Figure 4, it can be seen that the Dl-optimal design has minimum support, 

i.e. the number of distinct design points of the design is equal to the number of parameters in 

the (primary) model. When a2 and/or a3 are increased, the number of distinct design points 

is increased so that the bias is substantially decreased and the ability to test for lack-of-fit is 

substantially increased. As in the previous example, it is important to select positive values for 

a2 and a3 for a good performance on both criteria. Note that, when a2 and/or a3 are large, 
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1. a2 = 0,a3 = 0 

=} D1-optimal 

DX1 0.0622 

Dlof 

Dbias 1.9639 

;- ~ .. + ·f 

• 2 '2 
• ; L ... 

4. a2=~,a3=O 

5. 

=} DfuU-optimal 

DX1 0.0857 

Dlof 0.1237 

Dbias 1.3093 .. , ....... ; ....• 
+ I!" 

•. ..J ........ L .• 

a2 large, a3 = 0 

=} good LOF 

DX1 0.1540 

Dlof 0.1029 

Dbias 1.1492 .. , . 
I .... r' 1" -I' .. j ... , 

• ...• ...•.. L. .. , 

2. a2 = 0, a3 small 

=} small bias 

DXl 0.1540 

Dlof 0.2828 

Dbias 1.0221 

•.• '''1''''' ....• 
L.. , .•.. .,. .. .J .... , ." . 

... ! .... , 

• . .. 1 ......... . 

6. a2 large & a3 small 

=} good bias & LOF 

DX1 0.1155 

Dlof 0.1115 

Dbias 1.1014 . .... , ... 
T" " , ; ...... 

. ; .. 
•. j ...•... 

3. a2 = 0, a3 large 

=} minimal bias 

DX1 0.1051 

Dlof 

Dbias 1.0000 

• -, .... , .... r-· : .. : ;: •. '~ 
.'. ..~ 

• .. .J ........ , .... . 

7. a2 & a3 large 

=} good bias & LOF 

DXl 0.1215 

Dlof 0.1265 

Dbias 1.0164 

- "--1"1-

~ .. : :i: 
, ..•.... i ... l.. .• 

Figure 3: GD-optimal 8-point designs for several values of a2 and a3, and 7 2 = 00. 
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then the GD-optimal designs contain 9 distinct design points, as can be seen in the Panels 2, 4 

and 5 of Figure 4. 

5 Practical application 

Snee (19S1) described a mixture experiment to investigate to what extent the octane of various 

blends of gasoline depends on the component proportions. In the experiment, five components 

were investigated: butane, isopentane, refOl'mate, cat cracked and alkylate. The ranges of these 

five components are given in the following table: 

component range 

butane (B) 0-0.15 

isopentane (I) 0-0.30 

reformate (R) 0-0.35 

cat cracked (C) 0-0.60 

alkylate (A) 0-0.60 

In addition to the traditional mixture constraint B + 1 + R+C + A = 1, the following requirements 

were defined 

B + 1 ~ 0.30 

C+A ~ 0.70 

97 ~ 10l.SB + 99.61 + 112.4R + 94.2C + 99.SA ~ 1Ol. 

A 25-run D-optimal design for the quadratic Scheffe model augmented by the centroid of the 

design region was run and it turned out that six of the second order terms could be eliminated. 

The fitted model was 

155.1B + 97.71 + 10S.6R + 95.0C + 10l.4A - 44.6B1 -77.0BR - 67.6BC - 60.0BA, (4) 

and the residual standard deviation amounted to 0.30. 
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1. 

4. 

a2 = O,a3= 0 

=? D1-optimal 

DXl 0.0875 

Dlofr 1.0000 

Dbias 1.8980 

• 
• •• 
•• • •• 

a2 large, a3 = 0 

=? good LOF 

DXl 0.1050 

Dlof,. 0.1348 

Dbias 1.4162 

• • • 
• • . . 
• • • • 

3. a2 and a3 small 

=? smaller bias and LOF 

DXl 0.0962 

Dlof,. 0.3034 

Dbias 1.3236 

• · . · . •• • ••••• 

2. 

5. 

a2 = 0 and a3 large 

=? minimal bias 

DXl 0.1021 

Dlof,. 0.1615 

Dbias 1.1961 

• · . • • • • • ••• 

a2 and a3 large 

=? good bias & LOF 

DX1 0.1021 

Dlof,. 0.1591 

Dbias 1.2122 

• · . ••• · . • •••• 

Figure 4: GD-optimal designs for several values of a2 and a3, T = 1. 
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Table 2: Design 1: Dl-optimal designs for the five-component mixture experiment. 

Run B 1 R C A 

0.0000 0.0000 0.3500 0.6000 0.0500 

2 0.0000 0.0000 0.3500 0.6000 0.0500 

3 0.0000 0.3000 0.0000 0.1000 0.6000 

4 0.0000 0.3000 0.0492 0.6000 0.0508 

5 0.0000 0.3000 0.1000 0.0000 0.6000 

6 0.0000 0.3000 0.2846 0.4154 0.0000 

7 0.1500 0.0336 0.1164 0.1000 0.6000 

8 0.1500 0.0336 0.1164 0.1000 0.6000 

9 0.1500 0.1273 0.0227 0.6000 0.1000 

10 0.1500 0.1273 0.0227 0.6000 0.1000 

11 0.1500 0.1500 0.2665 0.4335 0.0000 

12 0.1500 0.1500 0.2665 0.4335 0.0000 

For illustrative purposes, we will treat this model as the true model in order to compare different 

designs. We assume that the primary model contains the five linear terms and that the potential 

terms are the 10 quadratic terms. In order to compare the performances of the GD-optimal 

designs with those of DuMouchel and Jones (1994), we will consider 12-run designs. With only 

12 runs it is impossible to fit all primary and potential terms, so that a finite T-value has to be 

used. We will show the results for T = 1. Other values of T yield similar designs and results. 

The set of candidate points we used consists of the extreme vertices, the overall centroid, the 

constraint plane centroids, the edge centroids and the lattice grid within the constraint region 

with each proportion being a multiple of 0.05. 

We will use the four designs presented by DuMouchel and Jones (1994) in our comparisons. The 

first design they consider is the D1-optimal design displayed in Table 2. This design consists of 

the eight vertices of the design region, four of which are duplicated. The other three designs 

considered by DuMouchel and Jones (1994) are displayed in Table 3. The first is a design 

obtained by including two runs at the centroid of the design region and adding 10 design points 

using the D-optimality criterion. The second design they use in their computations is the design 

obtained using their Bayesian criterion (see Section 2.1). Finally, they consider aD-optimal 

design for the true model (4). This approach is called the omniscient approach. These four 

designs will be compared to three designs obtained by using the GD-optimality criterion: one 

design obtained with a large Q2-value, one obtained with a large Q3-value, and one obtained 

using a large Q2 and a large Q3. The design points for these three designs are displayed in 

Table 4. 
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Table 3: Designs considered by DuMouchel and Jones (1994). 

Run B I R C A 

Design 2: D-optimal 10-point design for the primary 

model augmented with 2 center points. 

0.0000 0.0000 0.3500 0.6000 0.0500 

2 0.0000 0.0000 0.3500 0.6000 0.0500 

3 0.0000 0.3000 0.0000 0.1000 0.6000 

4 0.0000 0.3000 0.0490 0.6000 0.0510 

5 0.0000 0.3000 0.1000 0.0000 0.6000 

6 0.0000 0.3000 0.2850 0.'1150 0.0000 

7 0.0680 0.1210 0.1750 0.4'140 0.1920 

8 0.0680 0.1210 0.1750 0.4440 0.1920 

9 0.1500 0.03'10 0.1160 0.1000 0.6000 

10 0.1500 0.1270 0.0230 0.6000 0.1000 

11 0.1500 0.1500 0.2660 0.4340 0.0000 

12 0.1500 0.1500 0.2660 0.'1340 0.0000 

Design 3: Design obtained using the criterion of 

DuMouchel and Jones (1994) (7 = 1, 0<2 = 2, 0<3 = 0). 

1 0.0000 0.0000 0.3000 0.4607 0.2393 

2 0.0000 0.1258 0.1742 0.6000 0.1000 

3 0.0000 0.1578 0.1422 0.1000 0.6000 

4 0.0000 0.3000 0.0000 0.'1893 0.2107 

5 0.0000 0.3000 0.1000 0.0000 0.6000 

6 0.0000 0.3000 0.1500 0.5500 0.0000 

7 0.0000 0.3000 0.2846 0.4154 0.0000 

8 . 0.1033 0.0000 0.3305 0.5662 0.0000 

9 0.1500 0.0000 0.1500 0.1768 0.5232 

10 0.1500 0.1273 0.0227 0.6000 0.1000 

11 0.1500 0.1500 0.0000 0.1000 0.6000 

12 0.1500 0.1500 0.2665 0.4335 0.0000 

Design 4: D-optimal design for model (4). 

0.0000 0.0000 0.3000 0.4607 0.2393 

2 0.0000 0.3000 0.0492 0.6000 0.0508 

3 0.0000 0.3000 0.1000 0.0000 0.6000 

4 0.0000 0.3000 0.2846 0.'1154 0.0000 

5 0.0750 0.0000 0.2250 0.6000 0.1000 

6 0.0750 0.2250 0.0000 0.1000 0.6000 

7 0.0750 0.2250 0.2756 0.'1245 0.0000 

8 0.1500 0.0000 0.1500 0.1768 0.5232 

9 0.1500 0.0000 0.3110 0.5390 0.0000 

10 0.1500 0.1500 0.0230 0.6000 0.0770 

11 0.1500 0.1500 0.0819 0.0181 0.6000 

12 0.1500 0.1500 0.2665 0.<1335 0.0000 
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Table 4: GD-optimal designs for the five-component mixture experiment. 

Run B I R C A 

Design 5: GO-optimal design for "'2 = a and "'3 large. 

0.0000 0.1000 0.2000 0.3000 0.4000 

2 0.0000 0.1503 0.1996 0.6000 0.0501 

3 0.0000 0.2500 0.1000 0.2000 0.4500 

4 0.0000 0.3000 0.1500 0.4000 0.1500 

5 0.0283 0.0000 0.3500 0.5833 0.0384 

6 0.0500 0.2000 0.2500 0.'1000 0.1000 

7 0.0500 0.2500 0.0000 0.5000 0.2000 

8 0.0750 0.2250 0.0455 0.0545 0.6000 

9 0.1000 0.0000 0.2000 0.5000 0.2000 

10 0.1500 0.0500 0.1000 0.3500 0.3500 

11 0.1500 0.0500 0.2000 0.3000 0.3000 

12 0.1500 0.1000 0.1500 0.6000 0.0000 

Design 6: GO-optimal design for "'2 large and "'3 = O. 

0.0000 0.0000 0.3000 0.'1607 0.2393 

2 0.0000 0.0796 0.3500 0.5704 0.0000 

3 0.0000 0.1258 0.1742 0.6000 0.1000 

4 0.0000 0.1578 0.1422 0.1000 0.6000 

5 0.0000 0.3000 0.2846 0.'1154 0.0000 

6 0.0000 0.3000 0.0000 0.4893 0.2107 

7 0.0500 0.2500 0.1500 0.1500 0.4000 

8 0.0500 0.2500 0.1500 0.5500 0.0000 

9 0.1500 0.0000 0.1500 0.1768 0.5232 

10 0.1500 0.1273 0.0227 0.6000 0.1000 

11 0.1500 0.1500 0.0000 0.1000 0.6000 

12 0.1500 0.1500 0.2665 0.'1335 0.0000 

Design 7: GO-optimal design for "'2 and "'3 large. 

1 0.0000 0.0000 0.3000 0.6000 0.1000 

2 0.0000 0.0796 0.3500 0.5704 0.0000 

3 0.0000 0.1578 0.1422 0.1000 0.6000 

4 0.0000 0.2500 0.0500 0.6000 0.1000 

5 0.0000 0.3000 0.0000 0.1500 0.5500 

6 0.0000 0.3000 0.1923 0.2077 0.3000 

7 0.0500 0.2500 0.1500 0.5500 0.0000 

8 0.1000 0.0000 0.2000 0.3000 0.4000 

9 0.1500 0.0000 0.2500 0.6000 0.0000 

10 0.1500 0.1500 0.0000 0.5482 0.1518 

11 0.1500 0.1500 0.0819 0.0181 0.6000 

12 0.1500 0.1500 0.2665 0.'1335 0.0000 
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Table 5: Comparison of seven alternative designs for the constrained mixture experiment using 

the parameter values of the true model (4). 

precision bias lack-of-fit 

DESIGN DXI average maximum Dbias average maximum Dlof,.. p-value 

pred.var. pred.var. sqd.bias sqd.bias 

02 - 0,0::3 - a 0.0441 0.2470 0.4876 1.6784 0.1027 0.78B7 0.3076 1.0307 0.3790 

=> Dl-optimai 

02 - 0,0:3 - 0 0.0512 0.2825 0.6018 1.5393 0.0687 0.6165 0.2864 3.7601 0.2244 

with center points 

Q2 = 2,01:3 = 0 0.0496 0.2680 0.5614 1.3928 0.0645 0.2583 0.0832 8,4136 0.1896 

=> Bayesian 

02 _ 0.8, 03 _ 0, T _ 00 0.0497 0.2883 0.6325 1.1049 0.0504 0.3253 0.2658 9.0566 0.1793 

=> omniscient l 

02 = 0,0:3 large 0.0779 0.3918 1.2180 1.0161 0.0403 0.5507 0.1568 2.8128 0.3451 

=> minimal bias 

02 large, 0:3 - a 0.0540 0.3074 0.7173 1.3288 0.0935 0.6346 0.0817 5.4571 0.2527 

=> best LOF 

Q2 large, 0::3 large 0.0538 0.2853 0.7542 1.2275 0.0511 0.3442 0.0836 11.3362 0.1492 

=> good bias & LOF 

.I. In order to compute this design) only the 4 interactIOns active m the true model were used. 

These seven designs are compared to each other in Table 5. The first column of the table con

tains the settings for the parameters a2, a3 and T. The next three columns contain detailed 

information about the precision of the estimation and the prediction. The columns 5 through 7 

contain the performances of the design as to bias and the last three columns show the designs' 

abilities to detect lack-of-fit. A note on the computation of the average squared biases, the max

imum squared biases, the noncentrality parameters 8 (see Equation (3)) and the corresponding 

p-values, which all depend on the parameter values of the true model, is given in the Appendix. 

The coefficients -44.6, -77.0, -67.6 and -60.0 were used for the terms involving BI, BR, Be 

and BA respectively. Zeroes were used for the coefficients of the other potential second order 

terms. 

From the table, it can be seen that taking into account possible misspecification of the model 

goes at the expense of precision in the estimation of the primary model. This is especially true 

for the minimal bias design. All designs providing protection against misspecification lead to 

a substantial reduction in bias. In addition, they allow the experimenter to detect lack-of-fit. 

It turns out that the inclusion of center points in the designs is however the worst option to 

decrease the bias and to detect lack-of-fit in this case. The Bayesian design obtained by using 

the approach of DuMouchel and Jones (1994) is a close competitor to the GD-optimal designs 

when detecting lack-of-fit is important. It performs considerably worse, however, when the focus 

is on reducing the potential bias. Surprisingly, the non centrality parameter of the GD-optimal 
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Table 6: Comparison of seven alternative designs for the constrained mixture experiment using 

the parameter values 70, 70, 40 and 40 instead for the model terms involving Bl, BR, Be and 

BA respectively. 

precision bias lack- of-fit 

DESIGN DX1 average maximum Dbias average maximum DIo!'r p-value 

pred.var. pred.var. sqd.bias sqd.bias 

0.2 - 0, a3 _ 0 0.0441 0.2470 0.4876 1.6784 0.0812 0.3183 0.3076 7.3619 0.1311 
::::} D 1 -optimal 

0.2 - D, 03 _ 0 0,0512 0.2825 0.6018 1.5393 0,0533 0,2643 0.2864 8.8961 0.1082 

with center points 

0;2 - 2, 03 _ 0 0.0496 0.2680 0.5614 1.3928 0.0655 0.2945 0.0832 6.8270 0.2198 
=> Bayesian 

0:2 = 0.8, eta _ 0, T _ 00 0.0497 0.2883 0.6325 1.1049 0.0503 0.2434 0.2658 8.7457 0.1841 

=> omniscient 

02 - 0, Q3 large 0.0779 0.3918 1.2180 1.0161 0.0446 0.2485 0.1568 4.2157 0.2903 

=> minimal bias 

0:2 large, 03 _ 0 0.0540 0.3074 0.7173 1.3288 0,0585 0.2988 0.0817 8.4291 0.1893 

=> best LOF 

0:2 large, 0.3 large 0.0538 0.2853 0.7542 1.2275 0.0478 0.2972 0.0836 5.0584 0.2639 
:::} good bias & LOF 

design obtained for a large 0!2-value and 0!3 = 0 is small relative to that for other designs. This is 

due to the parameter values in the true model. Another choice of the coefficients of the potential 

terms leads to totally different noncentrality parameters. For example, choosing 70, 70, 40 and 

40 instead of -44.6, -77.0, -67.6 and -60.0.gives the results displayed in Table 6. 

6 Conclusions 

In this paper, we have derived a generalization of several existing design criteria in order to take 

into account possible misspecification of the model when designing an experiment. Traditionally, 

the optimal design approach assumes that the specified model is known. In most applications, 

the model is unknown. The design criteria presented take into account the potential bias from 

the unknown true model as well as the power of a lack-of-fit test. Several simple examples are 

used to illustrate the properties of the designs produced by the new criteria. A constrained 

mixture experiment was used to demonstra.te the usefulness of the approach. This example 

showed that the new design criteria used lead to designs that perform well with respect to bias 

and with respect to the detection of lack-of-fit. 
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Appendix 

The coefficients of the primary and potential terms in the practical example are the coefficients in 

the non-orthonormalized model (4). This has to be taken into account when computing the bias 

and the noncentrality parameter 15. In order to compute the bias for a particular combination 

of factor levels, the following formula was used: 

where 7)(x) represents the response obtained using the non-orthonormalized model (4). 

In order to compare the ability to detect la.ck-of-fit, the noncentrality parameter and the corre

sponding F-statisic were computed as well. The noncentrality parameter 15 is equal to the sum 

of the squared biases for the runs in the design divided by 0-2 : 

15 :2 [ri(X) - Xl (X~XI)-l X~l1(X)]' HX) - Xl (X~XI)-l X~l1(X)l 

:2 11 (X) [In - Xl (X~XI)-l X~ll1(X), 

where 1J(X) represents the vector ofresponses obtained using the non-orthonormalized model (4) 

for all design points. 
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