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Efficient Conjoint Choice Designs in the Presence of
Respondent Heterogeneity

Abstract

The authors propose a fast and efficient algorithm for constructing D-optimal
conjoint choice designs for mixed logit models in the presence of respondent het-
erogeneity. With this new algorithm, the construction of semi-Bayesian D-optimal
mixed logit designs with large numbers of attributes and attribute levels becomes
practically feasible. The results from the comparison of eight designs (ranging from
the simple locally D-optimal design for the multinomial logit model and the nearly
orthogonal design generated by Sawtooth (CBC) to the complex semi-Bayesian
mixed logit design) across wide ranges of parameter values show that the semi-
Bayesian mixed logit approach outperforms the competing designs not only in terms
of estimation efficiency but also in terms of prediction accuracy. In particular, it was
found that semi-Bayesian mixed logit designs constructed with large heterogeneity
parameters are most robust against the misspecification of the values for the mean
of the individual-level coefficients for making precise estimations and predictions.

Keywords: semi-Bayesian mixed logit design, heterogeneity, prediction accuracy,
multinomial logit design, model-robust design, D-optimality, algorithm
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1 Introduction

In marketing, conjoint choice experiments have become popular to explore consumer pref-
erences for certain characteristics of products or services. The data from such experiments
are often analyzed by a multinomial logit model (McFadden 1974). The major advantage
of this model is its simple form for choice probabilities. However, this simple model has
several shortcomings. One of the main shortcomings is that it does not take into account
the heterogeneity in consumer or respondent preferences. Incorporating consumer hetero-
geneity when analyzing consumer behavior is an important topic in the recent marketing
literature (Allenby et al. 1998; Sándor and Wedel 2002; Wedel et al. 1999).

Several models that can deal with respondent heterogeneity have been explored. A
latent class model assumes that the individual parameters are drawn from a discrete dis-
tribution and is appropriate when several homogeneous groups of respondents can be
extracted from a heterogeneous group of data. However, when the true representation of
heterogeneity is continuous, the latent class model might not be able to provide accurate
estimates (Allenby et al. 1998; Sándor and Wedel 2002). In this situation, models like the
probit (Haaijer et al. 1998) or the mixed logit model (McFadden and Train 2000; Revelt
and Train 1998; Sándor and Wedel 2002) which assume that the coefficients are drawn
from a continuous distribution are preferred over the latent class model. The probit model
requires normal distributions for all unobserved components of utility (Train 2003). How-
ever, in some cases, other distributions are more appropriate than the normal distribution.
In addition to that, the popularity of the probit model is limited because of its compli-
cated structure and high computation time (Sándor and Wedel 2002). The mixed logit
model is a highly flexible discrete choice model that can model the heterogeneity of the
respondents in a very general way because it is not restricted to normal distributions. It
is essentially a multinomial logit model with coefficients that follow a distribution across
respondents. McFadden and Train (2000) show that any discrete choice model can be
approximated to any degree of accuracy by a mixed logit model. Compared to the probit
model, the simulation of choice probabilities is computationally simpler for the mixed logit
model. Because of all these reasons, the estimation of the mixed logit model has received
considerable interest in the literature recently (Huber and Train 2001; Revelt and Train
1998; Train 2003).

A great challenge for the mixed logit model is the quality of the data. Hensher and
Greene (2003) state that estimating the mixed logit model certainly demands better qual-
ity data than the multinomial logit model because it offers an extended framework within
which a greater amount of true behavioural variability in choice making can be captured.
This implies that the data collection becomes especially important when the goal is to fit
a mixed logit model. To avoid situations where the data do not contain enough informa-
tion for an efficient parameter estimation, it is crucial to search for efficient experimental
designs.

In the literature on the optimal design of choice experiments, the focus has mainly been
on designs for the multinomial logit model, thereby ignoring the heterogenous preferences
across respondents (Huber and Zwerina 1996; Kessels et al. 2006a; Sándor and Wedel
2001). The importance of incorporating respondent heterogeneity in design construction
was demonstrated by Sándor and Wedel (2002). They showed the advantage of using
a mixed logit design over the multinomial logit design. In their locally optimal design
procedure, they assume values for the mean of the individual-level coefficients, denoted by
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µβ in this article, and the covariances, Σβ, of these coefficients. As a result, they ignore
the uncertainty about these values and treat the unknown model parameters as known
when constructing the design. To take into account the uncertainty about the unknown
model parameters, the most natural approach is the Bayesian approach adopted in this
article.

However, as shown by Sándor and Wedel (2002), determining the information ma-
trix for the mixed logit model involves a computationally intensive numerical integration
over the distribution of the random model coefficients. This makes the construction of
Bayesian designs for that model with large numbers of attributes and attribute levels
a real challenge. In this paper, we propose a fast and efficient algorithm that reduces
the computation time dramatically for generating efficient mixed logit designs. We ex-
tend the work of Sándor and Wedel (2002) by using a Bayesian approach to construct
semi-Bayesian D-optimal designs for the mixed logit model which take into account the
uncertainty about the mean parameters µβ in the design construction process. We evalu-
ate the advantages of the semi-Bayesian D-optimal designs for the mixed logit model over
the locally D-optimal designs for that model in terms of estimation efficiency and predic-
tive accuracy under various conditions. We also study the sensitivity of the semi-Bayesian
mixed logit designs to the misspecification of Σβ, the heterogeneity parameters. In addi-
tion, we examine how the Bayesian and the locally D-optimal designs for the multinomial
logit model, which ignores the respondent heterogeneity, and a nearly orthogonal design
generated using Sawtooth (CBC) perform when respondents are heterogeneous.

In the next section, we discuss the structure of a mixed logit model and introduce the
design selection criterion utilized in this article. In Section 3, we present the methodology
to construct efficient designs for the mixed logit model in a computationally efficient
way. In Section 4, we describe the details of the simulation study and the performance
evaluation criteria. In Section 5, we evaluate the proposed designs in terms of the efficiency
of parameter estimation and of the predictive performance. Section 6 contains a summary
of the main findings.

2 Mixed Logit Designs

2.1 Mixed Logit Model

Mixed logit probabilities are integrals of the standard multinomial logit probabilities over
a density function f(β) for the parameters (Train 2003). The probability that profile k is
chosen from choice set s is therefore

πks =

∫
pks(β)f(β)dβ, (1)

where pks(β) is the multinomial logit probability evaluated at the parameter values con-
tained in β:

pks(β) =
exp(x′

ksβ)∑K
i=1 exp(x′

isβ)
, (2)

with K the number of profiles in each choice set, xks a p-dimensional vector character-
izing the attributes of profile k in choice set s, and β a p-dimensional coefficient vector
containing the effects of the different attribute levels on the utility.
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To capture the heterogeneity among respondent preferences, we use the same assump-
tion as Sándor and Wedel (2002) that the heterogeneity distribution f(β) is a multivariate
normal distribution with mean µβ and diagonal covariance matrix Σβ=diag(σ2

1, σ2
2,. . . ,

σ2
p). We call σβ=(σ1,σ2,. . . , σp)

′ the heterogeneity vector as it captures the heterogeneity
across respondents. The larger the values in σβ, the larger the degree of heterogeneity
among respondents. Now, β can be written as β=µβ+Vσβ, where V is a diagonal
matrix having the random vector v = (v1, v2, . . . , vp)

′ with independent standard normal
elements on its diagonal. Substituting this expression in (2), the logit probabilities become
functions of the random vector v and the mixed logit probabilities in (1) can be expressed
as

πks =

∫
pks(v)h(v1)h(v2)...h(vp)dv, (3)

where h represents the standard normal density function. In this article, we are interested
in estimating the mean parameter vector µβ and the heterogeneity vector σβ efficiently.
In the next section, we introduce a design criterion that can be used to select a design
that guarantees an efficient estimation of the 2p parameters contained in µβ and σβ.

2.2 Design Efficiency Criterion

A well-known criterion for evaluating the efficiency of experimental designs is the D-
optimality criterion. It is based on the determinant of the information matrix on the
unknown model parameters, which, for the mixed logit model, are contained within the
vectors µβ and σβ. The information matrix on µβ and σβ, which is inversely proportional
to the covariance matrix of the parameter estimates, is given by the 2p× 2p dimensional
matrix

I(µβ, σβ|X) = N

S∑
s=1

[
A′

sΠ
−1
s As A′

sΠ
−1
s Bs

B′
sΠ

−1
s As B′

sΠ
−1
s Bs

]
, (4)

where

As =

∫
[Ps(v)− ps(v)p′s(v)]Xsh(v1)h(v2)...h(vp)dv, (5)

Bs =

∫
[Ps(v)− ps(v)p′s(v)]XsVh(v1)h(v2)...h(vp)dv, (6)

N is the number of respondents, S is the number of choice sets, ps(v) = [p1s(v), p2s(v), . . . ,
pKs(v)]′, Ps(v) = diag(p1s(v), p2s(v), . . . , pKs(v)), X is the entire design matrix, Xs is the
design matrix for choice set s and Πs = diag(π1s, ...πKs). This expression was derived by
Sándor and Wedel (2002), who constructed locally D-optimal designs for the mixed logit
model by minimizing the

DM -error = det{I(µβ,σβ)−1}1/2p. (7)

In this paper, we adopt a Bayesian approach for constructing D-optimal designs for the
mixed logit model. For reasons of computational convenience and ease of interpretation
of the results, we only take into consideration the uncertainty about the mean parameter
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vector µβ, and not that about the heterogeneity vector σβ. We therefore use a fixed value
for σβ when we construct the designs and call the D-optimal designs derived in this paper
semi-Bayesian rather than Bayesian D-optimal designs. In the simulation study discussed
below, we investigate the robustness of the proposed design to the misspecification of the
heterogeneity vector.

We denote the prior distribution for µβ by g(µβ). This distribution can be informative
or uninformative depending on the amount of prior information available to the researcher.
The semi-Bayesian D-optimal mixed logit designs are constructed by minimizing the DBM -
error, which is the expectation of the DM -error over the prior distribution g(µβ):

DBM -error =

∫
det{I(µβ, σβ)−1}1/2pg(µβ)dµβ. (8)

3 Design Construction Algorithm

As mentioned by Sándor and Wedel (2002), the large computation time for generating
mixed logit designs makes it infeasible to construct Bayesian designs for realistic prob-
lems using their RSC-algorithm (Relabeling, Sampling and Cycling). In this section, we
introduce a new design algorithm, which we call the Adaptive Halton algorithm (AH), for
generating semi-Bayesian D-optimal mixed logit designs. This algorithm overcomes the
limitation of previous algorithms for constructing mixed logit designs as it allows the con-
struction of large designs for mixed logit models and the incorporation of the uncertainty
about the assumed values for the mean parameters in the design construction process.

Two types of integrals are utilized in the construction of a semi-Bayesian D-optimal
mixed logit design. Each of them are usually approximated using large numbers of Monte
Carlo draws. We call the draws used to compute the integral in (8) prior draws and label
the draws used to approximate the integrals involved in each element in (4) mixed logit
draws. Clearly, the large numbers of random draws needed for approximating these inte-
grals lead to long computation times. In our new algorithm, we therefore make systematic
draws from the distributions f(β) and g(µβ) rather than random ones. This allows us to
approximate the integrals using much smaller numbers of draws which reduces the com-
puting time dramatically.

In total, the AH algorithm has four features which speed up the computation of semi-
Bayesian D-optimal mixed logit designs: (i) the coordinate-exchange procedure, (ii) the
fast update of the information matrix, (iii) the small sample of mixed logit draws, and (iv)
the small sample of prior draws. Each of these improvements is described in detail in the
following sections.

3.1 Coordinate-exchange Algorithm

In this paper, we use the coordinate-exchange algorithm proposed by Meyer and Nacht-
sheim (1995) and introduced in the marketing literature by Kessels et al.(2006b). Unlike
the algorithm in Kessels et al. (2006a), the coordinate-exchange algorithm does not re-
quire the construction of a candidate set. This property is especially important when
the design involves a large number of attributes and attribute levels. Furthermore, it is
also a computationally efficient algorithm. It replaces only one coordinate or attribute
level of a profile at each step. Therefore, the coordinate-exchange algorithm is a special
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case of the profile-exchange algorithm. A starting design with K profiles in each of S
choice sets is constructed by randomly generating attribute levels for each of the K × S
profiles in the design. Each attribute level in the starting design is then exchanged with
all possible levels of that attribute. A level change is accepted if and only if it results in a
better DBM -error. The first iteration is terminated once the algorithm has found the best
exchange for all attributes of all profiles of the design. After that, the algorithm goes back
to the first attribute of the first profile in the design and continues until no substantial
improvement is possible any more. To avoid poorly local optima, we used 1000 different
starting designs to find the designs reported in this paper.

3.2 Updating the Information Matrix

A traditional way to update the information matrix is to recompute the information matrix
for all choice sets once an attribute level in one set is changed. This is not necessary when
updating the information matrix in formula (4) since it is the sum of the per choice set
information matrices. In fact, changing an attribute level in a profile of the sth choice
set only affects the choice set Xs, but not the rest of the choice sets. This provides a
computational shortcut to update the information matrix. For simplicity, we define the
new way of updating the information matrix as a single-set update and the traditional
way as a whole-set update. The updated information matrix Iupdate for the new updating
approach can be written as follows:

Iupdate = Iold − Iold
s + Inew

s (9)

where Iold is the information matrix for the whole design before the profile in set s is
changed, and Iold

s and Inew
s are the information matrices for set s before and after the

change, respectively. In this way, for each exchange, we only need an update of the
information matrix for the choice set to which the modified profile belongs. This leads to
a much faster algorithm. For example, for a conjoint choice design with 12 choice sets,
using the single-set update instead of a whole-set update leads to a saving of 91.7% of the
computation time.

3.3 Halton Sequences for the mixed logit draws

The integrals involved in the information matrix (4) can be approximated using a sample
of mixed logit draws. The well-known Monte Carlo simulation method is frequently ap-
plied in practice for this purpose. This method, however, requires large numbers of draws
and has a slow asymptotic convergence rate (Bhat 2001). This is confirmed by Train
(2000) who showed that the estimation of a mixed logit model can require 2-3 hours for
moderately sized models, and that run times of 10-20 hours are common.

The generation and application of a small sample of intelligent draws from a distribu-
tion rather than a large sample of random ones has therefore been the subject of intensive
research in recent years (Glasgow 2001; Sloan and Wozniakowski 1998; Train 2000 ). Es-
pecially Halton sequences, which produce uniformly distributed points over the domain
of the integrals that have to be computed, have received a lot of attention. Compared
with the random draws employed in the Monte Carlo method, Halton sequences lead to a
faster convergence and smaller simulation errors (Bhat 2001). As a precise approximation
of the information matrix for a mixed logit model is crucial for the purpose of generating

7



semi-Bayesian D-optimal designs, we used as many as 250 Halton draws. This led to
better results than 1000 random Monte Carlo draws while saving 75% of the computing
time. The detailed construction procedures and the reason why Halton draws perform
better than random draws can be found in Train (2000).

3.4 Small Numbers of Prior Draws

The integral that has to be computed for evaluating the DBM -error in (8) does not re-
quire as many as 250 draws. Our own computational work as well as that described in
Kessels et al. (2006b) suggests that a designed sample of 20 prior draws instead 1000
Monte Carlo draws yields satisfactory results. The designed sample of 20 prior draws only
provides a rough approximation of the integral in (8), but this turns out to be sufficient
for the coordinate-exchange procedure to work well. It allows the implementation of a
large number of runs of the coordinate-exchange algorithm for searching the best design
within a reasonable time. Kessels et al. (2006b) show that with the small sample of
intelligent draws and more runs in the design construction, they are able to find more
efficient designs than by using the large random Monte Carlo sample. The methodol-
ogy they used to generate 20-point sets of prior draws performs slightly better in terms
of design efficiency than Halton sequences with 20 draws and it is effective in finding
semi-Bayesian D-optimal designs. Note that this small designed sample cannot be used
for the mixed logit draws because it leads to an approximation of the integrals involved
in (4) that is too poor for the purpose of finding optimal designs for the mixed logit model.

The procedures for constructing the 20-point sample and for checking its performance
can be found in Kessels et al. (2006b). The key is to generate 20 prior parameter vec-
tors that are uniformly distributed on a hypersphere. To evaluate the effectiveness of
the systematic 20-point set of draws, we have compared DBM -errors computed using the
random Monte Carlo sample to DBM -errors computed using the systematic sample for
several designs. The results are visualized in Figures 1 and 2.

The plot in Figure 1 shows how an initial random design is improved by making a
number of changes to it. Each asterisk corresponds to a design that is found with im-
proved DBM -error during the coordinate-exchange algorithm. The initial random design
is represented by the asterisk in the upper right hand corner of the picture, while the best
design ultimately produced by the algorithm is represented by the asterisk in the lower
left hand corner. The pattern in the asterisks shows that, for an improvement in the
DBM -error computed using the systematic 20-point sample, there is a matching decrease
in the DBM -error computed more accurately using the 1000-point Monte Carlo sample.
This observation is supported by the fact that the DBM -error values produced by the two
methods have a correlation of 99.84%.

Figure 2 compares the two methods for approximating the DBM -error in another way.
Each asterisk in Figure 2 represents the best design found with a single random start of
the coordinate-exchange algorithm. The correlation between the DBM -error values for the
systematic and the Monte Carlo sample is now 94.3%. This implies that there is a high
chance that an efficient design constructed using the systematic 20-point sample is also
efficient when it is evaluated by the random Monte Carlo sample.

Due to the facts that the systematic 20-point approximation method reduces the com-
putation time considerably and that the two approximation methods almost perfectly
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agree with each other in searching efficient mixed logit designs, it is justified to use the
systematic 20-point set of prior draws. However, we follow the suggestion in Kessels et al.
(2006b) to use the small systematic sample in the coordinate-exchange procedure and to
re-evaluate the designs that procedure yields by means of the larger Monte Carlo sample.
This is why our algorithm is named an adaptive algorithm.

3.5 Comparing the AH algorithm and a Benchmark Algorithm
in Terms of Computation Time

To demonstrate how fast the AH algorithm is, we compared it to a benchmark algorithm
in terms of computation time. The benchmark algorithm used random samples of 1000
prior draws and 1000 mixed logit draws, and it utilized the traditional whole-set update
procedure for the information matrix. The features of the benchmark algorithm and the
AH algorithm are summarized in Table 1. We recorded the computation times for one
try of both algorithms for three design settings: 34/2/18, 34/3/12 and 34/4/9. Each of
these settings involves four attributes with three levels. The first setting has 18 choice
sets of two profiles, while the second and third settings correspond to choice designs with
12 choice sets of three profiles and nine choice sets of four profiles, respectively. The
computations were made by a Dell PC with two 2.8 GHz Intel Processors and 1GB RAM.
The computing times, expressed in hours:minutes:seconds, are shown in Table 2.

Table 1: Features of the benchmark algorithm and the AH algorithm
Benchmark Adaptive Halton

Exchange algorithm Coordinate-exchange Coordinate-exchange
Number of prior draws 1000 20
Number of mixed logit draws 1000 250
Information matrix whole-set update single-set update

Table 2: Computing times for the benchmark algorithm and the AH algorithm
34/2/18 34/3/12 34/4/9

AH algorithm 00:03:26 00:04:16 00:05:43
Benchmark algorithm 61:39:24 65:02:46 70:28:10

The table shows that the computing times for the AH algorithm are much smaller
than those for the benchmark algorithm. The computing times for the AH algorithm
are such that the construction of semi-Bayesian D-optimal designs for the mixed logit
model becomes practically feasible. In particular, with the newly developed algorithm,
the computation of semi-Bayesian D-optimal designs for the mixed logit model is no longer
restricted to small design problems.

4 Design Evaluation

In this section, we compare the performance of eight types of designs under different
conditions. We investigate which designs allow for an efficient parameter estimation and
accurate predictions when there is heterogeneity in individual-level coefficients across re-
spondents and when information about the mean parameter values is incorrect. We are
interested in quantifying the benefits of using semi-Bayesian mixed logit designs in par-
ticular. The results reported here are for a design problem with specification 34/3/12.
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4.1 Set of Design Options

An overview of the eight designs used in the comparison study is given in Table 3. In
the table, 18 and 08 denote an 8×1 vector of ones and an 8×1 vector of zeros, respectively.

The first three designs in our study are semi-Bayesian D-optimal designs for the mixed
logit model. Each of these designs was constructed using the same prior distribution g(µβ)
for µβ but with a different prior value for the heterogeneity vector σβ. The prior distri-
bution g(µβ) was multivariate normal with mean µ0 = [−0.5, 0,−0.5, 0,−0.5, 0,−0.5, 0]′

and covariance matrix I8, with I8 the 8-dimensional identity matrix. The elements of the
heterogeneity vector σβ were 0.5, 1 and 1.5 for the three designs. These three designs
enable us to quantify the effect of misspecifying the heterogeneity parameters in the design
construction. The fourth design in our study is a locally D-optimal design for the mixed
logit model. This design ignores the prior parameter uncertainty. It was constructed using
the same heterogeneity vector, σβ = 18, as the second semi-Bayesian D-optimal mixed
logit design. Comparing these two designs allows us to quantify the advantage of the
semi-Bayesian approach.

Table 3: Overview of the designs used in the simulation study
Design type Mean Prior Heterogeneity Prior

1 Semi-Bayesian D-optimal, mixed logit µβ ∼ N(µ0, I8) σβ = 1.518

2 Semi-Bayesian D-optimal, mixed logit µβ ∼ N(µ0, I8) σβ = 18

3 Semi-Bayesian D-optimal, mixed logit µβ ∼ N(µ0, I8) σβ = 0.518

4 Locally D-optimal, mixed logit µβ = µ0 σβ = 18

5 Bayesian D-optimal, multinomial logit µβ ∼ N(µ0, 9I8) σβ = 08

6 Bayesian D-optimal, multinomial logit µβ ∼ N(µ0, I8) σβ = 08

7 Locally D-optimal, multinomial logit µβ = µ0 σβ = 08

8 Nearly orthogonal - -

Furthermore, two Bayesian D-optimal designs for a multinomial logit model, which
assumes respondent homogeneity, were used in the study. These two designs were com-
puted using the prior mean vector µ0 and variance-covariance matrices I8 and 9I8. This
enables us to investigate whether a larger prior uncertainty helps to overcome the fact
that optimal designs for the multinomial logit model are obtained ignoring the respondent
heterogeneity. In addition, we also used a locally D-optimal design for the multinomial
logit model in our study because it is a design that has received considerable attention
in the marketing literature (Bunch et al. 1996; Huber and Zwerina 1996; Zwerina et al.
1996). This design enables us to examine the loss in estimation efficiency and in predic-
tive accuracy that results from ignoring the respondents heterogeneity and the parameter
uncertainty when constructing conjoint choice designs.

The final design in our study is a nearly orthogonal design generated using the Saw-
tooth software. Such designs are commonly used by researchers who do not have access to
algorithms for computing optimal designs for multinomial logit models or for mixed logit
models.
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4.2 Details of the Simulation Study

In our simulation study, we evaluated the eight designs in Table 3 under five conditions.
In each case, a different parameter space Ωi was used to draw 1000 values of the mean
vector µβ. The heterogeneity vector σβ was fixed at 18 for each condition. In the sequel
of this article, we denote the rth draw for a given parameter space by µr

β.

For the parameter spaces Ω1, Ω2 and Ω3, the mean parameter vector µβ, used for
the data generation, was drawn from distributions centered around µ0 with covariance
matrices 0.25I8, I8 and 2.25I8, respectively. As a consequence, the parameter spaces Ω1,
Ω2 and Ω3 are characterized by an increasing degree of mean parameter misspecification.
For the parameter spaces Ω4 and Ω5, the mean parameter vector µβ was drawn from
distributions with a mean that is different from µ0 and with covariance matrix I8. For
parameter space Ω4, the mean vector was −µ0, while for parameter space Ω5 it was
−µ0 +0.518. The degree of mean vector misspecification is therefore even larger for these
parameter spaces than for Ω1, Ω2 and Ω3. An overview of the five parameter spaces is
given in Table 4.

Table 4: Parameter space specifications
Ω1 µβ ∼ N(µ0, 0.25I8)
Ω2 µβ ∼ N(µ0, I8)
Ω3 µβ ∼ N(µ0, 2.25I8)
Ω4 µβ ∼ N(−µ0, I8)
Ω5 µβ ∼ N(−µ0 + 0.518, I8)

4.3 Performance Criteria

In our simulation study, we have used four different criteria to evaluate the eight different
design options. The first two of these quantify the precision of the model estimation. The
other two criteria measure the accuracy of the predictions made.

4.3.1 Relative Local D-efficiency

First, we used the relative local D-efficiency (RLD) proposed by Woods et al. (2006) as
a measure for evaluating the performance of the eight designs in terms of the precision
of the model estimation. For that purpose, we constructed a locally D-optimal design
for the mixed logit model for each draw of true mean parameter µr

β, while fixing the
heterogeneity vector σβ at 18. We denote that locally optimal design by Xµr

β
. For a given

µr
β, the RLD-efficiency of a specific design X is then computed by comparing its DM -error

to that of the locally D-optimal mixed logit design Xµr
β

assuming that µβ = µr
β:

RLD(X,µr
β) =

DM -error(Xµr
β
|µβ = µr

β)

DM -error(X|µβ = µr
β)

. (10)

This expression lies between zero and one. RLD(X, µr
β)-efficiencies close to one indicate

that the design X provides nearly as much information on the unknown model param-
eters as the locally D-optimal design when µβ = µr

β. Designs that have RLD(X,µr
β)-

efficiencies close to one for all draws µr
β from a certain parameter space Ωi are desirable.
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In our simulation study, we computed RLD(X,µr
β)-efficiencies for every draw µr

β

for each of the five parameter spaces. Histograms that visualize the distribution of the
resulting 1000 RLD(X,µr

β)-efficiencies for each of the eight design options in Table 3 are
shown in Figures 3-7. These results are discussed in detail in Section 5.1.

4.3.2 Percentage Reduction in the Number of Observations

To assess the relative performance of a pair of designs, we also computed the percentage
reduction in the number of observations that a design X1 requires to produce the same
expected DM -error as another design X2. This measure is defined by

1− DM -error(X1|µβ = µr
β)

DM -error(X2|µβ = µr
β)

(11)

for a given draw µr
β. We averaged these values over the total number of draws to quantify

the extent to which the former design, X1, performs better than the latter, X2, on average.

4.3.3 Expected Root Mean-Squared Prediction Error

To assess the predictive accuracy of the constructed designs, we computed the expected
root mean-squared prediction error (ERMSEP ) for the five parameter spaces defined in
Table 4. The ERMSEP compares the predicted to the true probabilities based on a
34/2/12 holdout design generated using Sawtooth and is defined as

ERMSEP =

∫
[(π(µ̂β, σ̂β)− π(µβ,σβ))′(π(µ̂β, σ̂β)− π(µβ, σβ)]1/2φ(µ̂β, σ̂β)dµ̂βdσ̂β,

(12)
where π(µ̂β, σ̂β) is the vector containing the predicted probabilities computed using the
parameter estimates µ̂β and σ̂β, π(µβ,σβ) is the vector of the probabilities obtained
using the true parameter vectors µβ and σβ, and φ(µ̂β, σ̂β) is the asymptotic distribu-
tion of the parameter estimates. For a design X and true parameter vectors µβ and
σβ, the asymptotic distribution φ(µ̂β, σ̂β) of the parameter estimates is the multivariate
normal distribution with mean vector (µβ

′,σβ
′)′ and covariance matrix I(µβ, σβ|X)−1.

We approximated the integral in (12) by using 1000 random draws from that asymptotic
distribution, and we computed ERMSEP values for 1000 draws µr

β from each of the five
parameter spaces for the eight designs in Table 3. Histograms of the ERMSEP values for
parameter space Ω2 are shown in Figure 8 and discussed in Section 5.2, along with the
results for the other parameter spaces.

4.3.4 Percentage Decrease in Prediction Error

To quantify the extent to which design X1 allows for better predictions than design X2, we
computed the percentage decrease in prediction error by using the former design instead
of the latter. This measure is defined by

1− ERMSEP (X1|µβ = µr
β)

ERMSEP (X2|µβ = µr
β)

(13)

for a given draw µr
β. The values we report are averages over the total number of draws.
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5 Simulation results

5.1 Efficiency of Parameter Estimation

In this section, we evaluate the performance of the eight designs in Table 3 in terms of the
efficiency of parameter estimation when the true mean parameters µβ are taken from the
five parameter spaces in Table 4. The aim is to find out which design option, in general,
is more robust against the misspecification of the mean parameter values. Figures 3-7
present the distributions of the RLD-efficiencies of the eight designs for each of the five
parameter spaces. Values close to one indicate that the design is almost as good as the
locally optimal design. Four common features occur across these five figures.

First of all, compared to the designs that were constructed ignoring the respondent
heterogeneity (see the plots (e)-(h) in each of the Figures 3-7), the optimal designs for the
mixed logit model (see the plots (a)-(d) in each figure) perform substantially better. This
holds in particular for parameter space Ω1, where the mean parameter vectors µr

β are all
close to the one assumed when constructing the optimal designs, µ0. This can be seen
in Figure 3. Furthermore, the semi-Bayesian D-optimal mixed logit designs constructed
with heterogeneity parameter vector σβ = 18 and with overspecified heterogeneity vector
σβ = 1.518 tend to provide the best estimation accuracies. This implies that with these
two designs, fewer observations are needed to achieve the same precision for the parameter
estimates as with the other designs.

Secondly, comparing the semi-Bayesian D-optimal designs for the mixed logit model
constructed with σβ = 1.518 and with σβ = 0.518 to the one obtained using σβ = 18

shows that overspecifying the heterogeneity vector σβ does not have a large negative im-
pact on the efficiency of parameter estimation. For the parameter spaces Ω1, Ω2, Ω3

and Ω4, the semi-Bayesian mixed logit design constructed using σβ = 18 leads to reduc-
tions in the number of observations of only 2.01%, 3.4%, 2.4% and 0.49%, respectively,
compared to the design obtained using the overspecified σβ. For parameter space Ω5,
where the degree of misspecification of the mean parameter vector is considerably larger
than for the other parameter spaces, the reduction is negative. The negative value for the
reduction, -3.8%, demonstrates that the semi-Bayesian mixed logit design constructed by
assuming a large heterogeneity vector is more robust to the misspecification of the mean
parameters than when assuming a small heterogeneity. This result is very useful when
prior information about the mean parameter vector µβ is lacking. Sándor and Wedel
(2002) obtained similar results in the context of locally D-optimal mixed logit designs.
They showed that large heterogeneity parameters assumed in the design construction may
help to account for the misspecification of the mean parameters. In addition, we observe
that the loss in efficiency for underspecifying σβ is higher than that for overspecifying
σβ. However, the design constructed with underspecified σβ is still more efficient than
the designs constructed for the multinomial logit model and which thereby ignore the
respondent heterogeneity.

Thirdly, comparing the RLD-efficiencies of the semi-Bayesian D-optimal mixed logit
design constructed using σβ = 18 in panel (b) of the Figures 3-7 to those of the locally
D-optimal mixed logit design obtained using the same heterogeneity vector in panel (d)
demonstrates the benefit of using the semi-Bayesian approach. For each parameter space
Ωi, it turns out that the semi-Bayesian design outperforms the locally optimal design.
On average, the semi-Bayesian mixed logit designs require 3.3%, 9.1% and 11.5% fewer
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observations to have the same efficiency as the locally D-optimal mixed logit design for
the parameter spaces Ω1, Ω2 and Ω3, respectively. For the parameter spaces Ω4 and
Ω5, which are centered away from the mean parameter vector µ0 used during the design
construction, the average reductions are 10% and 9.8%, respectively.

Fourthly, the locally D-optimal design for the multinomial logit model and the nearly
orthogonal design, the efficiencies of which are displayed in the panels (g) and (h) of
the Figure 3-7, yield substantially poorer RLD-efficiencies than the other design options.
This is particularly true when they are compared to the semi-Bayesian mixed logit de-
signs. For instance, for parameter space Ω1, the best and the worst RLD-efficiencies for
the semi-Bayesian D-optimal mixed logit design constructed with σβ = 18 are 96.4% and
57.1%, respectively (see panel (b) of Figure 3). In contrast, the best and worst RLD-
efficiencies for the nearly orthogonal design are only 36.9% and 17.3%, respectively (see
panel (h)). For the locally D-optimal design for the multinomial model, these values are
38.1% and 17.4%, respectively (see panel (g)). The maximum RLD-efficiencies of these
two designs are thus much smaller than the minimum RLD-efficiency of the best semi-
Bayesian D-optimal design for the mixed logit model. In addition, for a parameter space
that accommodates a wide variety of mean parameters such as Ω3, the minimum RLD-
efficiency is 0.009 for the locally D-optimal multinomial logit design and 0.020 for nearly
orthogonal design. This indicates that, for some parameter values, almost no information
is available for parameter estimation when these two designs are used. Another striking
result is that the average reductions in the number of observations required for the best
semi-Bayesian D-optimal mixed logit design to obtain the same efficiency as the locally D-
optimal multinomial logit design and the nearly orthogonal design are 66.6% and 65.4%,
respectively. This demonstrates that using locally D-optimal designs for the multinomial
logit model or nearly orthogonal designs in the presence of respondent heterogeneity is
not at all a good idea.

To investigate whether the results reported in this paper depend on the example that
was chosen (four attributes acting at three levels), we conducted similar studies involving
different numbers of attributes and heterogeneous numbers of attribute levels, such as
designs of the type 2 × 3 × 4/2/24, and designs of the type 2 × 2 × 3/3/12. The results
for these studies did not reveal different insights in the relative performance of the eight
design options studied, which is why we do not discuss them here.

5.2 Predictive Accuracy

In this section, we evaluate the eight designs in Table 3 in terms of their predictive ac-
curacy. The purpose is to examine whether the semi-Bayesian D-optimal mixed logit
designs, which are more efficient than the other designs in terms of precision of the pa-
rameter estimation, also lead to more accurate predictions. In this section, we focus on
the results for parameter space Ω2. The results for the other four parameter spaces are
similar and they are only briefly discussed at the end of this section. Figure 8 shows the
ERMSEP -values of the eight designs for parameter space Ω2. Note that small ERMSEP

values are desirable.

As can be seen in Figure 8, the semi-Bayesian D-optimal mixed logit design with
σβ = 18 generally performs best in terms of predictive accuracy. Compared to the locally
D-optimal mixed logit design with σβ = 18, adopting a semi-Bayesian approach in the
design construction, on average, leads to a 17.5% decrease in prediction error. The semi-
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Bayesian approach is thus substantially better than the locally optimal design approach
when it comes to predicting choice probabilities in the presence of respondent heterogene-
ity.

The effects of misspecifying the heterogeneity vector σβ on the predictive accuracy
can be examined by comparing the semi-Bayesian D-optimal mixed logit designs for
σβ = 1.518 and σβ = 0.518 to that for σβ = 18. As can be seen from the panels
(a)-(c) in Figure 8, the effects are similar to those for the RLD-efficiencies in the previ-
ous section. The design constructed using the correctly specified heterogeneity vector σβ

produces slightly smaller ERMSEP values than the design with overspecified σβ. The
average decrease in prediction error is only 3.15%. Underspecifying σβ leads to a larger
loss in predictive accuracy than overspecifying it. Therefore, we can conclude that it is
best to use large values for σβ to construct designs if there is uncertainty about these
parameters.

By looking at the panels (g) and (h) of Figure 8, it can be verified that the locally D-
optimal design for the multinomial logit model and the nearly orthogonal design exhibit a
large variation in ERMSEP values and lead to large ERMSEP values on average. There-
fore, they produce extremely inaccurate predictions. Compared to these two designs, the
best semi-Bayesian D-optimal mixed logit design, the results for which are shown in panel
(b), yields a 63.1% and a 62.4% decrease in prediction error.

A comparison between the ERMSEP values in panel (e) for the Bayesian D-optimal
design with covariance matrix 9I8 and those in panel (f) for the Bayesian D-optimal de-
sign with covariance matrix I8 reveals that, when consumer heterogeneity is present, the
Bayesian multinomial logit design produces better predictions when its prior distribution
has a large variance. The decrease in prediction error is, on average, 14% if the former
design is used instead of the latter. This shows that assuming a large variance about the
prior parameters when constructing Bayesian multinomial logit designs is a way to offset
the loss in prediction accuracy caused by ignoring the respondent heterogeneity.

Evidently, we performed similar studies for the other parameter spaces. The results are
similar to those for Ω2 except that, for parameter spaces Ω4 and Ω5, the semi-Bayesian
D-optimal mixed logit design with σβ = 1.518 has the best predictive performance. As
indicated in Table 4, Ω4 and Ω5 are centered away from the mean parameter vector µ0

that was utilized for the construction of the optimal designs. Therefore, the degree of
misspecification of the mean parameters is quite high for these two parameter spaces.
The best predictive performance by the semi-Bayesian D-optimal mixed logit design with
σβ = 1.518 again implies that designs constructed with large heterogeneity parameters
tend to be more robust against misspecification of the mean parameters in terms of the
precision of prediction. Therefore, we suggest to specify large values for the heterogeneity
vector in the design construction algorithm when sufficient information on the true mean
parameter values is lacking.

6 Conclusions

In this paper, we proposed a fast and efficient algorithm for constructing semi-Bayesian
D-optimal designs for the mixed logit model. A key feature of the algorithm is that each
integral involved in the computation of the Bayesian D-optimality criterion is approxi-
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mated using a small number of intelligent draws instead of a large number of random
Monte Carlo draws. With the algorithm, we are able to construct large choice designs for
the mixed logit model and to incorporate the uncertainty about the model parameters in
the design construction. Eight designs ranging from a nearly orthogonal design generated
using Sawtooth and a simple locally D-optimal design for the multinomial logit model
to the complex semi-Bayesian D-optimal mixed logit designs are compared in terms of
estimation efficiency and prediction accuracy in the presence of respondent heterogeneity.
The simulation studies lead to the conclusion that the semi-Bayesian D-optimal designs
for the mixed logit model consistently perform better than the other designs. Compared to
these designs, using nearly orthogonal designs and locally D-optimal designs for a multi-
nomial logit model, and thereby ignoring both respondent heterogeneity and parameter
uncertainty when constructing the choice design, leads to extremely poor estimates and
predictions and clearly should be avoided whenever respondents are heterogeneous. It
also turns out that specifying large values for the heterogeneity parameters is the most
robust strategy against misspecification of the mean parameter values as this will usually
provide the most efficient parameter estimators as well as the best predictive accuracy.
An interesting finding is that assuming a large uncertainty about the assumed parameters
when constructing Bayesian designs for the multinomial logit model does lead to reason-
ably efficient designs for a mixed logit model. It is, however, still substantially better to
take into account the respondent heterogeneity explicitly when constructing a design.
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Appendix A

Figure 1: Evaluating the performance of the systematic 20-point sample by comparing
its DBM -error values to the corresponding DBM -error values for the random Monte Carlo
sample. The points describe the process of improvement within one random starting
design by using the 20-point sample.
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Figure 2: Evaluating the performance of the systematic 20-point sample by comparing
its DBM -error values to the corresponding DBM -error values for the random Monte Carlo
sample. Different points in this figure represent the best designs found with different
random starting designs by using the 20-point sample.

Appendix B
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(a) Semi-Bayesian D-optimal mixed logit
design with σβ = 1.518

(b) Semi-Bayesian D-optimal mixed logit
design with σβ = 18

(c) Semi-Bayesian D-optimal mixed logit
design with σβ = 0.518

(d) Locally D-optimal mixed logit design
with σβ = 18

(e) Bayesian D-optimal multinomial logit
design with covariance 9I8

(f) Bayesian D-optimal multinomial logit
design with covariance I8

(g) Locally D-optimal multinomial logit
design

(h) Nearly orthogonal design

Figure 3: RLD-efficiencies for parameter space Ω1.
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(a) Semi-Bayesian D-optimal mixed logit
design with σβ = 1.518

(b) Semi-Bayesian D-optimal mixed logit
design with σβ = 18

(c) Semi-Bayesian D-optimal mixed logit
design with σβ = 0.518

(d) Locally D-optimal mixed logit design
with σβ = 18

(e) Bayesian D-optimal multinomial logit
design with covariance 9I8

(f) Bayesian D-optimal multinomial logit
design with covariance I8

(g) Locally D-optimal multinomial logit
design

(h) Nearly orthogonal design

Figure 4: RLD-efficiencies for parameter space Ω2.
21



(a) Semi-Bayesian D-optimal mixed logit
design with σβ = 1.518

(b) Semi-Bayesian D-optimal mixed logit
design with σβ = 18

(c) Semi-Bayesian D-optimal mixed logit
design with σβ = 0.518

(d) Locally D-optimal mixed logit design
with σβ = 18

(e) Bayesian D-optimal multinomial logit
design with covariance 9I8

(f) Bayesian D-optimal multinomial logit
design with covariance I8

(g) Locally D-optimal multinomial logit
design

(h) Nearly orthogonal design

Figure 5: RLD-efficiencies for parameter space Ω3.
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(a) Semi-Bayesian D-optimal mixed logit
design with σβ = 1.518

(b) Semi-Bayesian D-optimal mixed logit
design with σβ = 18

(c) Semi-Bayesian D-optimal mixed logit
design with σβ = 0.518

(d) Locally D-optimal mixed logit design
with σβ = 18

(e) Bayesian D-optimal multinomial logit
design with covariance 9I8

(f) Bayesian D-optimal multinomial logit
design with covariance I8

(g) Locally D-optimal multinomial logit
design

(h) Nearly orthogonal design

Figure 6: RLD-efficiencies for parameter space Ω4.
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(a) Semi-Bayesian D-optimal mixed logit
design with σβ = 1.518

(b) Semi-Bayesian D-optimal mixed logit
design with σβ = 18

(c) Semi-Bayesian D-optimal mixed logit
design with σβ = 0.518

(d) Locally D-optimal mixed logit design
with σβ = 18

(e) Bayesian D-optimal multinomial logit
design with covariance 9I8

(f) Bayesian D-optimal multinomial logit
design with covariance I8

(g) Locally D-optimal multinomial logit
design

(h) Nearly orthogonal design

Figure 7: RLD-efficiencies for parameter space Ω5.
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(a) Semi-Bayesian D-optimal mixed logit
design with σβ = 1.518

(b) Semi-Bayesian D-optimal mixed logit
design with σβ = 18

(c) Semi-Bayesian D-optimal mixed logit
design with σβ = 0.518

(d) Locally D-optimal mixed logit design
with σβ = 18

(e) Bayesian D-optimal multinomial logit
design with covariance 9I8

(f) Bayesian D-optimal multinomial logit
design with covariance I8

(g) Locally D-optimal multinomial logit
design

(h) Nearly orthogonal design

Figure 8: Expected root mean-squared prediction errors for Ω2.
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