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We present a tactical decision model for order acceptance and capacity planning that maxi-
mizes the expected profits from accepted orders, allowing for regular as well as non-regular
capacity. We apply stochastic dynamic programming to determine a profit threshold for the
accept/reject decision as well as an optimal capacity allocation for accepted projects, both
with an eye on maximizing the expected revenues within the problem horizon. We derive a
number of managerial insights based on an analysis of the influence of project and environ-
mental characteristics on optimal project selection and capacity usage.
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1. Introduction

A lot of companies tend to accept all projects with a positive net present value (NPV),

without consideration of the effect on the planning of the already accepted projects. In case

of external projects (projects performed for customers external to the organization), this is

often the consequence of the functional separation between the order-acceptance decision,

which is made by the sales department, and capacity planning, which usually lies in the

hands of the production department. These two departments generally have conflicting

objectives: in order to boost sales, one should try to accept as many projects as possible,

while production attempts to live up to promised delivery dates. This divergence of interests

can result in considerable delays, violated due dates and/or excessive use of highly expensive

non-regular capacity such as overtime and temporary labor. It is therefore essential that

project selection and planning be integrated (Zijm 2000).

This paper examines the simultaneous dynamic order-acceptance and capacity-planning

decision. Order acceptance refers to the accept/reject decision an over-demanded company

has to make upon project arrival. Capacity planning is concerned with making a rough
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sketch of the resource usage (regular and non-regular) and the timing of the work packages

of both accepted as well as candidate projects.

In a multi-project environment, projects typically share common resources. Adequate

management of these scarce resources is therefore of crucial importance. Consequently, the

development of good acceptance rules and capacity-planning tools is extremely relevant, as

they can support decisions such as due-date quotation, price quotation and hiring non-regular

capacity. Appropriate order acceptance and capacity planning allows to gain a larger control

over the use of non-regular capacity, increase profits and improve delivery performance, which

creates a competitive advantage to the company. These benefits constitute the motivation

for this research.

Most of the existing literature on order acceptance and capacity planning deals with static

models, in which project selection is performed only once, at the beginning of the planning

horizon. Although some models also consider the possibility of intermediate action, they

are mainly suitable for internal project selection, where the set of projects available for ex-

ecution during the planning horizon is known in advance. By internal projects, we refer to

projects that have been proposed by internal customers, examples are internal R&D (Re-

search and Development) or NPD (New Product Development) projects. As a consequence,

the static approach is less realistic when dealing with external projects which, in general,

arise dynamically to the organization and require immediate response; models specific to

this situation are called dynamic models. This paper is concerned with the development of

a dynamic model for dealing with external project arrivals.

The issue of project selection can be positioned at the tactical or strategic decision-

making level and is part of project portfolio management, which is concerned with project

selection and prioritization by executive and senior management, with a focus on strategic

medium- and long-term decisions. If the financial implications of individual projects have

a considerable impact on the vitality of the organization, project selection is of strategic

importance. Additionally, strategic decision making is also concerned with setting global

capacity levels, the location of new sites, etc. At the tactical level, we encounter problems

such as selecting non-strategic projects, capacity planning, due-date setting, order bidding,

etc.

In this paper, we present a tactical decision model for order acceptance and capacity

planning that maximizes the expected profits from accepted orders under limited regular

per-period capacity; additionally, non-regular capacity units can be allocated at specific
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per-unit costs. At the completion of a project, the company receives a payoff which it can

reinvest until the end of the problem horizon at a specified interest rate. We assume that

the company has forecasts for the main features of the incoming projects. Our models are

particularly relevant for MTO (manufacture-to-order) and construction environments, where

at least rudimentary information about the work content of future projects is available.

The contributions of this text are the following. First, we introduce a formal problem

statement. Next, we apply stochastic dynamic programming (SDP) to determine a profit

threshold for the accept/reject decision, as well as an optimal capacity allocation for accepted

projects, both with an eye on maximizing the expected revenues within the problem horizon.

Finally, using the SDP formulation, we derive a number of managerial insights based on an

analysis of the influence of project and environmental characteristics on optimal project

selection and capacity usage. For example, we investigate the effect of reinvestment revenues

and of rush orders and we quantify the value of non-regular capacity units.

The remainder of this paper is organized as follows. The next section contains an overview

of the literature on project selection, in which we discuss both static and dynamic models.

In the third section, we introduce the basic problem characteristics and give an extended

problem description. Section 4 contains a presentation of our SDP models. In Section 5,

we use the developed models to derive a number of important insights, and we distinguish

the influence of the different problem characteristics. We determine the circumstances un-

der which ‘short-cut’ planning rules exist and quantify the value of capacity and due date

flexibility. In the sixth section we assess the computational performance of the model and

finally, in Section 7, we draw some conclusions and look at future research opportunities.

2. Literature survey

Project selection has been studied in a broad variety of research domains, among which

operations management, finance and managerial economics. In this section we discuss the

relevant literature for the static and dynamic selection problem primarily in operations man-

agement but also in the other two cited literature streams. Several exact and approximate

selection and planning methods have been proposed for the static problem; this literature is

the topic of the next paragraph. As for the dynamic context, the existing work is relatively

scarce and will be discussed in the second paragraph.
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2.1 The static selection problem

Static project selection implies the optimization of qualitative factors (e.g., alignment with

company strategy), quantitative criteria (e.g., return on investment, NPV) or a combination

of both. Especially for strategic decision making, the objectives will often include qualitative

factors in addition to merely quantitative profitability measures. A large part of the literature

is dedicated to R&D environments. In R&D, the encountered decision problems are mostly

strategic, given that effective R&D portfolio management is a prerequisite for the medium

and long-term success of technology-driven organizations (Cooper et al. 1999). Surveys of

R&D project selection are presented by Baker & Freeland (1975), Hall & Nauda (1990) and

Henriksen & Traynor (1999). Henriksen & Traynor (1999) categorize a wide range of tools

with varying metrics and selection methods. In the following paragraphs, we provide a brief

overview of the most-employed methods, namely mathematical programming, scoring and

sorting methods, financial models and mapping.

Early attempts to tackle static selection usually took the form of mathematical-programming

models related to knapsack formulations, for an overview we refer to Weber et al. (1990).

Static selection is regarded here as the evaluation of a set of candidate projects, where the

goal is to select a subset of projects that maximizes some objective function without violat-

ing the constraints. Integer-programming formulations are used by Beaujon et al. (2001),

Golabi (1987) and Bard et al. (1988). Some more extended models take payoff interac-

tions between projects into account (interdependencies between the financial benefits; Fox

et al. 1984, Dickinson et al. 2001) as well as technical interactions (overlap between project

contents; Czajkowski & Jones 1986).

Baker & Freeland (1975) assess why few quantitative models for R&D project selection

and capacity allocation have been implemented by managers. As a first reason, they mention

the incapability of the models to capture all important aspects of the R&D environment. A

second problem is the quantification of the qualitative features of projects. Both drawbacks

urge managers for scepticism about the outcome of the models. Hall & Nauda (1990) found

that the data required by the models is unavailable in most cases. The observation that

mathematical-programming tools have not found widespread acceptance in practice has been

confirmed more recently by Loch et al. (2001).

Other ways of approaching the static selection problem are scoring and sorting models.

These models evaluate projects based on financial or non-financial measures. Projects are
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ranked via a score determined by e.g. analytical hierarchy process (AHP) (see Saaty 1994,

Brenner 1994). Other scoring methods were developed by Henriksen & Traynor (1999) and

Eilat et al. (2006).

Financial models for portfolio selection often start from the Markowitz model, which

minimizes the variability of the return of a portfolio subject to bounds on the expected

return (see e.g. Luenberger 1998). Application of this model to R&D portfolio selection has

been suggested in the literature (Fox et al. 1984, Weber et al. 1990, Ringuest et al. 2004). In

his dissertation, Jørgensen (1999) gives an extensive overview of the literature on financial

methods applied to project selection.

Yet another angle to approach the portfolio selection problem can be found in mapping

techniques. These are graphical and charting techniques that evaluate qualitative measures

by visualizing the balance of the portfolio. Most of this literature descends from the disci-

plines of strategy and marketing. Wheelwright & Clark (1992) give practical advice on how

to organize the product development process.

The foregoing techniques mainly applied to strategic decisions. At a lower decision level

we encounter the so-called Rough-Cut Capacity Planning (RCCP) problem, which is a specific

type of tactical capacity planning. With RCCP, work packages can be executed at a variable

intensity (De Boer 1998, Hans 2001, Kis 2005). These mathematical-programming models

can be employed during the negotiation phase preceding the acceptance decision, but are

usually invoked after project selection.

Detailed operational scheduling, relating to even shorter time horizons and higher plan-

ning frequencies than tactical models, is performed at the operational decision level

(Demeulemeester & Herroelen 2002). An example of operational project selection can be

found in Yang & Sum (1997). Within the operational domain of job-shop planning, job

selection has been a topic of growing interest in the last decade. We refer to De et al. (1993)

and Slotnick & Morton (1996), who consider a pool of orders and separate sequencing and

order acceptance. Lewis & Slotnick (2002) extend the models to multiple periods. In our

opinion, the lack of information one is usually confronted with when a project is initially

presented to a company, makes such methods unfeasible for practical multi-project planning.

2.2 The dynamic selection problem

Dynamic project selection has been studied to a lesser extent than its static counterpart.

Nevertheless, a broad variety of solution methods has been proposed.
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A basic approach to dynamic selection can be found in the dynamic stochastic knapsack

developed in Kleywegt et al. (1998, 2001). This problem is an extension of Ross & Tsang’s

(1989) stochastic knapsack problem to the case where items arrive over time with an unknown

size and reward.

Queueing approaches to multi-project planning were introduced by Adler et al. (1995)

and Levy & Globerson (1997). The NPD process is modelled as a stochastic processing

network in which engineering resources are ‘workstations’ and projects are ‘jobs’ that flow

between the workstations. Both sources analyze the crucial issues responsible for time delays

and cost overruns. De Reyck (1998) points out that the resulting analysis will not produce

any detailed scheduling information on when to initiate or terminate individual activities or

entire projects, but only allows for estimation of the average time spent on a single project.

Kavadias & Loch (2004) and Lewis et al. (1999) treat the dynamic selection problem as an

admission control problem, a known problem within queueing theory.

Recently, Ebben et al. (2005) used simulation to compare different order-acceptance

strategies in a job-shop environment. A similar method was proposed by Wester et al.

(1992) and Akkan (1997) for production-to-order environments; in addition, they developed

heuristics for scheduling the accepted work orders. In a completely different context, Bal-

akrishnan et al. (1996) implement a decision-theory-based approach that reserves parts of

the capacity for specified order types through a capacity allocation policy.

Most similar to the models described in this text is the work of Perry & Hartman (2004),

who examined the problem of selecting a number of orders with fixed production schemes

from a set of arriving project offers. They solve a specific multi-knapsack problem through

SDP. The suggested method determines the order combination that maximizes the expected

future profits. Their model, however, does not define exact acceptance criteria nor does it

allow the planner to deviate from the fixed production schemes. Moreover, the allocation of

non-regular capacity units is not considered.

3. Problem description

In this section we present a detailed problem statement and explain how our assumptions

translate to a practical multi-project setting. We introduce the major characteristics of an

incoming project, namely its revenue, deadline and workload, we describe our assumptions

regarding the order-arrival process, and we elaborate how capacity utilization is modelled.
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A comprehensive illustration is provided in the final paragraph.

3.1 Project characteristics

Project acceptance and capacity planning is confronted with restricted resource availability.

We express both the project workload as well as the capacity available in the organization

in discrete capacity units (e.g. man-hours). We refer to a single capacity unit belonging to

the work content of a project as a work package.

It is standard practice for project management to structure the work content into small

manageable elements as a result of the development of a work break down structure (WBS).

A WBS is a product-oriented family-tree subdivision of the hardware, services and data

required for project realization, which provides a common framework for breaking the work

down into work packages, thus providing a greater probability that every major and minor

activity will be accounted for (Kerzner 1997).

In our model, each project k consists of an aggregated workload on a bottleneck re-

source, expressed as a discrete number pk of work packages. Precedence relations and non-

preemption constraints may apply between the work packages, for more details we refer to

Section 3.4. An accepted order can only be executed between its release time rk (a full

description of the arrival process is given in Section 3.2) and the project’s due date dk, which

is regarded here as a deadline. This implies that due dates cannot be exceeded and thus

orders for which the due date cannot be met, must be rejected. The payoff of a work order,

denoted as yk, is generated immediately when the work is completed. We assume that all

these revenues can be reinvested at a fixed interest rate i > 0.

3.2 The order arrival process

A Request for Proposal (referred to as RFP) is an invitation for suppliers, through a bidding

process, to bid on a specific product or service. An RFP typically involves more than the

price, which is why, in the context of this article, it may be more appropriate to use the

term Request for Quotation (RFQ), where discussions are not required with bidders (mainly

when the specifications of a product or service are already known), and price is the main

or only factor in selecting the successful bidder. In what follows, we use the terms ‘order’

and ‘project’ to refer either to an RFQ or to a request for execution of an order at a given

price. Since we establish a profit threshold below which prices lead to rejection, price setting

and order acceptance at a fixed price can be treated similarly. Our models are developed
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Figure 1: Order arrival process

from the viewpoint of one individual bidder, and decisions are made without consideration

of competitors.

The stream of oncoming order arrivals is the main source of uncertainty in dynamic

order acceptance. When a company has to make an accept/reject decision, it has at its

disposal only rudimentary information about the project in question and forecasts of the

main characteristics of the future incoming projects (e.g. based on sales-force polling). In

the following paragraphs we describe the assumptions underlying our model of the order

arrival process.

We discretize the planning horizon into T periods or time buckets (e.g. days or weeks).

Additionally, we introduce the concept of a stage, which is the time interval between two

consecutive project arrivals: a new stage starts every time a new project arrives. The number

of projects arriving sequentially within the planning horizon T (and hence, the number of

stages) is N . We assume that the arrivals have equal interarrival times. A visualization of

the order arrival process is given in Figure 1 with T = 10 and N = 5.

In Section 3.1 it was explained that the main characteristics of a project proposal k are

its payoff yk, a positive workload pk and a due date dk. From a given positive maximal

time lag lk allowed for realizing the project, one can easily derive the due date by adding

the stage’s release time rk to the lead time: dk = rk + lk. We represent the arriving offers

as w1,w2, . . . ,wN , with wk = (pk, yk, lk), for stage k = 1, . . . , N . A decision needs to be

made regarding order w1, and estimates about the characteristics of the stream of future

order arrivals are captured as follows: values pk, yk and lk are assumed to be realizations of

P , Y and L, respectively, each of which is a random variable (r.v.). Hence, the values wk,

k = 2, . . . , N , are independent realizations of multivariate r.v. W = (P, Y, L). The support

of P and L only contains natural numbers.

At the start of each stage k, we decide upon order acceptance and capacity allocation

of project k, with stage 1 being the first stage. Project k can be planned from its release

time rk, which is in fact the start of stage k. It will turn out in Section 4 that there is a

8



one-to-one correspondence between the stages in the order arrival process and the stages of

the SDP algorithms. Our assumption of equal interarrival times seems restrictive, but is a

representation of the fact that we use forecasts of the future arrival stream, for which only

an average interarrival time is known. When this leads to non-discrete time instants, the

planning decisions for each project are shifted towards the start of the next period. Varying

time intervals are easily incorporated, but would not really add to the value of the results of

the current text. Stochastic interarrival times can be modelled by appropriately increasing

the number of stages within a fixed time horizon and adapting the distribution of Y (event

Y = 0 then corresponds with no arrival).

3.3 Capacity profile

In this paper we consider only one resource type, which is taken to represent the bottleneck

resource of the company. For R&D projects, for instance, this resource could be a critical

testing equipment or the allocated periodical budget, while in an MTO environment it might

represent a single machine or a team of engineers. The company owns a limited number of

bottleneck capacity units. The amount of regular capacity units is the result of a long-term

strategic decision that cannot be revised within the time horizon considered in our planning

framework. In contrast, the amount of non-regular capacity units can be altered as a result

of working overtime, hiring temporary labor or outsourcing.

We count the available regular and non-regular capacity units in every time period by

means of a capacity profile, which is a vector

xk = (mk, sk), with

{
mk = (mrk

, mrk+1, . . . ,mT )
sk = (srk

, srk+1, . . . , sT )
(1)

where k represents the stage number. Here mt is the number of available regular capacity

units in time period t and st the maximum number of non-regular capacity units that can

be hired during time period t. The cost per unit of consumed non-regular capacity is c,

whereas the actual utilization of regular capacity does not give rise to incremental costs. In

stage k, xk only reflects resource availability from time rk onwards since this vector contains

all information relevant for making decisions regarding offer k. Implicitly, this derives from

the fact that all unused capacity units before rk have ‘perished’. In the remainder of this

article, we will speak of perishable resources (cfr. Weatherford & Bodily 1992); the scheduling

literature sometimes uses the term renewable resources (see, for instance, Demeulemeester

& Herroelen 2002).
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Figure 2: Capacity profile with regular (R) and non-regular (NR) capacity units

An illustration is provided in Figure 2. The capacity profile for the first stage, starting

at time 0, is x1 = (m1, s1) = ((0, 0, 1, 1, 1, 0), (0, 0, 0, 1, 0, 1)). Remark that even the capacity

profile in stage 1 can exhibit an uneven pattern: earlier decisions, e.g. under the form of firm

planned orders, may already have allocated capacity units in the current planning horizon.

3.4 The order plan

Upon arrival, the organization can choose whether to reject or to accept the project according

to any eligible order plan. An order plan is an allocation of capacity units to the different

work packages of a project. We represent an order plan j for arrival k as a vector aj
k =

(aj
km, aj

ks), where aj
km and aj

ks have the same dimension as mk and sk, and count the number

of (regular and non-regular) capacity units that are allocated to project k in each relevant

time period.

We define an order plan to be feasible if two conditions are fulfilled: (1) the total workload

of the project is covered; and (2) all work packages are planned between the stage’s release

time rk and the project’s deadline dk. The set of feasible order plans in stage k is denoted

as Fk. Additionally, the set of order plans to be examined may be reduced because of

practical considerations, which may take the form of precedence relations between the work

packages or non-preemption constraints. It may be the case, for instance, that a complete

order is imposed on the work packages (e.g. stage-gate development processes, see Cooper

et al. 1999), or that sequential testing procedures need to take place in consecutive time

periods.

When an offer is accepted according to a specific order plan, the corresponding capacity

allocation is immediately locked: the acceptance and planning decisions are made simultane-

ously. We do not allow for replanning the project: once an order plan is selected, it cannot

be altered. In case the company rejects the offer, no capacity is reserved and no further

action is taken until the next project arrival. This rejection decision cannot be withdrawn.
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Figure 3: Capacity profile with regular (R) capacity units

We associate a ‘degenerate’ order plan a0
k = 0 (the null vector) with rejection, and we let

symbol Ak represent the set of all eligible order plans augmented with a0
k.

3.5 A small example

Consider an MTO organization with the Testing Department containing two fabrication

lines as a bottleneck; the duration of a time bucket is one week. In Figure 3 the current

capacity profile is shown: m1 = (0, 0, 1, 2, 1, 2) and we do not consider overtime opportunities

(s1 = 0). The company has just received an RFQ for a project with a deadline six weeks

from now (l1 = 6). The company estimates that the execution of the order would require

three regular capacity units: p1 = 3. Due to very large set-up times, preemption is not

beneficial. The company has drawn up the set of eligible order plans aj
1m, j = 1, . . . , 5, for

project proposal w1. They are given below:

a1
1m = (0, 0, 1, 2, 0, 0) a2

1m = (0, 0, 1, 1, 1, 0) a3
1m = (0, 0, 0, 2, 1, 0)

a4
1m = (0, 0, 0, 1, 1, 1) a5

1m = (0, 0, 0, 0, 1, 2)

For instance, the first order plan represents a capacity allocation of one unit from period 3

and two units from period 4 to the incoming project.

The marketing department has forecast the incoming order arrival stream as being com-

posed of two types of projects, some 30% of which belong to the first type. The average

characteristics of each of these two types are described by W = (P, Y, L), with the following

probabilities:

Pr[(1, 5, 3)] = 0.3, P r[(2, 8, 4)] = 0.7.

Marketing foresees an arrival rate of one incoming order per week over the planning horizon

of 6 weeks (N = 6). Thus, for this example, every stage corresponds to one time period.

In the next section we develop an SDP method to determine the minimal price to be

quoted for an RFQ and to pick the best order plan.
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4. Stochastic dynamic programming

We present an SDP approach (see, for instance, Ross 1983) for order acceptance and capacity

planning. The problem is modelled as an extension of the optimal stopping problem (e.g.

Bertsekas 2005) for which we regard the capacity units as perishable assets. By selling the

assets, individually or in group, at the highest expected offer, we maximize the expected

profits. This interpretation of the problem will allow us to determine an optimal threshold

and order plan for every arriving offer.

The basic optimal stopping problem is discussed in Section 4.1, our extensions are pre-

sented in the following subsections. Our first model, presented in Section 4.2, only considers

project proposals with single-sized workloads and infinite deadlines. A more general model

is elaborated in Section 4.3.

4.1 Optimal stopping problem

We investigate and extend one specific variant of the optimal stopping problem, namely the

asset selling problem as described in Bertsekas (2005). In this setting, an asset seller receives

a random bid wk in each period, over a horizon of N periods. If the person accepts the offer,

he or she receives the payoff which can be reinvested at an interest rate i.

Bertsekas presents an SDP to determine an optimal threshold in every period for accept-

ing a bid. Its elements are the following: the state of the system in each stage k, represented

by xk, and the control space. If the bid is accepted, the system goes into the termination

state T , otherwise the state equals the last considered bid. The control space contains the

possible actions we can undertake when arriving in a new stage, which is at the arrival of a

new bid. There are two possible actions ak, namely a0
k: the rejection of the bid, and a1

k: the

selling of the asset.

4.2 Dynamic order acceptance and planning for single-sized orders

Based on the previously discussed optimal stopping problem, we develop an SDP consisting

of N stages, where N equals the number of offers within the planning horizon T , as was

described in Section 3.2. The arrival of an order corresponds to the beginning of a new stage

k. The state in stage k is the capacity profile xk. To alleviate the notation, we omit the

perished periods from the state vector (which was also suggested in Section 3.3). To this

aim we define a perishing function v that transforms a vector xk into a vector xk+1 from
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which the perished capacity units are removed. For the example in Section 3.5, we have

v(x3) = x4 = ((2, 1, 2), (0, 0, 0)). We call a specific capacity unit perishing if it perishes in

the following stage.

The control space Ak of the SDP consists of a variable number of possible actions, each

corresponding with an order plan aj
k. The reward in stage k for order plan aj

k and offer wk

is determined as:

gk(a
j
k,wk) =

{
0 if j = 0,

yk(1 + i)(T−t∗j ) − cs∗j otherwise,
(2)

where s∗j is equal to 1 if order plan aj
k allocates a non-regular capacity unit, and equal to 0

otherwise. t∗j refers to the realization time of an accepted project which is planned according

to aj
k. This point in time corresponds with the pay-out time of the project. As a result,

T − t∗j is the period for which the company receives additional interest revenues.

The backward SDP algorithm consists of iteratively solving the following recursion:
fN(xN) = max

aj
N∈AN

{gN(aj
N ,wN)} if k = N,

fk(xk) = max
aj

k∈Ak

{gk(a
j
k,wk) + E[fk+1(xk+1)]} if k 6= N,

(3)

with

xk+1 = v(xk − aj
k) (4)

and E[·] the expectation operator. xk+1 represents the state or capacity profile after imple-

menting order plan aj
k; if j = 0, xk+1 equals v(xk).

In Eq. (3), fk(xk) is the maximum expected reward that can be earned during stages

k, k + 1, . . . , N given that the initial state corresponds with xk.

Definition 1. In stage k, an order plan aj̃
k is dominated by another order plan aj

k if

gN(aj
N ,wN) ≥ gN(aj̃

N ,wN) if k = N,

gk(a
j
k,wk) + E[fk+1(xk+1)] ≥ gk(a

j̃
k,wk) + E[fk+1(x̃k+1)] if k 6= N.

Intuitively, one order plan dominates another if the second does not result in a larger value

for fk(xk) according to Eq. (3). Theorems 1, 2 and 3 below describe a number of situations

in which dominated order plans can be recognized.

Theorem 1. An order plan which employs non-regular capacity units that can be replaced

or partially replaced by regular capacity units from the same time period is always dominated

by an order plan which has adopted these replacements.
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All proofs appear in the appendix.

Definition 2. A state xk is larger than (>l) another state x̃k if the capacity profile of xk

contains every capacity unit of the capacity profile of x̃k and at least one additional capacity

unit. Two states are equal (=) if their stage number and capacity profile are the same.

Lemma 1. If xk is larger than (>l) x̃k then the maximum expected reward from xk is larger

than or equal to the maximum expected reward from x̃k.

Theorem 2. An order plan that results in a non-positive reward is always dominated by

rejecting the offer.

Theorem 3. An order plan aj
k that employs one or more perishing regular capacity units

dominates any order plan aj̃
k that has replaced one or more of these perishing regular capacity

units with non-perishing capacity units.

Under certain conditions, the theorem can be strengthened.

Corollary 1. When Ak = Fk ∪ {a0
k}, any order plan that allocates non-perishing capacity

units while leaving perishing regular capacity units unallocated, is dominated.

By iterative solution of the SDP recursion of Eq. (3) we can derive the optimal accep-

tance threshold αk and the optimal planning method for incoming order wk. To this aim we

define f j
k(xk) as gk(a

j
k,wk) + E[v(xk+1 − aj

k)] if k 6= N and as gN(aj
N ,wk) if k = N . f j

k(xk)

has slope 0 if j = 0 and slope (1 + i)(T−t∗j ) ≥ 1 otherwise. The non-decreasing piecewise

linear function fk(xk) can now be written as max
aj

k∈Ak

{f j
k(xk)}. In each of the subintervals

[0, αk[, [αk, θ
1
k[, [θ

1
k, θ

2
k[, . . . , [θ

n
k ,∞[ of yk, the function fk(xk) coincides with one of the func-

tions f j
k(xk). The threshold αk is max{yk|f 0

k (xk) ≥ f j
k(xk), j 6= 0}. For each subinterval, the

best order plan is the one that maximizes fk(xk) in that interval, as visualized in Figure 4.

Observation 1. The maximum expected reward that can be earned during stages k, k +

1, . . . , N for a given initial state xk, fk(xk), is a non-decreasing convex function of the

current project payoff yk.

To illustrate the solution method we consider a company that has been offered a project

with a payoff of 10 if realized with regular capacity (y1 = 10). Assume we are at time instant

0 looking at the next three weeks (T = 3). The capacity profile within the problem horizon
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Figure 4: Threshold and order plan determination

Figure 5: Example with regular (R) and non-regular (NR) capacity units

is x1 = ((0, 1, 1), (0, 1, 0)) and is depicted in Figure 5. We ignore the possibility to reinvest

the revenues and set the interest rate i to 0. The cost of one unit of non-regular capacity is

c = 5. There is one project arrival per week (N = 3) and the payoffs of the incoming orders

are forecast to adhere to a continuous uniform distribution, with probability distribution

function:
uY (y) = 1

12
, 2 ≤ y ≤ 14,

= 0, otherwise.

The DP algorithm described by Eq. (3) corresponds with the third-stage values, (k = N):

f3((1), (0)) = y3,

E[f3((1), (0))] =
∫ 14

2
( 1

12
y)dy = 8,

f3((0), (0)) = 0.

For f3((1), (0)), we can choose between two order plans: a0
3 and a1

3. a0
3 is the null vector:

03 = ((0), (0)). Order plan a1
3 = ((1), (0)) implies the allocation of the regular capacity unit

from period 3 to the project. Since rejection has a reward of 0, order plan a1
3 maximizes the

reward.

The values for stage 2 are the following. We only show the state vectors that will be employed

15



in the first stage, and we identify the elements of the control space between straight brackets:

f2((1, 1), (1, 0)) = max


E[f3((1), (0))] [a0

2 = 02]
y2 + E[f3((1), (0))] [a1

2 = ((1, 0), (0, 0))]
y2 + E[f3((0), (0))] [a2

2 = ((0, 1), (0, 0))]

 ,

= y2 + E[f3((1), (0))],

E[f2((1, 1), (1, 0))] =
∫ 14

2
( 1

12
y)dy + 8 = 16,

f2((0, 1), (1, 0)) = max{E[f3((1), (0))]; y2 − 5 + E[f3((1), (0))]; y2},
E[f2((0, 1), (1, 0))] =

∫ 5

2
( 1

12
· 8)dy +

∫ 14

5
1
12

(y + 3)dy = 11.5,
f2((1, 0), (1, 0)) = y2,

E[f2((1, 0), (1, 0))] =
∫ 14

2
( 1

12
y)dy = 8.

With f2((1, 1), (1, 0)), we associate three eligible order plans: a0
2, a1

2 and a2
2. Following

Theorem 3, we need not consider the last order plan a2
2 since it is dominated by a1

2. The

best order plan for f2((0, 1), (1, 0)) cannot be determined unambiguously. If the payoff of

the project proposal lies within the interval [2, 5], rejection maximizes the expected value of

the following stages. If the income is within [5, 14], order plan a1
2 = ((0, 0), (1, 0)) becomes

the best choice.

In the first stage, we have:

f1((0, 1, 1), (0, 1, 0)) = max


E[f2((1, 1), (1, 0))] [a0

1 = 0]
E[f2((0, 1), (1, 0))] + 10 [a1

1 = ((0, 1, 0), (0, 0, 0))]
E[f2((1, 0), (1, 0))] + 10 [a2

1 = ((0, 0, 1), (0, 0, 0))]

 ,

= max{16; 21.5; 18}.

In combination with the example’s capacity profile, we can choose from three order plans in

the first stage. The first corresponds to rejection; the other two consist of planning in period

2 and 3, respectively. Since E[f2((0, 1), (1, 0))] > E[f2((1, 0), (1, 0))], the optimal payoff

threshold for accepting a project at time 0 is α1 = 4.5. The incoming order will preferably

be planned in time period 2.

4.3 General dynamic order acceptance and planning

In this section, we generalize the solution method for orders with different workloads and

due dates. The overall solution approach is the same as in the previous section but the

implementation becomes a bit more intricate.

For the reward gk in stage k, a redefinition of s∗j is due: s∗j now denotes the number of

non-regular capacity units employed when implementing order plan aj
k. Theorems 1, 2 and 3

remain valid. The SDP recursion from Eq. (3) can be used to solve the generalized problem.
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Figure 6: Example with regular (R) and non-regular (NR) capacity units

The method for the calculation of the optimal acceptance threshold and the derivation of

the best order plan as given in previous section (Section 4.2), remains valid.

As an illustration, we consider a project offered to a company at time 0. The company

assesses that this project would generate a payoff of 18 (= y1) if realized with regular capacity.

The project would require two work packages of the company’s key resource (p1 = 2).

Delivery of the project is due within two weeks (l1 = 2). The problem horizon T is set to

three weeks. At this moment, the profile of the available capacity is x1 = ((0, 2, 1), (1, 0, 0)),

a visualization is given in Figure 6. The interest rate i is set to 10% and the cost of one

unit of non-regular capacity amounts to 10. We anticipate the arrival of one RFQ per week

within the problem horizon, so that N = 3. The company has defined six order types, the

average characteristics of which are described by W = (P, Y, L). The forecasting information

contains the following probabilities:

Pr[(1, 8, 1)] = 0.1, P r[(1, 8, 2)] = 0.1,
P r[(1, 12, 1)] = 0.2, P r[(1, 12, 2)] = 0.1,
P r[(2, 18, 1)] = 0.1, P r[(2, 18, 2)] = 0.4.

We derive the following third-stage values:

f3((1), (0)) =

{
y3, if p3 = 1,
0, if p3 = 2,

E[f3((1), (0))] = 0.1(8 + 8 + 12) + 0.2× 12 + 0.1× 0 + 0.4× 0 = 5.2,
f3((0), (0)) = 0.

We calculate E[f3((1), (0))] as the sum of the probability of the different order types multi-

plied with the corresponding value for f3((1), (0)).
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The second-stage computations are:

f2((2, 1), (0, 0)) = y2(1.1) + E[f3((1), (0))],
E[f2((2, 1), (0, 0))] = 14.2× 1.1 + 5.2 = 20.82,
f2((2, 0), (0, 0)) = y2(1.1) + E[f3((1), (0))],
E[f2((2, 0), (0, 0))] = 20.82,

f2((1, 1), (0, 0)) =


y2(1.1) + E[f3((1), (0))], if p2 = 1,
max{E[f3((1), (0))]; y2}, if p2 = 2 ∧ l2 = 2,
0, otherwise,

E[f2((1, 1), (0, 0))] = 0.2(8× 1.1 + 5.2) + 0.3(12× 1.1 + 5.2) + 0.4× 18 = 15.52,

f2((1, 0), (0, 0)) =

{
y2(1.1) + E[f3((1), (0))], if p2 = 1,
0, otherwise,

E[f2((1, 0), (0, 0))] = 0.2(8× 1.1 + 5.2) + 0.3(12× 1.1 + 5.2) = 8.32,

f2((0, 1), (0, 0)) =

{
max{E[f3((1), (0))]; y2}, if p2 = 1 ∧ l2 = 2,
0, otherwise,

E[f2((0, 1), (0, 0))] = 0.1× 8 + 0.1× 12 = 2,
f2((0, 0), (0, 0)) = 0.

The first-stage computations suggest acceptance of the project w1:

f1((0, 2, 1), (1, 0, 0)) = max


E[f2((2, 1), (0, 0))] [a0

1]
E[f2((1, 1), (0, 0))] + 18× 1.1− 10 [a1

1]
E[f2((0, 1), (0, 0))] + 18× 1.1 [a2

1]

 ,

= max{20.82; 25.32; 21.8}.

In stage one, three order plans are taken into consideration; the first one equals ((0, 0, 0), (0, 0, 0)).

The second order plan ((0, 1, 0), (1, 0, 0)) allocates the non-regular capacity unit from period

1 at a cost of 10 and the regular capacity unit from period 2. The finish time of the project

precedes the end of the planning horizon, T , so that interest revenues are reaped. The third

possibility ((0, 2, 0), (0, 0, 0)) is to plan on the two regular capacity units from the second

period, so that the finish time of this order plan is the same as of the first plan. From the

stage-one computations, we learn that the order can be optimally executed with one non-

regular capacity unit from period 1 and one regular capacity unit from the second period.

In addition, we formulate a payoff threshold as an acceptance rule for incoming projects

with the same characteristics. For this example the required minimal payoff is 13.91 in

combination with order plan a1
1. However, if we changed the cost c of a unit non-regular

capacity to 15, it would no longer be optimal to make use of this capacity unit. In this

case, f1((0, 2, 1), (1, 0, 0)) = max{20.82; 20.32; 21.8}, so that the best order plan would be a2
1

which uses the free capacity from period 2. In addition, the payoff threshold would be raised

to 17.11.
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5. Insights and discussion

In Section 4 we have derived project-specific acceptance thresholds which equal the minimal

revenue desired from a project. For the optimal stopping problem (Section 4.1), on the

other hand, the threshold is actually the minimal bid required for the sale of one specific

capacity unit. While elaborating this basic model, we have in fact determined minimal

prices for specific combinations of capacity units as specified by the order plans. The best

combination of capacity units led us to a payoff threshold for the incoming project. Based

on the threshold calculation in Section 4.2 (and contrary to the models of Bertsekas), one

can easily construct examples where the threshold for a specific project exhibits an irregular

evolution in the stage number.

The SDP recursion in Eq. (3) shows that optimal acceptance and planning decisions

depend on (1) the immediate reward and (2) the expected future rewards. The immediate

reward can easily be maximized, while high expected future rewards are the result of a

good fit between the future arrival characteristics and the capacity profile (after the stage’s

capacity allocation). Unfortunately, optimal ‘short-cut’ rules cannot easily be determined,

and may not even exist, since the influential characteristics have diverging effects. For

example, different properties of the order arrival stream (e.g. finite maximal time lags) lead

to better results in combination with different capacity profiles (e.g. levelled profile).

Using a general framework, we isolate and quantify the different influential effects. In

our analysis we determine the specific circumstances under which ‘simple’ planning rules are

optimal. In the remainder of this section, we first present the general framework that will be

used to examine the influential characteristics. Subsequently, we separate and quantify the

effects from perishable capacity units, finite time lags and reinvestment revenues. Finally, we

estimate the worth of having a non-regular capacity unit at one’s disposal and we quantify

the value of due-date flexibility.

5.1 General framework

We consider a general framework with single-sized incoming projects of order type A and

B. Order type z has a maximal time lag of lz and a payoff of yz, z = A, B; we assume that

yA > yB. The probability that an arrival belongs to type z is denoted as Pr[z]. We consider

the capacity profile x1 = ((0, . . . , 1, 1), (0, . . . , 0, 1)). Within our framework, periods coincide

with stages. The cost of a non-regular capacity unit may vary between 0 and ∞, and we
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distinguish three cases:

(a) c = 0: the available overtime is free;

(b) 0 < c < ∞: overtime can be hired at a certain cost;

(c) c = ∞: there are no overtime opportunities.

These three cases are visualized in Figure 7.

(a) c = 0 (b) c > 0

(c) c = ∞

Figure 7: General framework with regular (R) and non-regular (NR) capacity units

The stage-N values are derived for the general case:

E[fN((1), (1))] = Pr[A] · yA + Pr[B] · yB = ȳ,
E[fN((0), (1))] = Pr[A] ·max{yA − c; 0}+ Pr[B] ·max{yB − c; 0}.

Using the recursion from Eq. (3) and invoking Theorem 1 we obtain the expected values for

stage N − 1:

E[fN−1((1, 1), (0, 1))] = ȳ(2 + i),
E[fN−1((1, 0), (0, 1))] = ȳ(1 + i) +

∑
z=A,B Pr[z] ·max{yz − c; 0},

E[fN−1((1, 0), (0, 0))] = ȳ(1 + i),
E[fN−1((0, 1), (0, 1))] =

∑
z=A,B Pr[z] ·max{if lz > 1 : yz + E[fN((0), (1))], else 0; ȳ},

E[fN−1((0, 0), (0, 1))] = Pr[A] ·max{if lA > 1 : yA − c, else 0; Pr[A] ·max{yA − c; 0}
+Pr[B] ·max{yB − c; 0}}+ Pr[B] · (Pr[A] ·max{yA − c; 0}+
Pr[B] ·max{yB − c; 0}).

For stage N − 2, we calculate:

E[fN−2((0, 1, 1), (0, 0, 1))] =
∑

z=A,B Pr[z] ·max{if lz > 2 : yz + E[fN−1((1, 0), (0, 1))],

else 0; if lz > 1 : yz(1 + i) + E[fN−1((0, 1), (0, 1))], else 0;
ȳ(2 + i)},

E[fN−2((0, 1, 0), (0, 0, 1))] =
∑

z=A,B Pr[z] ·max{if lz > 2 : yz − c+

E[fN−1((1, 0), (0, 0))], else 0; if lz > 1 : yz(1 + i)
+E[fN−1((0, 0), (0, 1))], else 0; E[fN−1((1, 0), (0, 1))]},

E[fN−2((0, 0, 1), (0, 0, 1))] =
∑

z=A,B Pr[z] ·max{if lz > 2 : yz + E[fN−1((0, 0), (0, 1))],

else 0; E[fN−1((0, 1), (0, 1))]}.

The foregoing quantities will be used throughout the remainder of Section 5.
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5.2 Perishable capacity units

In accordance with the general framework, we will say that early planning, meaning planning

on the first available capacity unit, is preferred in stage N − k if

yN−k(1 + i) + E[fN−k−1((0, 0, 1), (0, 0, 1))] ≥ yN−k + E[fN−k−1((0, 1, 0), (0, 0, 1))].

We obtain the following result:

Theorem 4. Within the general framework, in the absence of reinvestment revenues (i = 0)

and in case of infinite time lags (lz = ∞, z = A, B), early planning is preferred if the cost

of a non-regular capacity unit is larger than yB, else the planner remains indifferent to the

chosen order plan.

Logically, early available capacity units cannot give rise to more allocation opportunities

than later ones and thus have a larger risk of perishing without being used.

Previously, we have shown in Theorem 3 and Corollary 1 that order plans that allocate

perishing capacity units are favored. Likewise, Theorem 4 suggests that in the absence of

reinvestment revenues and in case of infinite time lags, we need only consider order plans

that plan early in time.

5.3 Finite maximal time lags

When we restrict the length of the maximal time lags, Theorem 4 no longer applies. The

reason is that capacity units from early time periods do not necessarily generate fewer allo-

cation opportunities than units from later periods. As an example we present rush orders,

which are order types with higher payoffs in combination with smaller time lags than other

order types.

A rush order with a maximal time lag of one can only be planned at its release time,

so that, for a specific capacity unit, the probability of receiving this rush order depends on

the number of available capacity units in the same period and not on the time until the

unit perishes. Under these circumstances, planning other order types on the early capacity

unit may no longer be the best option. This intuition is confirmed by our analysis based on

the general framework from Section 5.1. Order type A is considered to be a rush order, so

that yA > yB ∧ lA < lB. For convenience, we set lA = 1, lB > 3 and i = 0 to eliminate
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the influence of reinvestment revenues. From the general framework, we learn that early

planning does not prevail since

E[fN−2((0, 0, 1), (0, 0, 1))] < E[fN−2((0, 1, 0), (0, 0, 1))]

for cases (a) and (b): the resulting profile on the right side of the equation has more op-

portunities to accept high-payoff rush orders. In case (c), both options are equally good

as a consequence of equal opportunities for accepting project A in both resulting capacity

profiles. These equations remain valid for offers in stage N − 4.

Building on the foregoing paragraph, we advance that companies that are confronted

with rush orders benefit from a levelled capacity profile, which is a profile with more or less

equal allocation opportunities in every period. This can be illustrated through a comparison

of the profits resulting from a non-levelled profile xNL
N−2 = ((0, 0, 2)(0, 0, 0)) and levelled

xL
N−2 = ((0, 1, 1)(0, 0, 0)). In the presence of a rush order type A with lA = 1 (and i = 0), it

holds that E[fN−2(x
L
N−2)] > E[fN−2(x

NL
N−2], which implies that the levelled profile leads to

better results, whereas the company would remain neutral in relation to both profiles if the

time lags of both types were sufficiently large.

5.4 Reinvestment revenues

When the interest rate i has a strictly positive value, reinvestment revenues can be reaped.

In stage N − 3 of the general framework, early planning is best in all three cases from the

general framework when

yN−3 > Pr[A] · yA + Pr[B] · ȳ.

In addition, early planning is preferred if c ≥ yB for very small interest rates. For incoming

projects in stage N − 4, arrival wN−4 is planned early if

yN−4 > Pr[A] · yA + Pr[B] · (Pr[A] · yA + Pr[B] · ȳ).

Early planning is also best when c ≥ yB and the interest rate is near zero. The right-

hand side of the two foregoing equations constitutes a cut-off value on the payoff of the

incoming project, above which early planning is preferred; one could speak of high- versus

low-payoff projects. We conclude that, when the interest rate i has a positive value, high

payoffs generate high reinvestment revenues and are thus better planned early in time, while

low-payoff projects are pushed later in time to leave room for other projects.
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We also observe that the cut-off value for early planning increases with the number of

stages N in the planning horizon. This observation is related to the fact that the value

function of our SDP (as given by Eq. (3)) is non-decreasing with N .

5.5 Non-regular capacity units

The presented models support the quantification of the value of having non-regular capacity

units at one’s disposal. This can be useful when the price of keeping non-regular capacity

available needs to be negotiated with subcontractors.

As an example we again consider the rush-order case from Section 5.3. When calculat-

ing the difference between the expected value of case (b) and (a), we derive the value of

the non-regular capacity unit in stage N − 3. If yB > c then E[fN−2((0, 1, 1), (0, 0, 1))] −
E[fN−2((0, 1, 1), (0, 0, 0))] = Pr[B] · (yB − c) and if yB ≤ c then E[fN−2((0, 1, 1), (0, 0, 1))]−
E[fN−2((0, 1, 1), (0, 0, 0))] = 0, so that the availability of a non-regular capacity unit is valu-

able only if the unit hiring cost is smaller than the payoff of project B. In this setting,

the value of the non-regular capacity unit is independent of yA, which may seem counter-

intuitive. The reason is simply that the rush order under examination can only be executed

at its release time so that only orders of type B can be associated with the non-regular

capacity unit in question.

5.6 Valuation of flexible due dates

Our models also allow for the valuation of increased flexibility under the form of an extension

of the maximal time lag. For an illustration we examine the example of Section 4.3. Suppose

that the deadline of the project w1 under consideration were increased by one time period.

This would result in two additional eligible order plans, namely a3
1 = ((0, 0, 1), (1, 0, 0))

and a4
1 = ((0, 1, 1), (0, 0, 0)). As a consequence, f1((0, 2, 1), (1, 0, 0)) would change into

max{{20.82; 25.32; 21.8} ∪ {28.88; 26.32}}. The value of the increase in flexibility is 3.56,

which represents the increase in the expectation at time 0 of the value at time T of the

selected portfolio. When using this value during negotiations with the customer (e.g. for

granting discounts), the time value of money should obviously be taken into account.
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6. Computational performance of the model

The presented SDP approach has the advantage of easily dealing with many different problem

characteristics (varying due dates, hiring non-regular capacity units, precedence relations,. . .).

A downside to the high flexibility is the large problem size, reflected in the numerous variables

in the state vector. This causes the dynamic program to blow up and become unmanageable

for all but relatively small problem sizes. Fortunately, as was demonstrated in the first illus-

tration (see Section 4.2), it is not always necessary to calculate all possible states in order

to solve the model.

The number of states of the solution method can be obtained by summing the number of

states per stage over all stages. From Section 3.3, we know that the number of possible states

in each stage is non-increasing with the stage number. An upper bound for the number of

states in stage k is the number of different capacity profiles, calculated as:

T∏
j=rk+1

mj +

T−rk∑
j=1

(
T−rk

j

)
m̂

(T−rk−j)
k (ŝk + 1)j

(5)

with m̂k and ŝk representing the maximal number of the per-period regular and non-regular

capacity units between time rk and T , respectively. The first part of Eq. (5) represents the

number of capacity profiles for which the regular capacity is not exhausted (mt > 0) in any

period, while the second part is an upper bound for the number of profiles for which no

regular capacity units are available during at least one period. In periods with depleted

regular capacity units, non-regular capacity can be allocated until exhaustion. The index j

represents the number of periods for which the regular capacity is depleted. The binomial

coefficient counts the number of ways of picking j unordered outcomes (depleted periods)

from T−rk possibilities (periods). An upper bound on the total number of states is obtained

by summing Eq. (5) from k = 2 to k = N . Since there is only one state to consider in stage

1, we increase the result by 1.

7. Conclusions and further research

In this paper, we have investigated dynamic order acceptance and planning in an over-

demanded multi-project organization that aims at maximizing its profits. We have stressed

the importance of integrating order acceptance and capacity planning in order to be able to

live up to competitive due dates and reduce the sometimes excessive use of highly expensive
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non-regular capacity. We have used stochastic dynamic programming to maximize the ex-

pected profits of the company within the planning horizon. Our exact methods have allowed

us to gain valuable insights into how the problem characteristics influence the acceptance

and capacity-planning decisions. We have separated and quantified the influence of a num-

ber of problem characteristics, such as perishable capacity units, finite maximal time lags,

reinvestment revenues and non-regular capacity units.

We have established that without reinvestment revenues and with infinite deadlines, one

need only consider early planning. When the maximal time lags become restrictive, this

policy is no longer optimal; when companies are confronted with rush orders, for instance,

it makes more sense to strive for a levelled capacity profile. In general, the best planning

policy aims at reducing the risk of having to reject short-lagged projects because of a lack

of available capacity units. The effect of reinvestment revenues on the planning decision has

also been investigated. We conclude that high payoffs generate high reinvestment revenues

and are thus better planned early; our model allows us to determine the cut-off between

high- and low-payoff projects. In the final paragraphs, we have quantified the gains from

non-regular capacity units and from due-date flexibility.

Since the size of the dynamic program has the tendency to blow up quickly, further

research is needed if optimal planning solutions are to be developed for realistically-sized

problems. We are convinced that the models and insights described in this paper can serve

as guidelines in this process. In these future models, it would be interesting to incorporate

the possibility of replanning once a project is accepted. Within this extension, we could view

the estimated realization time of the project as a due date which can be deviated from at a

contract-specified lateness cost.

Appendix: proofs

Proof (Theorem 1): We assume that xk is a state vector with at least one unit of regular

and non-regular capacity available in time period q. Order plan aj
k allocates a unit of regular

capacity from period q. aj̃
k is associated with a similar order plan, for which the unit of

regular capacity from period q is replaced with a unit of non-regular capacity from the same

period. Following Definition 1, two cases need to be considered.

Case 1: k = N . From Eq. (2), the reward function equals yk(1 + i)(T−t∗j ) − cs∗j , since we

know that j 6= 0. The first term remains the same for both order plans. The second term,
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however, is smaller for order plan aj̃
N because of the additional cost c of the non-regular

capacity unit.

Case 2: k 6= N . As was established for Case 1, the reward for both order plans differs with

a value of c. The theorem is thus proven if:

E[fk+1(xk+1)] + c ≥ E[fk+1(x̃k+1)]. (A1)

We assume that xk+1 and x̃k+1 are the state vectors after implementing order plan aj
k and aj̃

k,

respectively. In every later stage k+ l, we choose the best order plan ãh
k+l and the (except for

at most one capacity unit) similar order plan ah
k+l from the respective decision sets Ãk+l and

Ak+l. This strategy only maximizes the value of fk+l(x̃k+l) while it derives a lower bound for

fk+l(xk+l). Below, we list all arguments to the max-operator of Eq. (3) for the two decision

sets.

Ãk+l Ak+l︷ ︸︸ ︷ ︷ ︸︸ ︷
ã0

k+l : E[fk+l+1(x̃k+l+1)] a0
k+l : E[fk+l+1(xk+l+1)]

ã1
k+l : gk+l(ã

1
k+l,wk+l)+ a1

k+l : gk+l(ã
1
k+l,wk+l)− c+

E[fk+l+1(v(xk+l − a1
k+l))] E[fk+l+1(v(xk+l − a1

k+l))]
. . . . . . . . . . . .

ãn
k+l : gk+l(ã

n
k+l,wk+l)+ an

k+l : gk+l(ã
n
k+l,wk+l)− c+

E[fk+l+1(v(xk+l − an
k+l))] E[fk+l+1(v(xk+l − an

k+l))]
ãn+1

k+l : gk+l(a
n+1
k+l ,wk+l)+ an+1

k+l : gk+l(a
n+1
k+l ,wk+l)+

E[fk+l+1(v(x̃k+l − ãn+1
k+l ))] E[fk+l+1(v(xk+l − an+1

k+l ))]
. . . . . . . . . . . .

ãM
k+l : gk+l(a

M
k+l,wk+l)+ aM

k+l : gk+l(a
M
k+l,wk+l)+

E[fk+l+1(v(x̃k+l − ãM
k+l))] E[fk+l+1(v(xk+l − aM

k+l))]

Three types of order plans exist: degenerate plans (h = 0), plans that allocate a regular

capacity unit from period q in ãh
k+l and a non-regular unit from the same period in ah

k+l

(h = 1, 2, . . . , n) and remaining order plans (h = n+1, . . . ,M). If ah
k+l, with h = 1, 2, . . . , n;

is chosen and results in a negative reward gk+l(ã
h
k+l,wk+l)−c, the reward is set to 0. Theorem

2 confirms that we still derive a lower bound.

In order to prove Eq. (A1) we examine all possible situations.

Step 0: set l = 1.

Step 1: if the capacity units from period q have perished while entering stage k + l then the

state vectors x̃k+l and xk+l are equal, so that Eq. (A1) is true. If stage k + l = N then we

combine Eq. (2) and Eq. (A1): E[gN(ah
N ,wN)] + c ≥ E[gN(ãh

N ,wN)]. Since the non-regular
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unit can only be assigned in case yN > c, the first term will always be larger than or equal

to the second term.

Step 2: The chosen order plan belongs to one of the three groups;

Case 1: h = 0; Set l := l + 1. Go to step 1.

Case 2: h ∈ {1, 2, . . . , n}; the order plans only differ in their stage k + l reward. The logic

of step 1 proves Eq. (A1).

Case 3: h ∈ {n + 1, n + 2, . . . ,M}; the immediate rewards from these order plans are equal.

Set l := l + 1. Go to step 1. �

Proof (Lemma 1): The lemma states that E[fk(xk)] ≥ E[fk(x̃k)] if xk >l x̃k.

Case 1: k = N ; the lemma holds if max
aj

N∈AN

{gN(aj
N ,wN)} ≥ max

ãj̃
N∈ÃN

{gN(ãj̃
N ,wN)}, accord-

ing to Eq. (3). Since xk >l x̃k, the set of eligible order plans ÃN ⊆ AN , such that

gN(aj
N ,wN) ≥ gN(ãj̃

N ,wN).

Case 2: k 6= N ; we follow the same reasoning as for Case 1. From Eq. (3), we de-

rive that E[fk(xk)] ≥ E[fk(x̃k)] if max
aj

k∈Ak

{gk(a
j
k,wk) + E[fk+1(xk+1)]} ≥ max

ãj̃
k∈Ãk

{gk(ã
j̃
k,wk) +

E[fk+1(x̃k+1)]}. Since xk is the larger state, it follows that Ãk ⊆ Ak. The maximum over all

eligible order plans in the decision set Ãk can therefore never be larger than the maximum

over all order plans in decision set Ak. �

Proof (Theorem 2): Suppose order plan aq
k (q 6= 0) results in an immediate non-positive

reward: gk(a
q
k,wk) ≤ 0. Following Definition 1 two cases need to be considered.

Case 1: k = N ; since rejection has a zero reward and gN(aq
N ,wN) ≤ 0, the first case of

Definition 1 is established.

Case 2: k 6= N ; since gk(a
0
k,wk) = 0 accordance with Definition 1 is shown if:

gk(a
q
k,wk) + E[fk+1(v(xk − aq

k))] ≤ E[fk+1(v(xk))]. (A2)

Since q 6= 0, aq
k must allocate a positive number of capacity units. Therefore, xk >l xk − aq

k.

Based on the definition of the perishing function v in Eq. (4), we conclude that xk+1 ≥l v(xk−
aq

k). From Lemma 1 we know that E[fk+1(xk+1)] ≥ E[fk+1(v(xk−aq
k))] if xk+1 >l v(xk−aq

k).

In case xk+1 = v(xk − aq
k), we can easily establish that E[fk+1(xk+1)] = E[fk+1v((xk − aq

k))]

following the reasoning of the same theorem. Since gk(a
q
k,wk) ≤ 0, Eq. (A2) is valid. �

Proof (Theorem 3): The reward function from Eq. (2) is yk(1 + i)(T−t∗j ) − cs∗j . The first

term of the reward function can be affected by changing to an order plan with a different

27



finish time t∗j . Since perishing capacity units must be, by definition, situated in the first

periods of the time line, t∗j can never be decreased by replacing capacity units with other

non-perishing capacity units. Therefore the first term of the reward function cannot increase

by switching to aj̃
k. The second term of the reward function equals the cost of non-regular

resource usage. Since no non-regular capacity units from order plan aj
k may be replaced with

regular capacity units in order plan aj̃
k, the second term cannot decrease through a switch

of plans. From this discussion we conclude that

gk(a
j
k,wk) ≥ gk(a

j̃
k,wk), for k = 1, . . . , N. (A3)

Case 1: k = N ; following Definition 1, the validity of the theorem is established in Eq. (A3).

Case 2: k 6= N ; the theorem is valid if

gk(a
j
k,wk) + E[fk+1(v(xk − aj

k))] ≥ gk(a
j̃
k,wk) + E[fk+1(v(xk − aj̃

k))]. (A4)

Since order plan aj
k has more units that perish in stage k + 1 and both order plans must

allocate the same number of units, v(xk − aj
k) is larger than v(xk − aj̃

k). Eq. (A4) follows

from Lemma 1 and Eq. (A3). �

Proof (Corollary 1): In case Ak = Fk ∪ {a0
k}, any eligible order plan that allocates non-

perishing capacity units while leaving regular perishing capacity units unallocated, can be

replaced by another eligible order plan for which a number of the allocated non-perishing

capacity units are replaced by perishing regular capacity units. Theorem 3 states that the

second order plan dominates the first one. �

Proof (Theorem 4): The theorem is proven by induction on the number of stages. As

initial step, we wish to show that

E[fN−2((0, 0, 1), (0, 0, 1))] ≥ E[fN−2((0, 1, 0), (0, 0, 1))].

Using the general framework, it is easy to establish that:

If c ≤ yB ⇒ E[fN−2((0, 0, 1), (0, 0, 1))] = E[fN−2((0, 1, 0), (0, 0, 1))],
otherwise ⇒ E[fN−2((0, 0, 1), (0, 0, 1))] > E[fN−2((0, 1, 0), (0, 0, 1))].

The second part of the proof consists in demonstrating the validity of the induction step:

E[fN−k((0, . . . , 0, 1), (0, . . . , 0, 1))] ≥ E[fN−k((0, . . . , 1, 0), (0, . . . , 0, 1))] ⇒
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E[fN−k−1((0, . . . , 0, 1), (0, . . . , 0, 1))] ≥ E[fN−k−1((0, . . . , 1, 0), (0, . . . , 0, 1))].

The induction step can be written as:

∑
z=A,B Pr[z] ·max

{
E[fN−k+1((0, . . . , 0, 1), (0, . . . , 0, 1))] [a0

N−k]
yz + E[fN−k+1((0, . . . , 0, 0), (0, . . . , 0, 1))] [a1

N−k]

}
≥

∑
z=A,B Pr[z] ·max


E[fN−k+1((0, . . . , 1, 0), (0, . . . , 0, 1))] [ã0

N−k]
yz + E[fN−k+1((0, . . . , 0, 0), (0, . . . , 0, 1))] [ã1

N−k]
yz − c + E[fN−k+1((0, . . . , 1, 0), (0, . . . , 0, 0))] [ã2

N−k]


⇒

∑
z=A,B Pr[z] ·max

{
E[fN−k((0, . . . , 0, 1), (0, . . . , 0, 1))] [a0

N−k−1]
yz + E[fN−k((0, . . . , 0, 0), (0, . . . , 0, 1))] [a1

N−k−1]

}
≥

∑
z=A,B Pr[z] ·max


E[fN−k((0, . . . , 1, 0), (0, . . . , 0, 1))] [ã0

N−k−1]
yz + E[fN−k((0, . . . , 0, 0), (0, . . . , 0, 1))] [ã1

N−k−1]
yz − c + E[fN−k((0, . . . , 1, 0), (0, . . . , 0, 0))] [ã2

N−k−1]

 .

Case 1: c ≥ yA; due to Theorem 2 the allocation of the non-regular capacity unit (ã2
k)

need not be considered. The validity of the induction step is based on two arguments.

First of all, planning on the regular capacity unit (a1
k and ã1

N−k) results in the same reward

yz + E[fN−k((0, . . . , 0, 0), (0, . . . , 0, 1))] for both capacity profiles. Secondly, the induction

hypothesis states that in case of rejection, E[fN−k((0, . . . , 0, 1), (0, . . . , 0, 1))] is larger than

or equal to E[fN−k((0, . . . , 1, 0), (0, . . . , 0, 1))].

Case 2: c < yA; using the argumentation from case 1, the theorem is proven if we demonstrate

that yz +E[fN−k((0, . . . , 0, 0), (0, . . . , 0, 1))] ≥ yz−c+E[fN−k((0, . . . , 1, 0), (0, . . . , 0, 0))]. We

again consider two cases: c < yB and c ≥ yB.

If c < yB, it follows that:

E[fN−k((0, . . . , 0, 0), (0, . . . , 0, 1))] ≥ −c+ E[fN−k((0, . . . , 1, 0), (0, . . . , 0, 0))]

⇒ (yA − c) · Pr[A] · (1− (Pr[B])k+1)/Pr[A] + (yB − c) · (Pr[B])k+1 ≥
−c + yA · Pr[A] · (1− (Pr[B])k)/Pr[A] + yB(Pr[B])k

⇒ 0 ≥ (yB − yA) · (Pr[B])k · Pr[A].

If c ≥ yB, we do not accept project B because of Theorem 2, so that

E[fN−k((0, . . . , 0, 0), (0, . . . , 0, 1))] ≥ −c + E[fN−k((0, . . . , 1, 0), (0, . . . , 0, 0))]

⇒ (yA − c) · Pr[A] · (1− (Pr[B])k+1)/Pr[A] ≥ −c + yA · Pr[A] · (1− (Pr[B])k)/Pr[A]

⇒ Pr[B] · c ≥ yB − yA · Pr[A]. �
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