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Abstract 

An inherent characteristic of R&D projects is technological uncertainty, which may result in 

project failure, and time and resources spent without any tangible return.  In pharmaceutical projects, 

for instance, stringent scientific procedures have to be followed to ensure patient safety and drug 

efficacy in pre-clinical and clinical tests before a medicine can be approved for production.  A project 

consists of several stages, and may have to be terminated in any of these stages, with typically a low 

likelihood of success.  In project planning and scheduling, this technological uncertainty has typically 

been ignored, and project plans are developed only for scenarios in which the project succeeds.  In 

this paper, we examine how to schedule projects in order to maximize their expected net present 

value, when the project activities have a probability of failure, and where an activity’s failure leads to 

overall project termination.  We formulate the problem, show that it is NP-hard and develop a branch-

and-bound algorithm that allows to obtain optimal solutions.  We also present polynomial-time 

algorithms for special cases, and present a number of managerial insights for R&D project and 

planning, including the advantages and disadvantages of parallelization of R&D activities in different 

settings. 
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1.  Introduction 

An important feature of Research and Development (R&D) projects is that, apart from the 

commercial and market risks common to all projects, their constituent activities also carry the risk of 

technical failure.  Therefore, besides projects overrunning their budgets or deadlines and the 

commercial returns not meeting their targets, R&D projects also carry the risk of failing altogether, 

resulting in time and resources spent without any tangible return.  In this paper, we tackle the problem 

of scheduling the activities of an R&D project that is subject to technological uncertainty, i.e. in 

which the individual activities carry a risk of failure, and where an activity’s failure results in the 

project’s overall failure.  The goal is to schedule the activities in such a way as to maximize the 

expected net present value of the project, taking into account the activity costs, the cash flows 

generated by a successful project, the activity durations and the probability of failure of each of the 

activities. 

The algorithms developed in this paper are useful in any R&D setting where activities carry a risk 

of failure, and are of particular interest to drug development projects in the pharmaceutical industry, 

in which stringent scientific procedures have to be followed to ensure patient safety in distinct stages, 

including pre-clinical and clinical tests, before a medicine can be approved for production.  The 

project may need to be terminated in any of these stages, either because the product is revealed not to 

have the desired properties, or because of harmful side effects.  The failure of one of the stages results 

in overall project termination.  As stated by Gassmann et al. (2004), “If a drug candidate fails during 

the development phase it is withdrawn entirely from further testing.  Unlike in the automobile 

industry, drugs are not modular products where a faulty stick shift can be replaced without throwing 

the entire car design away.  In pharmaceutical R&D, drug design cannot be changed.” 

The contributions of this paper are the following.  First, we introduce and formulate a generic 

model for optimally scheduling R&D project activities subject to technological uncertainty and 

technological dependencies, referred to as the R&D Project Scheduling Problem (RDPSP).  Second, 

we show that the RDPSP is NP-hard, but that several special cases can be solved in polynomial time.  

Third, we develop a branch-and-bound algorithm that is capable of solving the RDPSP to optimality, 

we present computational tests demonstrating the capabilities of the algorithm and we discuss how the 

model and algorithms can be extended to take into account the risk preferences of the decision maker.  

Finally, we present a number of managerial insights based on the properties of the optimal solution, 

uncovering the benefits and disadvantages of parallelization of R&D activities in different settings. 
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2.  Related work 

Project planning under uncertainty at the tactical and strategic level has been studied by Adler et 

al. (1995, 1996).  Their research focuses on controlling the number of ongoing projects in an 

organization and allows estimating the average time spent on a single project.  Kavadias and Loch 

(2004) study project management under uncertainty with respect to project selection and 

prioritization.  The models of Adler et al. (1995, 1996) and Kavadias and Loch (2004), however, do 

not produce operational scheduling decisions, such as when to initiate or terminate each project phase 

or individual project activities, which is the goal of this paper. 

The literature on deterministic operational project scheduling is vast, and contains numerous 

methods and algorithms to derive project schedules that minimize the project’s duration, maximize 

the project’s net present value, minimize the cost of resources, or deal with a host of other objective 

functions.  These algorithms are designed to cope with technological dependencies between the 

project’s activities, modeled in the form of precedence constraints, and other types of constraints, 

including generalized precedence relations, resource constraints, time/cost and time/resource trade-

offs, multiple activity execution modes, and many other characteristics.  For recent comprehensive 

overviews of the literature, we refer to Demeulemeester and Herroelen (2002) and Neumann et al. 

(2003).  The incorporation of uncertainty in project planning and scheduling has also resulted in 

numerous research efforts, particularly focusing on uncertainty in the activities’ duration or their cost.   

The PERT problem has been studied for multiple decades; for a survey see Elmaghraby (1977) and 

Adlakha and Kulkarni (1987).  The consideration of resource constraints has only recently been 

tackled by, among others, Jørgenson (1999), Stork (2001) and Leus (2003).  None of these models, 

however, incorporate technological uncertainty in the form of stochastic-success activities. 

The issue of parallel versus sequential scheduling of project activities has been addressed, among 

others, by Krishnan et al. (1997) and Eppinger et al. (1994), and is closely related to the topic of 

concurrent engineering, a systematic approach to the integrated, concurrent design of products and 

their related processes, including manufacturing and support (Hill, 2002).  Hoedemaker et al. (1999) 

provide some theoretical evidence as to why there are limits to the benefits of parallelization.  Parallel 

(redundant) development of alternative technologies is studied in Abernathy and Rosenbloom (1969), 

Bard (1985) and Krishnan and Bhattacharya (2002), and a generic representation of multi-stage R&D 

problems is provided in Lockett and Gear (1973).  Zemel et al. (2001) focus on the optimal timing of 

support activities for R&D tasks of variable length.  In Luh et al. (1999), project failure of time-

critical projects is equated with not meeting the established target dates, and the scheduling of a set of 

projects with a number of tasks with uncertain durations, due to design iterations, is undertaken in 

order to optimize the weighted sum of project earliness and tardiness and the opportunity costs of 
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failed projects.  In our model, we lift the limiting assumption that R&D projects are limited to a single 

uncertain activity or sequential R&D stages only.  Although this is the model commonly found in the 

literature, it is a major shortcoming for modeling real-life R&D projects because these typically 

exhibit a network structure, allowing several research tasks to be conducted in parallel.  Additionally, 

our formulation allows modeling R&D projects with inclusion of their ancillary activities such as 

production and marketing.  Pharmaceutical companies, for instance, systematically incur marketing 

and plant-equipment expenses before the research is completed and success is guaranteed; our model 

can provide a better understanding of why and when to do so.  

The remainder of this paper is organized as follows.  Section 3 presents an introductory problem 

description by means of a real-life example from the pharmaceutical sector.  A detailed problem 

formulation of the R&D Project Scheduling Problem (RDPSP) and an evaluation of its properties are 

given in Section 4.  In Section 5, we provide a general overview of a branch-and-bound algorithm that 

is capable of solving the RDPSP to optimality, and we present several upper bounds in Section 6.  

Branching and fathoming details are discussed in Section 7, and Section 8 discusses how the risk 

preferences of the decision maker can be incorporated.  In Section 9, we present computational tests 

demonstrating the capabilities of our procedure.  Finally, a discussion of the results and managerial 

insights is given in Section 10, with a summary and an outlook on further research in Section 11. 

3.  An Example 

We present an example of a pharmaceutical project, initiated by a biotech company based in 

Cambridge, England.  The pharmaceutical drug development process is heavily regulated, and is 

monitored in the US by the Food and Drug Administration (FDA).  The drug development and review 

process typically follows four main stages: basic research, pre-clinical, clinical and FDA review, with 

the clinical stage subdivided in Phase I, II and III.  Each clinical substage contains a number of tasks 

that are repeated several times, each time increasing in duration.  The production facilities are 

developed concurrently with the clinical studies.  The entire process takes 12 years on average with 

total development costs on average of $900 million (DiMasi et al., 2003). 

The project was started in 2001 with an expected market launch in late 2007, assuming that the 

product makes it successfully through all the stages.  At the time of this writing, all activities prior to 

the clinical stage have been successfully performed, and the company is developing a project plan for 

the clinical development and launch of the product.  The total remaining duration of the project is 

approximately five years, for a total cost of approximately £15 million (all data are disguised).  For 

the purpose of this paper, we have simplified the project plan, which contains more than 300 

activities, by identifying natural task groupings, yielding the following aggregate project network 
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structure.  More details on the project can be found in Crama et al. (2004).  Phase III in this project is 

subdivided in three runs of toxicological studies on animals, referred to as “Tox” in Figure 1, and 

medical studies on humans, referred to as “Med”.  The remaining activities in Phase III have been 

grouped in two tasks named “Other”, which include manufacturing of the product, chemical product 

analysis and pharmacological studies.  The project also includes the ancillary agronomical task 

(“Agro”).  Each medical study has to be preceded by its corresponding toxicology study.  The 

toxicology studies, however, do not require the results from the previous medical study.  Some 

toxicology and medical studies are dependent on the “Other” activities in the network.  The 

agronomical activity can be scheduled freely. 

Start Tox I

Other I

Med I

Other II

Tox II

Med II

Tox III

Med III

Launch

Agro

 

Figure 1.  Precedence network for the example project 

Table 1 gives, for each activity group, the total development cost, the duration and the probability 

of technical success (PTS).  Cash flows are computed as the sum of the development cost of the 

subtasks in each group, and durations as the duration of the subproject comprised of the subtasks.  The 

project has an estimated overall PTS of 16.2%.  If successful, the net present value of net sales equals 

£300 million.  For this example, we use a discount rate of 1% per month. 

Table 1. Project data (disguised) 

Task cash flow duration (months) probability of technical success 

Agro −£12,000,000 60 100% 
Tox I −£300,000 6 75% 

Other I −£1,000,000 8 100% 
Med I −£200,000 8 80% 

Other II −£300,000 8 100% 
Tox II −£100,000 6 75% 
Med II −£200,000 10 80% 
Tox III −£700,000 9 75% 
Med III −£400,000 20 60% 
Launch £300,000,000 - - 
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While developing a schedule for this project, several considerations are in order.  If all activities 

are carried out as soon as possible, the revenues of the project, if successful, are received as soon as 

possible, resulting in a high present value.  On the other hand, development costs are also incurred 

early on.  A better option is to execute the project according to the late-start schedule as determined 

by the Critical Path Method (CPM).  This schedule is pictured in the first schedule of Figure 2 and 

results in an expected net present value or eNPV of approximately £13 million.  Alternatively, we can 

schedule the activities carrying technical risk in series, thereby avoiding unnecessary expenditures 

when one of the activities fails.  One such schedule is depicted in Figure 2, with an eNPV of 

approximately £10 million; we notice that project duration may become prohibitively large.  Finally, a 

schedule allowing for a partial overlap of R&D activities is also shown in Figure 2, yielding an eNPV 

of approximately £16 million, which can be shown to be the highest value achievable.  Finding such 

an optimal schedule is the objective of the algorithms that will be presented in this paper. 

 
(a) CPM late-start schedule 

 
(b) Serial schedule 

 
(c) Optimal schedule 

Figure 2.  Project schedules; the arrows represent information flows that are not implied by the 

original precedence relations 

The probability distributions of the project’s NPV for each of the three schedules are depicted in 

Figure 3.  Clearly, the different schedules exhibit very different risk profiles.  The series schedule is 

conservative and minimizes the downside risk, since it makes full use of the embedded abandonment 

options, but the total project execution time is maximal.  On the other extreme, a CPM schedule 

results in a large downside risk, compensated for by an earlier launch date, yielding a higher upside 

potential.  In between these two extremes, we find the optimal schedule, which strikes a balance 

between timeliness of project launch and cost minimization. 
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Figure 3.  Cumulative distribution function of project NPV. 

4.  Problem formulation and properties 

4.1.  Problem formulation and notation 

The objective of the R&D Project Scheduling Problem or RDPSP is to maximize the expected Net 

Present Value (eNPV) of the project by constructing a project schedule specifying when to execute 

each activity.  Because of the technical uncertainty inherent to each task, the final project payoff is 

only achieved when all activities are successful, and an option to abandon the project can be exercised 

at any time.  We focus on the case where all activity cash flows during the development phase are 

negative, which is typical for R&D projects.  The abandonment options imply that each activity will 

only be started if all the activities scheduled to finish earlier have a positive outcome.  Therefore, in 

the objective function, the activity cash flows are weighted by the probability of joint success of all its 

scheduled predecessors.  We make abstraction of resource constraints and duration uncertainty, and 

consider the probabilities of technical success of the different tasks as independent. 

The following parameters will be used throughout the remainder of this paper: 

 N set of project activities {0, 1, ..., n} 

 ci cash flow of activity i∈N \ {n}, non-positive integer 

 cn(t) end-of-project payoff function, non-increasing in time t, integer values 

 di duration of activity i∈N, non-negative integer 

 pi probability of technical success of activity i∈N  

 r continuous discount rate 

 A set of directed activity pairs representing technological precedence relations;  

  A is a (strict) partial order on N, i.e. an irreflexive, antisymmetric and transitive relation 

 N* {{i,j}: i,j∈N, i≠j}: the set of all unordered activity pairs 

 A  {{i,j}∈N*: (i,j)∉A ∧ (j,i)∉A}: the unordered activity pairs that are not comparable 

  according to order relation A; activity pairs in A  can be executed concurrently 
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Without loss of generality, we assume activity 0 to be a dummy representing project initiation, 

with c0=0, d0=0 and p0=1, and (0,i)∈A for all activities i∈N \ {0} without other predecessors.  Activity 

n represents project completion and is a direct or transitive successor of all other activities.  The 

choice for cn() to be non-increasing in time is appropriate for most innovative projects: the earlier a 

new product enters the market, the longer it can benefit from a monopoly position and first-mover 

advantages, or the longer it can exploit a patent.  Activities N \ {0,n} are referred to as intermediate 

activities.  The decision variables are the following: 

 si starting time of activity i; starting-time vector s is a schedule 

Values for the following variables are associated with a given schedule s: 

 xij = 1 if si + di ≤ sj, = 0 otherwise, for {i,j}∈ A .  The values xij are gathered into vector x 

 qi probability that all activities scheduled to finish no later than si will succeed, i.e.  

  probability that activity i will be initiated 

The RDPSP is now formulated as follows: 

 Max g(s) = ∑
−

=

−
1

1

n

i

rs
ii

iecq + nrs
nnn escq −)(   (1) 

 subject to 

 si + di ≤ sj  ∀(i,j)∈A (2) 

 si + di ≤ sj + T(1 − xij) ∀{i,j}∈ A  (3) 

 qi = 









−−










∏∏

∈∈ Aji
jij

Aij
j xpp

},{),(
))1(1(  ∀i∈N (4) 

 xij ∈ {0,1}  ∀{i,j}∈ A  (5) 

 si ≥ 0  ∀i∈N (6) 

with T= ∑ ∈Ni id .  The objective function (1) is the eNPV, which is a non-regular measure of 

performance because starting activities as early as possible is not necessarily optimal.  Constraint set 

(2) imposes the technological precedence constraints.  Equation (3) translates starting-time relations 

between activities that are incomparable with respect to A into values for the ‘information flow’ 

variables xij: the outcome of an uncertain activity delivers useful information for other activities since 

a failure allows to abandon the project without investing in the remaining tasks.  Effectively, equation 

(3) enforces si + di > sj ⇒ xij=0.  The reverse need not be imposed explicitly since the intermediate 

project activities have negative cash flows, so that it is always beneficial to the objective function to 

reduce qj, i.e. to set xij=1.  A value for probability qj corresponds with a choice for the information 

flows xij, based on equation (4). 
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4.2.  Properties 

Instead of using vector x, we can equivalently capture information-flow decisions by a relation E 

on N, defined by xij=1 ⇔ (i,j)∈E, reflected in the one-to-one function χ : x = χ(E).  Each starting-time 

vector s defines a relation Σ(s) on N: (i,j)∈Σ(s) ⇔ si + di ≤ sj.  A schedule s implies the value χ(Σ(s)) 

for x.  A relation E corresponds to a feasible schedule s (meaning that ∃s∈IRn+1: Σ(s)=E) if and only if 

A ⊆ E and E is an order relation; this second condition requires that G(N,E) be acyclic.  Once the 

information-flow decision E is made, determining an optimal-eNPV schedule s boils down to 

scheduling the activities subject to the precedence constraints contained in E.  Since we assume that 

all intermediate cash flows are non-positive, each activity can be scheduled to end at the earliest 

starting time of its successors in E.  Choice s0=0 then corresponds with a unique schedule referred to 

as φ(E).  In this paper, we focus attention on the search for order relation E with A ⊆ E and which 

maximizes g(φ(E)), with objective function g() as defined in (1).  Note that when the optimal eNPV is 

negative, the choice s0=∞, i.e. rejecting the project, is optimal for model (1)-(6); this conclusion can 

be drawn at the end of the search procedure. 

 

Theorem 1.  If r=0 and the project payoff is a constant value (cn(t)=cn) then an optimal schedule 

exists for which E is a complete order on N. 

 

The proofs of the theorems appear in the appendix.  The special case without initial precedence 

constraints (A=∅) can be solved in polynomial time: 

 

Theorem 2.  If r=0, A=∅ and the project payoff is constant (cn(t)=cn), then each optimal schedule for 

which E is a complete order, sequences the activities in non-increasing order of ci / (1−pi), and each 

schedule that sequences the activities in non-increasing order of ci / (1−pi) is optimal. 

We refer to quantity ci / (1−pi) as the cost-information ratio of activity i.  The result in Theorem 2 

is similar to the optimality of the weighted shortest processing time rule for one-machine scheduling 

with total weighted completion time, denoted as 1||ΣjwjCj (Pinedo, 2002).  An efficient polynomial-

time algorithm also exists when G(N,A) consists of a number of parallel chains.  In this case, 

}{0,\ nN  can be partitioned into K disjoint subsets N1, N2, ..., NK with associated complete order 

relations A1, A2, ..., AK.  We define [k,l] to be the l-th job in chain k, P(k,l)=∏ =

l
j jkp1 ],[  and C(k,l)= 

c[k,1]+ ∑ =
−l

i ik ikPc
2 ],[ )1,( .  Define ρk as 

knl ,...,1maxarg = C(k,l)/(1−P(k,l)), where C(k,l)/(1−P(k,l)) is the 

cost-information ratio of the chain consisting of the first l jobs of chain k, and nk=|Nk|.  We are now 

ready to propose the following algorithm, which is a generalization of the one appearing in  

Theorem 2. 
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Algorithm PC.  Construct a complete order on N as follows.  Select among all chains k one with 

highest C(k, ρk)/(1−P(k, ρk)) and fill the first available ρk positions in the complete order with the first 

ρk jobs from this chain.  If ρk<nk, consider the remaining part of the selected chain as a separate 

unselected chain.  Iterate this process until all activities of N \ {0, n} have been selected. 

 

Theorem 3.  If r=0 and the project payoff is constant (cn(t)=cn), then Algorithm PC produces an 

optimal solution to RDPSP with chains in O(n2) time. 

 

However, the incorporation of precedence constraints imposed by an arbitrary acyclic digraph G(N,A) 

results in an NP-hard problem. 

 

Theorem 4.  RDPSP is NP-hard, even if r=0 and cn(t)=0. 

5.  A branch-and-bound algorithm 

In light of the NP-hardness of the RDPSP, an exact algorithm with better than exponential time 

complexity is unlikely to exist, and we will devise a branch-and-bound (B&B) algorithm to implicitly 

enumerate the solution space.  Section 5.1 describes the concept of a distance matrix, which is used in 

Section 5.2 to present a general outline of the B&B algorithm.  Throughout the remainder of the text, 

we assume that cn(t)=cn, although the algorithms can be adapted to the more general case of time-

dependent pay-offs. 

5.1.  Preliminary concepts 

We use the concept of a “distance matrix” as described by Bartusch et al. (1988), collecting 

information about minimal differences between the starting times of all pairs of activities.  The 

(n+1)×(n+1)-matrix D imposes the following constraints: 

 si + Dij ≤ sj  ∀i,j∈N 

We let the entries in the distance matrix correspond with all-pairs longest path distances, in the sense 

that entry (i,j) represents the length of a longest path from i to j in the complete graph with node set N 

and distances provided by the matrix.  We refer to this property as the transitive-closure property.  

The property can be achieved in O(n3) time, for instance by means of the Floyd-Warshall algorithm 

(Lawler, 1976).  It can be shown (Bartusch et al., 1988) that a feasible schedule exists iff all Dii=0.  If 

Dii>0 for some i, the corresponding graph contains a directed cycle with positive length.  If s0=0, the 

earliest possible starting time of activity i is D0i. 
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We observe that, when Dij ≥ di for an arbitrary activity pair (i,j), then activity j will always start 

after activity i has finished, and so Dij ≥ di implies the possibility of information flow from i to j, 

denoted as “i→j”.  We can also see that the conditions si + di > sj and sj + dj > si jointly imply that i 

will be executed in parallel with j (“i||j”).  Since we work with discrete durations, these conditions are 

imposed as Dij ≥ −dj+1 and Dji ≥ −di+1. 

5.2.  Outline of the branch-and-bound algorithm 

At the root node of the search tree (indexed 0), the distance matrix is initialized as 

 








∞−
∈

=
=

otherwise
),( if

 if0
)0( Ajid

ji
D iij   

and the transitive-closure property is enforced.  In any node h of the search tree, we partition the set 

N* into three disjoint subsets: N*= πh∪σh∪νh, with πh the set of activity pairs forced to be in parallel 

according to the distance matrix, σh the set of pairs in series, and νh the set of pairs that can still be 

executed both in parallel and in series.  Branching continues as long as νh≠∅; a branching decision 

entails the selection of a set {i,j}∈νh and consists of three different branches: (1) i→j ; (2) j→i ; and 

(3) i||j.  These branching options are mutually exclusive and jointly exhaustive.  Pursuing a branch 

means that we update the distance matrix to incorporate the additional constraint(s).  Notice that 

multiple different schedules can correspond with one distance matrix, and also that distance matrix 

entries are only increased, never decreased, when going from lower- to higher-indexed levels in the 

search tree (in this way, each search node is more restrictive than its parent node).  In any node h of 

the search tree, the information flows i→j are gathered in the order relation Eh, such that (i,j)∈Eh ⇒ 

{i,j}∈σh.  At initialization, E0=A. 

For each branching operation, updating the distance matrix can be performed in O(n2) time 

(Bartusch et al., 1988); the updated matrix in node h is denoted by D(h).  The recognition of additional 

valid parallel relations takes O(n2) time, recognizing serial relations is embedded in the distance 

updates and does not add to the O(n2) time complexity of these updates.  Nodes h in the search tree 

that do not allow a feasible solution are immediately recognized when the distance updates require a 

change in )(h
iiD  for some i∈N (see Section 5.1). 

Lemma 1.  Any feasible solution in a leaf node h of the search tree (νh=∅) for which for at least one 

activity i, it holds that ∀(i,k)∈Eh: )(h
ikD >di, can be discarded without loss of all optimal solutions. 

The proof of the lemma can be found in the appendix.  The basic idea of Lemma 1 is that if 

parallelism constraints are binding for a feasible solution, in the sense that activity starting times 

would differ if the constraint were removed, then the solution is dominated, because then at least one 
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activity can be shifted later in time without the artificial constraint.  This lemma is the basis for a 

dominance rule described in Section 7.  We underline that parallelism constraints do remain useful for 

partitioning the search space. 

6.  Upper bounds 

In order to produce an upper bound on the objective-function value in each node of the branch-

and-bound tree, we compute bounds on the starting time of each activity.  In Section 6.1, we focus on 

bounding sn, the project completion time.  These bounds are then used to provide an upper bound on 

the objective function in Section 6.2. 

6.1.  Bounds on sn 

Since activity n cannot start earlier than )(
0

h
nD , this value constitutes a lower bound on sn.  A trivial 

upper bound is ∑ ∈ }{\ nNi id .  A tighter upper bound can be obtained based on the knowledge that in 

every solution that is not dominated according to Lemma 1, each activity ends exactly when its 

earliest successor starts, so that the makespan of each non-dominated solution is equal to the sum of 

the durations of an uninterrupted chain of activities.  The length of the longest of such chains can be 

computed as the length of the longest simple directed path of activity durations from 0 to n in a 

directed graph Gh constructed as follows.  The nodes of Gh are the elements of N, each element 

(i,j)∈Eh gives rise to arc (i,j), i.e. i must precede j in any chain of activities, and elements {i,j}∈νh 

induce both arcs (i,j) and (j,i).  The longest path in Gh needs to fulfill the additional constraint that all 

precedence constraints in Eh be respected (which is not automatically so), and no activity set in πh can 

have both activities in the chain.  The resulting path length is referred to as )(
0

hµ . 

Lemma 2.  The computation of )(
0

hµ  is an NP-hard problem. 

In light of this complexity status, we will restrict ourselves to upper-bounding )(
0

hµ , to which aim 

we first define the following problem:  

MAXIMUM WEIGHT INDEPENDENT SET (MWIS) 

Instance: Undirected graph G(V,C), weights wj for j∈V. 

Goal: Construct a subset V° of V such that ∑ °∈Vi iw  is maximized and no two vertices in V° are 

joined by an edge in C. 

As a generalization of MAXIMUM CARDINALITY INDEPENDENT SET (problem GT20, Garey and 

Johnson, 1979), MWIS is strongly NP-hard.  For any search node h, the optimal objective-function 

value of MWIS with V=N, wi=di (i∈V) and C=πh equals )(
0

hµ , because G(N,Eh) is acyclic and 
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therefore the graph induced by any subset S∈N is acyclic.  Hence, for each independent set S, a linear 

extension of the partial order induced by S in G(N,Eh) exists.  MWIS is an intractable problem but we 

can obtain an efficiently computable upper bound on its optimum, starting from the following 

optimization problem and based on Lemma 3. 

MINIMUM WEIGHT CLIQUE PARTITION (MWCP) 

Instance: Undirected graph G(V,C), weights wj for j∈V. 

Goal: Partition the vertices of G into disjoint sets Vi such that the subgraph induced by each of these 

subsets is a complete graph, and such that ∑ = ∈ti jVj w
i,...,1

}{max  is minimized, with t the number of 

sets in the partition. 

Lemma 3.  For undirected graph G(V,C) with weights wj for j∈V and an arbitrary clique partition 

into t sets Vi, it holds that ∑ = ∈ti jVj w
i,...,1 }{max  ≥ ∑ °∈Vj jw  for any independent set V° of G. 

MWCP is NP-hard since it is a generalization of PARTITION INTO CLIQUES (problem GT15, Garey 

and Johnson, 1979).  From Lemma 3, it follows that any feasible solution to MWCP produces an 

upper bound on the optimal objective-function value of MWIS with the same input parameters.  

Nevertheless, even the optimal objective value of MWCP may be strictly larger than that of MWIP, in 

the same way as the independence number of a graph is upper-bounded by its clique partition number 

(Busygin and Pasechnik, 2003).  The simplest clique partition has |N| cliques (one activity per clique) 

and results in the trivial bound µ1= ∑ ∈ }{\ nNi id  mentioned higher.  Its computation takes O(1) time 

during the course of the algorithm since the summation need only be performed once during the 

initialization phase.  Clique recognition itself being an NP-hard problem (problem GT19, Garey and 

Johnson, 1979), this upper-bound computation seems only little amenable to efficiency enhancements.  

Our implementation greedily selects cliques of size two and retains the size of the larger of the two 

durations, according to the following pseudo-code: 

  )(
2

hµ =0 
  construct set S=N 
  for j in S do 
   for k in S do 
    if {j,k}∈πh then 
     add max{dj,dk} to )(

2
hµ  

     remove j and k from S 
     goto next 
    endif 
   endfor 
   add dj to )(

2
hµ  

   remove j from S 
  next: 
  endfor 
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The resulting upper bound on sn is called )(
2

hµ , whose computation takes O(n2) time.  The greedy 

bound )(
3

hµ  is constructed similarly, selecting cliques of size (maximum) three, requiring O(n3) time.  

We perform multiple runs of the pseudo-code above, each with a different order of examination of the 

elements of S (in the two “for”-loops); these orders are randomly determined at the initialization 

phase.  A set of experiments revealed that three runs constitute a favorable trade-off between 

computational effort and the strength of the bound. 
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Figure 4.  Project networks for the example 

We illustrate the different approaches for computing an upper bound on sn by means of an 

example.  Let n=5 and consider the precedence network G(N,A) of Figure 4(a), with the durations of 

the activities next to each node.  We examine the bounding computations in search node h in which 

Eh=A (which need not always be the case) and πh={{1,2},{3,4}}, as indicated in Figure 4(b) by the 

arrows and double lines, respectively.  µ1 is equal to d1+d2+d3+d4=26.  )(
0

hµ  is the length of the 

longest simple path from 0 to 5 in graph Gh, which is depicted in Figure 4(c), with an arc with two 

arrow heads representing one arc in each direction.  The path may not contain both activities 1 and 2, 

and both 3 and 4.  One such optimal path is 0-2-4-5 with length 15, which is indeed the tightest bound 

possible since it is the makespan of e.g. solution Eh*=A∪{(1,3),(1,4),(2,3),(2,4)}.  An approximation 

to this quantity is )(
2

hµ , which also finds 15 independent of the activity order adopted by the greedy 

algorithm; the same holds for )(
3

hµ . 

6.2.  Upper bounds on the objective function 

Define g(h) as the optimal objective value of model (1)-(6) when we add the constraints that were 

imposed to reach node h of the search tree.  In other words, 

 g(h) = 
  and  (6)-(2)respect  ),( )(

max
hDsq

{ nrs
nn ecq −  + ∑

−

=

−
1

1

n

i

rs
ii

iecq }   
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Since the minimal distance between the starting times of activities i and n is )(h
inD  in node h, an upper 

bound on the starting time si of intermediate activity i is sn − )(h
inD , for a given value of sn.  From 

Section 6.1, we know that sn itself takes on a (discrete) value in [ )(
0

h
nD  ; µ], with µ any of the upper 

bounds on sn developed in that section.  Therefore, in the knowledge that ci ≤ 0 for i∈N \ {0,n}, 

 g(h) ≤

tsD
,
Dt

n
h

h
n

≤
∃

∈

 and  and  (6)-(2) 
respect )(:

];;[

)(

)(
0

max
sqs

µ
{ qncne−rt + ∑

−

=

−−
1

1

)( )(n

i

Dtr
ii

h
inecq }, 

with the right hand side equal to 

 
];[ )(

0

max
µh

nDt∈
 e−rt { qncn + 

tsD
,

n
h ≤

∃
 and  and  (6)-(2) 

respect )(:
)(

max
sqs

{ ∑
−

=

1

1

)(n

i

rD
ii

h
inecq } }  (7) 

since qn is a constant.  This leaves us with the evaluation of the quantity 

 
tsD

,
n

h ≤
∃

 and  and  (6)-(2) 
respect )(:

)(

max
sqs

{ ∑
−

=

1

1

)(n

i

rD
ii

h
inecq }.  (8) 

A lower bound on qi, the execution probability of activity i, is )(h
iθ =∏ −≤∈ j

h
ij dDNj jp)(:

, which leads 

to an upper bound on (8) that does not depend on t.  The resulting bound g(h) is referred to as UB1, for 

which the maximum in t is found for the left or right boundary of the allowable interval, depending on 

the sign of the expression following e−rt in (7).  It is interesting to see that in non-dominated leaf 

nodes, UB1 equals the actual objective-function value when it is non-negative, and also when it is 

negative and µ = µ0.  In addition, we remark that computational effort for determining µ is only 

required when (8) is larger than qncn in absolute value, so when the incumbent has an objective 

function below zero.  Only in those cases will ‘sophisticated’ bounds such as µ2 or µ3 be useful. 

Alternatively, if we relax the constraints with respect to D(h) and t, (8) is the optimal objective 

value of an auxiliary RDPSP-instance for the same set of activities N with precedence graph G(N,A) 

but with r=0, cn=0 and intermediate cash flows ic′ =
)(h

inrD
iec .  Solving this instance is still difficult, 

because RDPSP with general precedence constraints, r=0 and cn=0 is NP-hard (Theorem 4).  The 

objective function when the precedence constraints are relaxed (A=∅), however, produces an upper 

bound to the precedence-constrained case, and this problem can be solved by sequencing the activities 

in non-increasing order of ic′ /(1−pi) (Theorem 2).  We thus obtain UB2. 

An improvement on UB2 can be obtained in the knowledge that RDPSP with r=0 and precedence 

constraints in the form of chains can be easily solved (Theorem 3).  In a first pass, we greedily (based 

on the order of addition to Eh) construct a set of chains from Eh and impose only those constraints on 

the auxiliary problem (i.e. we relax some of the task dependencies so that only chains result).  This 

bound is further improved by noting that for two activities {i,j}∈πh, the addition of either (i,j) or (j,i) 

to the possible precedences composing the chains, still results in a relaxation of the original problem: 

only one of the two distance increases for implementing i||j is then relaxed, instead of both.  In our 

implementation, we add (i,j) if ic′ /(1−pi) ≥ jc′ /(1−pj), otherwise (j,i).  We call the resulting bound UB3. 
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7.  Algorithmic structure and details 

Overall structure of the algorithm.  A general overview of the B&B algorithm is given in Figure 5. 

 

1. initialize

infeasibility?

2. increment level;
select and order altern.

3. next alternative

UB>best?
non-dom.?

νh empty?

5. backtrack one level

level > 0?

alt. remain?

UB > best?

6. optimal solution
found

4. evaluate objective;
update incumbent

no

no

no

yes

yes

yes

yes

yes

no

no

no

yes

 
 

Figure 5.  Flow chart of the algorithm 

Branching choice.  We explore different rules for the selection of an activity pair {i,j}∈νh to branch 

on.  As a first possibility, rule 1 selects the first encountered activity pair {i,j} in νh based on 

lexicographic ordering of the alternatives.  From our experiments we have observed that the ‘low-

impact’ choices in the optimization concern activities with a lot of slack in their starting times.  

Therefore, we have implemented rule 1 with activity ordering based on (1) the activity index and (2) 

float values (increasing CPM-based total float in G(N,A)).  The goal of this second option is to make 

decisions that strongly affect the bounds on lower-indexed levels in the search tree. 

Alternatively, we order the candidate activity pairs in decreasing order of a ‘pseudo-cost’ of 

insertion, which is an estimate of their true impact.  The role of this pseudo-cost is in guiding heuristic 

decisions in the algorithm, not in generating incumbent solutions or in proving fathomability (Parker 

and Rardin, 1988).  Rule 2 selects {i,j}∈νh with highest ratio ci/pj+cj/pi, in an attempt to make the 

most important decisions first.  Rule 3 also tries to select the most influential activity pair {i,j} first, 

by maximizing the difference between the latest ending time of the earliest starting activity (latest 

start times are given by )(
0

h
nD − )(h

inD ) and the latest start of the other activity.  Finally, rule 4 is a 

criterion that (approximately) minimizes the number of nodes in the search tree: we choose the 

activity pair that allows removing the most elements from νh, summed over its three emanating 

branches.  An estimate of the number of elements removed by alternative i→j is #{k∈N: ( (j,k)∈Eh ∧ 
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(i,k)∉Eh ) ∨ ( (k,i)∈Eh ∧ (k,j)∉Eh )}; an estimate of the effect of i||j is #{k∈N: ( {j,k}∈πh ∧ {i,k}∉πh ) 

∨ ( {k,i}∈πh ∧ {k,j}∉πh )}.  Ties are resolved either lexicographically or based on the activity float 

values as discussed earlier. 

Branching order.  We examine two different approaches with respect to the branching order, i.e. the 

order in which the three branches i→j, j→i and i||j are explored once a branching choice {i,j} has been 

made.  One possibility is to adhere to a fixed branching order; the actual order in this case turns out 

not to be decisive for algorithmic performance, we implement (1) i→j, (2) j→i and (3) i||j.  The 

second option is to use a variable order, in which we first select the branch that is compatible with the 

current best known solution: if si + di ≤ sj in this schedule, we first explore i→j, then i||j and finally 

j→i.  If i and j overlap in the incumbent, we first explore i||j; the second alternative is i→j if si ≤ sj. 

Dominance rule.  Based on Lemma 1, we implement a dominance rule as follows: if an activity i≠0,n 

exists for which {k∈N:{i,k}∈νh}=∅ and ∀k∈N|(i,k)∈Eh: )(h
ikD >di, then the current search node can be 

fathomed.  The rule is valid because distance-matrix entries can only increase, never decrease, when 

descending the search tree.  The test itself can be run in O(n) time, since we dynamically maintain 

count of the cardinality of sets {k∈N:{i,k}∈νh}, {k∈N:(i,k)∈Eh} and {k∈N: )(h
ikD >di}. 

A heuristic stand-alone procedure.  We propose a heuristic that examines a set of solutions starting 

from φ(A), the latest-start schedule based only on the technological precedence constraints, and then 

gradually appending precedence constraints until a full order is obtained; each intermediate solution is 

evaluated and the best one retained.  The procedure can be described in pseudo-code as follows.  The 

output of this heuristic is used at the initialization phase of the B&B algorithm to produce a good 

lower bound. 

 sbest := φ(A);  E := A 
 construct full order R extending A, sequencing incomparable activities in 
   non-increasing order of ci /(1−pi) 
 for d = n−2 downto 1 do 
  S is the set of ordered activity pairs (i,j) for which the difference between the 
   rank order of i and j in R equals d and j comes after i in R 
  order the elements (i,j)∈S in decreasing −cj /pi 
  for ordered (i,j)∈S do 
   E := E∪{(i,j)} 
   s := φ(E) 
   if g(s) > g(sbest) then 
    sbest := s 
   endif 
  endfor 
 endfor 
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8.  Considering risk preferences 

Maximizing the expected NPV does not preclude actual project realizations from resulting in 

higher or lower NPV values.  In order to evaluate the risk profile associated with a project schedule, a 

representation of all possible NPV realizations, together with the probability mass function (pmf) 

value of each realization, would be desirable.  In the literature on project networks with stochastic 

activity durations, it is shown (Hagstrom, 1988; Möhring, 2001) that even with independent 

processing-time distributions, the determination of a single point of the cumulative distribution 

function (cdf) of the project completion time is #P-complete, and thus in particular NP-hard.  As 

noted by Adlakha and Kulkarni (1989), the difficulty arises from two sources: (1) the number of paths 

grows exponentially in the number of activities, and (2) even when the activity durations are 

independent, the path lengths are generally dependent, as there are activities common to more than 

one path. 

Fortunately, our setting of stochastic-success activities does not result in the same difficulties.  In 

spite of the fact that O(2n) different realizations are possible of success or failure of the individual 

activities, the knowledge that activity failure leads to immediate project termination admits efficient 

determination of the pmf of the NPV for an arbitrary schedule.  With each schedule s, we associate a 

set δ(s) of decision points corresponding with the (intermediate) activity start and finish times: t∈δ(s) 

⇔ ∃i∈N \ {0,n}: t=si ∨ t=si+di.  The following procedure correctly determines the NPV-pmf of s, 

denoted fs(⋅), and its expected NPV g(s); it can be implemented in O(nlogn) time.  For easy access, 

δ(s) is conceived and ordered as a multi-set (which is not explicitly taken into account in the code 

description below).  A bifurcation of probability mass occurs at each decision point at which fallible 

activities (pi<1) end. 

  cumprob=1;  cumcost=0 
  fs(⋅)=0; g(s)=0 
  for increasing t in δ(s) do 
   if ∃i∈N: t=si+di then 
    tprob=∏ +=∈ ii dstNi ip

|
 

    if (tprob < 1) then 
     fs(cumcost):= fs(cumcost) + cumprob*(1−tprob) 
     g(s):= g(s) + cumcost*cumprob*(1−tprob) 
     cumprob:=cumprob*tprob 
    endif 
   endif 
   for all i∈N | si=t do 
    cumcost:=cumcost + ci. irse−  
   endfor 
  endfor 
  cumcost:= cumcost + cn. nrse−  
  fs(cumcost):= fs(cumcost) + cumprob 
  g(s):= g(s) + cumcost*cumprob 
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The NPV-pmf can be used by the decision maker to evaluate the downside risk, e.g. the probability 

that the NPV is lower than or equal to a threshold value, or the upside potential, e.g. the probability 

that NPV is larger than or equal to a threshold.  This gives the decision maker a number of additional 

options, (a) it allows for the specification of a constraint on downside risk and/or upside potential, 

which can imposed during the search for schedules with maximum NPV, and (b) the approach permits 

to generate the efficient frontier showing the trade-off between return and risk. 

9.  Computational experiments 

We have performed a series of computational experiments using randomly generated test problems 

in order to examine the behavior of the B&B algorithm. 

9.1.  Experimental setup 

Random test sets have been generated for various values of n using the random network generator 

RanGen (Demeulemeester et al., 2003).  Each dataset contains 20 instances for each of the values 

0.25, 0.50 and 0.75 of the network-shape parameter order strength (OS; Mastor, 1970), resulting in 60 

instances per set.  OS is the number of comparable intermediate activity pairs divided by the 

maximum number (n−1)(n−2)/2 of such pairs, and is a measure for the closeness to a linear order of 

the technological precedence constraints in A.  For all experiments, we set r = 0.05.  Cash flows for 

each activity in N \ {0,n} are generated as independent realizations of a discrete uniform random 

variable on [−50 ; 0]; durations for these activities are discrete values in [1 ; 15] and success 

probabilities are randomly chosen between 80% and 100%.  Dummy start activity 0 has d0=c0=0 and 

p0=1.  The end-of-project payoff value cn is a discrete value randomly selected from the interval 

[−0.5a ; −2a] with  

 a= (1/ )0(
nq ) ( ))05.0exp( )0()0(1

1 ini
n
i i Dqc∑ −

=
, 

with distance matrix D(0) based on the initial order relation A, and probabilities )0(
iq  based on starting 

times )( )0()0(
0 inn DD − .  Note that when cn ≥ −a the optimal project’s NPV is non-negative. 

The B&B algorithm was coded in C using Microsoft Visual C++ 6.0, and the experiments were 

run on a Dell OptiPlex GX240 PC with an Intel 1,500 MHz processor and 256 MB RAM, equipped 

with Windows 2000.  A time limit of 150 seconds is imposed on the running time of the algorithms. 
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9.2.  Comparison of solutions 

When comparing different algorithms, we need a measure of the quality of the solutions generated.  

Since the objective-function value can be either positive or negative, comparing the quality of two 

different schedules s1 and s2 is not trivial.  We use two different measures: 

(1) improvement I(s1,s2) = (g(s2) − g(s1)) / min{|g(s1)|,|g(s2)|}) 

The improvement function measures the extent to which the objective function is improved by 

moving from solution s1 to s2.  We report the average improvement across all instances for 

which g(s1) and g(s2) have the same sign, and indicate with a separate figure the number of 

instances with different sign, since in that case I(s1,s2) is not meaningful. 

(2) scaled distance ∆(s1,s2) = (g(s2) − g(s1)) / |g(s2) − g(sLSS)| 

sLSS = φ(A), the initial late-start schedule, is used as a benchmark solution.  If g(s2) ≥ g(s1) ≥ 

g(sLSS) then ∆(s1,s2) maps into [0 ; 1]; when s2=sLSS, we define ∆(s1,s2)=0.  ∆(s1,s2) close to 0 

means that the additional benefit of s2 over s1 is rather limited, whereas ∆(s1,s2) close to 1 

indicates that s2 is considerably better than s1. 

The improvement function I() is sensitive to whether or not the objectives function values are close to 

zero, whereas ∆() yields a more stable measure but is dependent on the quality of heuristic solution 

sLSS. 

9.3.  Computational efficiency 

For the dataset with n=15, Table 2 shows the successive improvements in the efficiency of the 

B&B algorithm when components are added.  The table shows the average CPU time in seconds, the 

average number of nodes in the search tree, the number of instances solved to guaranteed optimality 

(within 150 seconds), and several quality measures.  The base case in the table relates to the following 

parameter settings: lexicographic branching choice (rule 1) using index order, fixed order branching, 

no dominance rule, no initial solution, and makespan upper bound µ1.  s(i) is the output of the 

procedure run in setting (i).  sHEU refers to the schedule produced by the heuristic described in Section 

7.  For comparison purposes, the values for CPU time and number of nodes are expressed as a fraction 

of the value for setting (13), which is the most efficient version of the algorithm and which contains 

the initial lower bound, UB1, branching rule 1 based on float values, variable branching order, the 

dominance rule, and µ2 and µ3. 
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Table 2.  Successive improvements in the efficacy and efficiency of the B&B procedure for n=15.   

 CPU nodes opt (/60) I(sHEU,s(i)) I(sLSS,s(i)) ∆(sHEU,s(i)) I(s(i),s(13)) 

(1) base + UB1 62,807% 93,478% 29 −0.317 (21) −0.088 (22) −0.543 0.555 (22)

(2) = base + UB1 + init. LB 557% 684% 50 0.203 (0) 0.320 (1) 0.541 0.083 (1) 

(3) = base + UB2 + init. LB 116,447% 211,824% 21 0.092 (0) 0.196 (1) 0.219 0.197 (1) 

(4) = base + UB3 + init. LB 79,912% 85,742% 23 0.092 (0) 0.197 (1) 0.247 0.196 (1) 

(5) = (2) + rule 2, index 4,368% 4,832% 44 0.221 (0) 0.350 (1) 0.533 0.062 (1)

(6) = (2) + rule 3, index 8,234% 9,497% 43 0.205 (0) 0.322 (1) 0.548 0.081 (1) 

(7) = (2) + rule 4, index 625% 706% 50 0.203 (0) 0.320 (1) 0.541 0.083 (1) 

(8) = (2) + rule 1, float 538% 650% 50 0.204 (0) 0.321 (1) 0.542 0.083 (1) 

(9) = (2) + rule 4, float 633% 693% 50 0.204 (0) 0.321 (1) 0.542 0.083 (1) 

(10) = (8) + var. br. order 407% 521% 51 0.266 (1) 0.389 (2) 0.612 0.013 (0)

(11) = (10) + domin. rule 191% 228% 51 0.267 (1) 0.391 (2) 0.612 0.012 (0) 

(12) = (11) + µ2 106% 107% 52 0.280 (1) 0.412 (2) 0.614 0.006 (0) 

(13) = (12) + µ3 100% 100% 52 0.290 (1) 0.427 (2) 0.615 0.000 (0) 

 

9.4.  Algorithmic performance for various problem sizes 

Table 3 presents results for different problem sizes, with s* the output schedule of the B&B 

algorithm.  The rightmost column measures the increase in the makespan of the output schedule 

sn(φ(E)) relative to the LSS schedule.  The results reveal that the quality of the B&B algorithm is 

considerably higher than that of the heuristic.  We also observe that the computational effort is 

inversely related to OS.  This is an intuitive result, since the number of ‘undecided’ activity pairs in ν0 

is higher for lower OS values.  Finally, since the final makespan is often higher than the critical-path 

length (especially for OS=0.25), we observe that there are limits to the benefits of parallelization. 

Table 4 examines the performance of the B&B procedure for various time limits with n=30; s(i) is 

the output of the procedure run with time limit i.  A time limit of zero means that the actual branching 

procedure is never entered so that the initial heuristic solution is the output of the algorithm.  When a 

time limit of 1,500 seconds is imposed, four more instances are solved to guaranteed optimality 

compared with 150 seconds, and the quality of the solutions improves slightly.  The percentage 

difference between the solutions in these two settings is 1.07%, and an improvement in objective-

function value is achieved for 26 out of the 60 instances. 
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Table 3.  Performance of the truncated B&B algorithm for various values of n. 

OS n CPU opt (/20) nodes I(sHEU,s*) I(sLSS,s*) ∆(sHEU,s*) sn(φ(E))/sn(φ(A)) 

 9 0.08 20 11,396 0.360 (1) 0.607 (1) 0.47 1.23 

 12 15.0 19 1,707,429 0.706 (1) 1.073 (2) 0.45 1.19 

 15 38.5 15 3,378,899 0.201 (1) 0.606 (1) 0.59 1.25 

0.25 18 49.0 17 3,642,441 0.079 (0) 0.196 (0) 0.63 1.23 

 21 147.4 1 8,871,451 0.236 (1) 1.123 (1) 0.58 1.38 

 24 150.0 0 7,520,300 0.169 (0) 0.851 (1) 0.36 1.87 

 27 150.1 0 6,340,850 0.056 (0) 0.348 (1) 0.49 1.69 

 30 150.1 0 5,488,850 0.232 (0) 1.184 (0) 0.55 1.69 

 9 0.01 20 414 0.058 (0) 0.130 (0) 0.36 1.08 

 12 2.53 20 279,007 0.173 (0) 0.336 (0) 0.48 1.11 

 15 24.1 17 2,005,257 0.391 (0) 0.552 (0) 0.71 1.06 

0.50 18 40.5 15 2,731,624 0.100 (0) 0.123 (1) 0.73 1.07 

 21 64.6 13 3,890,347 0.253 (0) 0.286 (0) 0.76 1.03 

 24 146.4 1 7,035,465 0.108 (0) 0.256 (0) 0.61 1.38 

 27 140.7 2 5,952,657 0.083 (0) 0.333 (0) 0.66 1.48 

 30 150.1 0 5,648,750 0.319 (0) 0.221 (2) 0.65 1.14 

 9 0.01 20 46 0.020 (0) 0.036 (0) 0.21 1.02 

 12 0.02 20 1,720 0.084 (0) 0.684 (0) 0.34 1.06 

 15 0.70 20 53,274 0.274 (0) 0.111 (1) 0.54 1.04 

0.75 18 30.1 16 1,867,598 0.127 (1) 0.154 (1) 0.74 1.04 

 21 37.8 15 1,920,565 0.046 (0) 0.218 (0) 0.69 1.02 

 24 24.6 17 1,069,091 0.024 (0) 0.092 (0) 0.69 1.01 

 27 85.2 10 3,636,001 0.047 (0) 0.101 (0) 0.69 1.08 

 30 144.0 2 5,188,602 0.061 (0) 0.311 (0) 0.62 1.02 

 

Table 4.  Performance of the truncated B&B algorithm for n=30, for varying time limits (in seconds). 

time limit opt (/60) nodes I(sHEU,s(i)) I(sLSS,s(i)) ∆(sHEU,s(i)) I(s(i),s(1500)) 

0 0 0 0 (0) 0.384 (2) 0 0.219 (0) 

1 0 39,033 0.161 (0) 0.528 (2) 0.53 0.046 (0) 

10 0 371,567 0.181 (0) 0.557 (2) 0.57 0.030 (0) 

60 0 2,210,450 0.196 (0) 0.575 (2) 0.60 0.018 (0) 

150 2 5,442,067 0.204 (0) 0.584 (2) 0.61 0.011 (0) 

1500 6 51,355,273 0.219 (0) 0.601 (2) 0.62 0.000 (0) 
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10.  Discussion 

In this section, we analyze the properties of the optimal solution to the RDPSP by varying the main 

parameters in the example project presented in Section 3.  We study the total project duration and the 

optimal schedule, and formulate guidelines for scheduling in R&D environments. 

10.1.  Limits to the benefits of parallelization 

We observed that the optimal schedule for the example R&D project is different from the CPM 

late-start schedule, and that its duration exceeds the CPM duration; a similar conclusion was drawn 

with respect to the test set instances after examination of Table 3.  In line with Hoedemaker et al. 

(1999), we observe that there are limits to the benefit of parallelization in R&D projects.  This 

contrasts with projects without technical uncertainty, for which a CPM late-start schedule is optimal.  

Clearly, in the case of project success, the present value of the final project payoff decreases with 

increasing project duration.  However, short project duration requires overlapping activities, which 

increases the expected expenditures.  This fundamental difference is due to the fact that in R&D 

projects, even though activities may not exhibit a technical dependency, each activity releases 

information on the final success of the project at completion.  If activities are in series, the later 

activities can benefit from the information released by the already completed activities by exercising 

an abandonment option in case of failure.  Therefore, R&D project scheduling requires balancing 

early project completion with minimizing expected expenditures. 

10.2.  The impact of the discount rate on project duration 

Intuitively, one would expect that the incentive for parallelization increases with increasing cost 

associated with project delay.  We examine this behavior by means of varying the interest rate, 

representing the time value of money, for a constant project payoff.  With zero discount rate, the value 

of the project payoff is constant over time and the project schedule can take full advantage of 

information flows: no activity with PTS < 1 will be in parallel with other activities, which leads to 

maximum total project duration (this insight leads to Theorem 1).  As the interest rate goes up, we 

observe a reduction in the optimal project duration: some activities are overlapped, forfeiting 

information flows for the sake of earlier project completion.  Interestingly, however, from a certain 

point onwards a further increase in the interest rate induces an increase in the optimal project schedule 

length.  The reason for this phenomenon is that the magnitude of the present value change due to an 

incremental delay in a cash flow decreases as the interest rate becomes larger, and this effect is more 

marked for cash flows that occur later in time.  As a consequence, cost savings early on in the project 



 

 25

due to higher project duration may more than offset the associated decrease in the present value of the 

project payoff. 
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Figure 6.  Project duration versus interest rate for the example problem 

As shown in Figure 6, the optimal project duration is a convex step function of the interest rate for 

the example problem.  The graph also indicates that different scheduling choices are made before and 

after the zone of minimum duration: the left part of the graph is not a mere mirror image of the right 

part.  In Figure 7, optimal schedules are shown for four different ranges of the discount rate.  We 

observe an initial reduction in the project duration, from case (a) to (b) to (c), followed by an increase, 

from (c) to (d).  The optimal schedule in (d), however, is different from that in (b), although the 

project duration is the same.  We also observe the variable character of the precedence relationship 

between pairs of activities in the different optima, for instance for the shaded activity pair {Tox I, 

Other I}.  This exemplifies the unpredictable nature of the optimal schedule to the RDPSP. 

10.3.  Guidelines for scheduling R&D projects 

The main determinants affecting the optimal timing of an R&D activity, and whether or not it 

should be scheduled in parallel with other R&D activities, are its PTS, its cost, its duration, and its 

location in the network. 

Based on Theorem 2, we anticipate that activities with low cost and low PTS should generally be 

scheduled early.  This is logical: if activities with relatively higher costs are scheduled later, then the 

associated cash outflow is discounted, and also reduced in expected value because the project may be 

terminated sooner.  Activities with low PTS values best precede a high number of activities, reducing 

the expected cash flow of their successors. 
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In the absence of discounting, the value of the information loss by scheduling two activities i and j 

in parallel rather sequentially can be quantified as max{(1−pi)cj ; (1−pj)ci}, which should be more than 

offset by the gain in project lead time in order for parallelization to make sense.  Consequently, prime 

candidates for parallelization are activities with high PTS and low cost.  Another determinant for 

parallelization of an activity is its position in the precedence network: activities are less likely to be 

performed if they are preceded by many other uncertain activities, reducing the expected value of the 

information loss.  Therefore, if PTS and cost are of the same order of magnitude throughout the 

network, then parallel execution of activities will preferably occur toward the end of the schedule.  

This preference is reinforced when the interest rate rises to such an extent that the optimal total project 

duration becomes a non-decreasing function of the interest rate.  At that point, the timing of the cost 

increase due to parallelization becomes relatively more important than its size, and there is a tendency 

to keep parallel activities late in the project.  This is illustrated in schedules (c) and (d) in Figure 7. 
 

 
(a) r = 0, total duration: 135 

 
(b) 0.11% < r < 0.16%, total duration: 106 

 
(c) 2.28% < r < 2.79%, total duration: 83 

 
(d) 4.01% < r < 4.12%, total duration: 106 

Figure 7.  Optimal schedules for different interest rates 

Based on the foregoing two paragraphs, we conclude that especially activities with high PTS in the 

later parts of the project should be considered for parallelization.  Low-cost activities are generally 

also good candidates, except when they occur early in the project schedule, which is often the case.  

We also observe that activities of similar duration, or sequences of activities of similar duration, are 

more likely to be put together, in order to maximize the time-savings by parallelization for the same 

information loss. 
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11.  Summary and outlook on further research 

We have presented a model and algorithms for scheduling R&D projects to maximize the expected 

Net Present Value (eNPV) when the project activities have an inherent possibility of failure and when 

individual activity default causes overall project failure.  We have shown that this problem, referred to 

as the R&D Project Scheduling Problem or RDPSP, is NP-hard, but presented polynomial-time 

algorithms for special cases.  We have also developed a branch-and-bound algorithm that is able to 

produce high-quality project schedules.  Our results show that, although the present value of the 

project payoff decreases with increasing project duration, performing certain activities in series rather 

than in parallel can decrease the development cost of a project, resulting in an overall improvement in 

the project’s eNPV.  An optimal project schedule will need to balance information flows between 

activities against delays in final project payoff: some activities may need to overlap, while others may 

need to be executed in sequence.  In line with the findings of Hoedemaker et al. (1999), we have 

found that there are limits to the benefits of parallelization. 

A number of opportunities for future research exist.  The explicit incorporation of resource 

constraints or duration uncertainty enhances the accuracy with which the R&D planning process is 

modeled, but introduces an additional level of complexity that may prove to be computationally 

overwhelming.  Another possible extension of our base model is correlated activity success, an 

inherent characteristic of most R&D projects.  Quantifying such correlations may be difficult, 

however.  The model could also be extended by including alternative sets of activities for which 

success is required for only one set, allowing to model the pursuit of alternative technologies.  Finally, 

the model can be altered by taking into account that some R&D activities can be performed in 

different ways, e.g. by allocating more or less money, resulting in different success probabilities 

associated with these multiple activity execution modes. 
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Appendix 

Proof of Theorem 1 

When r=0, the objective function equals ∑ −

=

1
0

n
i iicq + qncn, with qn independent of the information-flow 

decisions.  Therefore, each optimal order E minimizes ∑ −

=

1
0

n
i ii cq .  Consider any optimal order E0 that 

is not a complete order.  If no such E0 exists, the theorem holds, otherwise, take an arbitrary activity 

k°∈N that is incomparable with at least one other element in N according to E0.  The expression to be 

minimized can now be written as follows, in which 0E  is the set of unordered incomparable activity 

pairs according to E0: 
 ∑ −

=

1
0

n
i ii cq  = qk°|ck°| + ∑

∈° 0),( Eki
ii cq  + ∑

∈° 0},{ Eki
ii cq  + ∑

∈° 0),( Eik
ii cq   

If we extend E0 to E1=E0∪{(k°,i):{k°,i}∈ 0E }, the only term changing in the right hand side of the 

foregoing equation is the third: ∑ ∈° 0},{ Eki ii cq  is multiplied by pk°.  We conclude that the objective-

function value associated with E1 is at least as good as the value for E0.  Continuing in this way, we 

can obtain a complete order E* for which the associated objective-function value is at least as high as 

for E0, after at most (n−1) iterations. □ 

 

Proof of Theorem 2 

Suppose that a complete order E0 is optimal, by which two activities i and j are scheduled 

consecutively, (i,j)∈E0, and ci / (1−pi) < cj / (1−pj).  The expected discounted cash flow of activities i 

and j equals ( )∏ ∈ 0),( Eik kp (ci + picj).  We now construct a new complete order E1 as the result of the 

exchange of positions of i and j in E0 (a so-called adjacent pairwise interchange in scheduling 

theory).  Clearly, the expected discounted cash flow of activities i and j for E1 equals ( )∏ ∈ 0),( Eik kp (cj 

+ pjci), while the expected cost of the activities in N \ {i,j} remains unchanged.  Knowing that (ci + 

picj) < (cj + pjci), we observe that the NPV of E1 is higher than the NPV of E0, which contradicts the 

optimality of E0.  This proves the first part of the theorem. 

The second part of Theorem 2 holds because an optimal complete order always exists (Theorem 

1), and activities with equal cost-information ratio can interchange positions without effect on the 

objective function. □ 

In order to prove Theorem 3, we first derive some preliminary results (Lemmas A1 and A2). 

Lemma A1.  If r=0, project payoff is constant, the precedence constraints take the form of chains, 

and the solution space is restricted to complete order relations in which all activities of each chain 

are ordered contiguously, then each optimal schedule sequences the chains k in non-increasing order 

of C(k,nk)/(1−P(k,nk)), and each schedule with such an order is optimal. 

Proof: A trivial extension of Theorem 2. □ 
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Lemma A2.  Given two chains (N1,A1) and (N2,A2), it holds that 
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It follows that 

 C(1,n1)(1−P(2,n2)) ≤ C(2,n2)(1−P(1,n1)) 

 C(1,n1)P(1,n1)(1−P(2,n2)) ≤ C(2,n2)P(1,n1)(1−P(1,n1)) 

and if we add C(1,n1)(1−P(1,n1)) to both sides of the inequality then 

 C(1,n1)(1−P(1,n1)P(2,n2)) ≤ (C(1,n1)+C(2,n2)P(1,n1))(1−P(1,n1)) 

so that we obtain 
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It can be shown by a similar argument that the second inequality of the lemma is also valid when 

equation (A1) holds.  Analogously, the lemma can be shown to hold when the inequality in equation 

(A1) is reversed. □ 

Proof of Theorem 3 

Without loss of generality, we assume that Algorithm PC selects chain 1 first.  Consider an optimal 

schedule s imposing a complete order on N (such s exists, by Theorem 1) that does not start with jobs 

[1,1] to [1,ρ1].  This means that chain 1 is interrupted by activities from the other chains, and the 

corresponding order relation E can be represented as 

< β1,1,β1,2,..., 1,1 mβ ,α1,β2,1,β2,2,..., 2,2 mβ ,α2,...,βL,1,βL,2,..., LmL,β ,αL,[1,ρ1],γ >, 

in which αi are disjoint ordered subsets of consecutive jobs in chain 1 and βji are similar subsets each 

of a single chain different from chain 1; γ consists of the remaining activities of N.  If we write 

P(αi,|αi|) as P(αi) and with similar conventions for argument β and function C(), application of the 

first part of Lemma A1 yields that 
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The foregoing set of inequalities is valid because no two consecutive subsets belong to the same 

chain, and so Lemma A1 can be applied to the two subsets in isolation.  We therefore also have 
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and repeated application of Lemma A2 then gives 
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and from the definition of ρ, equality must hold in the latter equation, and therefore also in the 

inequalities with arguments α1 to [1,ρ1] in (A2).  From the definition of ρ, we also see that the β1i are 

not void only if 
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and therefore, according to the second part of Lemma A1, all the different components of chain 1 in 

schedule s up to [1,ρ1] can be moved to the front of the schedule without effect on the objective 

function.  As a consequence, an optimal schedule exists that executes chain 1 contiguously up to job 

[1,ρ1] in first position.  The set of activities N \ {0,n} without the selected part of chain 1 can now be 

considered as a new smaller project, and the same reasoning can be followed iteratively to show that 

Algorithm PC produces an optimal schedule.  The algorithm runs in time O(n2), because the 

computation of ρk for all chains k can be performed in O(n) time, and this is repeated O(n) times. □ 

In the proof of Theorem 4, we use the result of Lemma A3.  Lenstra and Rinnooy Kan (1978), 

inspired by Lawler (1978), show that 1|prec|ΣjwjCj is strongly NP-hard by means of a reduction from 

OPTIMAL LINEAR ARRANGEMENT (OLA), which is defined as follows (Garey and Johnson, 1979): 

OPTIMAL LINEAR ARRANGEMENT (OLA) 

Instance: Undirected graph G(V,E) and positive integer K. 

Question: Is there a one-to-one function f : V → {1,2,...,|V|} such that ∑ ∈
−

Evu
vfuf

),(
)()(  ≤ K? 

OLA was shown to be NP-complete by Garey et al. (1976).  Lenstra and Rinnooy Kan (1978) explain 

how to solve an arbitrary instance of OLA by means of a suitably constructed instance of 

1|prec|ΣjwjCj.  Their reduction fulfills the conditions for a polynomial transformation, such that 

1|prec|ΣjwjCj is NP-hard.  We will construct a similar proof to establish NP-hardness of the 

maximization of the weighted sum of completion times ΣjwjCj, with non-negative integer job durations 

id ′  and non-negative integer weights wi for each i∈J, with J the set of jobs to be scheduled, Ci the 

completion time of job i, and precedence graph G(J,F) with precedence constraints that are to be 

respected.  We only allow semi-active solution schedules; remark that zero durations are allowed.  

The corresponding problem is referred to as Π. 

Lemma A3.  Problem Π is NP-hard. 

Proof: For an input instance of OLA, we define the following instance of Π: |J|=|V|+|E|, and J contains 

‘vertex’ jobs Ji, i∈V, with duration id ′ =1 and weight wi equal to |E|−ui, with ui the degree of i in 

G(V,E); and also ‘edge’ jobs J{i,j}, {i,j}∈E, with },{ jid ′ =0 and w{i,j}=2.  In F are the precedence 

constraints J{i,j}<Ji for all {i,j}∈E.  Consider any linear arrangement f of V, and suppose we schedule 

the corresponding vertex jobs in the Π-instance in increasing value of f.  Given its zero duration, each 
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edge job J{i,j} can be assumed to immediately precede the earliest of its associated vertex jobs Ji and Jj 

without harmful effect on the objective function.  The value of this schedule is therefore given by 

 ∑ ∈Jj jjCw  = ∑ ∈
−

Vi i ifuE )()(  + ∑ ∈Eji
jfif

),(
)}(),(min{2  

  = ∑ ∈Vi
ifE )(  + ))()()}(),(min{2(

),(
jfifjfif

Eji
−−∑ ∈

 

  = ( )2
1 |E|.|V|.(|V|+1) + ∑ ∈

−
Eji

jfifjfif
),(

)})(),(max{)}(),((min{  

  = ( )2
1 |E|.|V|.(|V|+1) ∑ ∈

−−
Eji

jfif
),(

)()( . 

It follows that Π minimizes ∑ ∈
−

Eji
jfif

),(
)()( , since the first term in the last expression is a 

constant, and so OLA has a yes-answer if and only if there is a schedule to Π with objective value ≥ 

( )2
1 |E|.|V|.(|V|+1)−K, which proves the decision problem version of Π to be NP-complete, and Π itself 

NP-hard. □ 

Proof of Theorem 4 

For an arbitrary instance of Π, we can construct an instance of RDPSP, as follows.  The set of 

activities N=J∪{n}, with n=|J|+1.  We have negative activity cash flows ci=−wi, ∀i∈J, each duration 

di=1 and the set of precedence-related activity pairs A=F.  cn=0, dn=1 and n is successor to all jobs 

without successor in G(J,F).  For each activity i∈J, we set probability pi = (1 − id ′ /M) with non-

negative integer M ≥ maxd ′ = maxi∈J{ id ′ }.  Since r=0, an optimal solution to RDPSP that is not a 

complete order on N can be re-arranged in polynomial time into a complete order with equal objective 

function (as outlined in the proof of Theorem 1).  Consider such an optimal complete order, and let [i] 

represent the job in the ith position.  When r=0, the objective-function value of the thus built RDPSP-

instance equals 
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The first term in this expression is a constant.  We now require that the impact of a change of a single 

unit in quantity ∑ ∑−
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k kj dc  (the weighted sum of the starting times in Π) be larger than the 

largest possible change in all remaining terms, so that any optimal solution to the RDPSP-instance 

automatically optimizes this weighted sum.  We need that 
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with cmax = maxi∈J{|ci|}.  The right hand side of equation (A4) is smaller than or equal to 
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and this expression in turn is strictly smaller than 
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j < 2n−1.  This leads us to the conclusion that equation 

(A4) holds when 
 M = cmax

2
maxd ′ 2n−1. 

For this M-value, we have shown that any job sequence maximizing equation (A3) also maximizes 
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This description allows for a polynomial reduction from the decision problem version of Π to the 

optimization problem RDPSP. □ 

Proof of Lemma 1 

All intermediate activities are started as late as possible.  The only reason why an activity would not 

end exactly at the start of its earliest starting successor in Eh, is because it needs to be in parallel with 

some other activity.  If we iteratively remove all parallelity constraints for this activity and shift it 

later in time until it ends exactly at its earliest successor starting time, there is no effect on the 

contribution to the objective function of any of the other activities.  On the other hand, the 

contribution of the activity itself to the objective function goes down, first of all because of the 

discounting effect, and second also because additional activities may now end before or at the starting 

time of the activity itself, thereby allowing to reduce its expected NPV via extra information flows. □ 

Proof of Lemma 2 

We describe a reduction from the strongly NP-hard problem MWIS (defined in Section 6.1) to the 

computation of )(
0

hµ : we set N=V, di=wi (i∈N), Eh=∅ and πh=C. □ 

Proof of Lemma 3 

Each set Vi contains either zero or one vertex of V°, because V° is an independent set and Vi is a 

clique.  Collect in set B⊆{1,...,t} the indices of all the sets Vi that contain exactly one vertex of V°, and 

identify the corresponding vertices as vi, i∈B.  For each Vi, i∈B, }{max iVj w
i∈  ≥ 

ivw , such that 

∑ = ∈ti jVj w
i,...,1 }{max  ≥ ∑ ∈ ∈Bi jVj w

i
}{max  ≥ ∑ °∈Vj jw , and the lemma is seen to hold. □ 
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