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1 Introduction 

In discriminant analysis one observes two groups of multivariate observations forming to

gether the training sample. For the data in the training sample it is known to which group 

they belong. On the basis of the training sample a discriminant function Q will be con

structed. Such a rule is used afterwards to classify new observations, for which the group 

membership is unknown, into one of the two groups. Data are generated by two different 

distributions, with densities fl(X) and h(x). The higher the value of Q, the more likely it is 

that the new observation has been generated by the first distribution. Taking the log-ratio 

of the densities yields: 
ft(x) 

Q(x) = log h(x). 

For ft a normal density with mean f-Ll and covariance matrix .E2 , and for h another normal 

density with parameters f-L2 and .E2 , one gets 

(l.1 ) 

Here, I.EI stands for the determinant of a square matrix.E. The above equation can be 

written as a quadratic form 

where 

A 

b 

c 

(l.2) 

(l.3) 

(1.4) 

(l.5) 

The function Q(x) is called the quadratic discriminant function. Although it has been 

derived from normal densities, it can also be applied as such without making distributional 

assumptions. 

Future observations will now be classified according to the following discriminant rule: if 

Q(x) > T, where T is a selected cut-off value, then assign x to the first group; if Q(x) < T, 

then assign x to the second group. Now let 7fl be the prior probability that an observation 

to classify that will be generated by the first distribution, and set 7f2 = 1 - 7fl. For normal 

source distributions it is known that the optimal discriminant rule is the above quadratic 
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rule with T = log(7f2/7fd. An optimal rule is found by minimizing the expected probability 

of misclassification, e.g. Johnson and Wichern (2002, Chapter 11). In practice, the prior 

probabilities 7fl and 7f2 are often unknown and one uses T = O. 

The discriminant function (1.1) still depends on unknown population quantities 1-"1, /-L2, 2::1 

and 2::2, and needs to be estimated from the training sample. So let Xl, ... , x n1 be sample of 

p-variate observations coming from a first distribution HP and X n1 +1, ... , Xn following Hg. 
These samples together constitute the training sample. An observation in the training sample 

will influence the sample estimates of location and covariance, and hence the discriminant 

rule. In Quadratic Discriminant Analysis (QDA) the primary interest is not in knowing or 

interpreting the parameter values in (1.2); the aim is to use QDA for classification purposes. 

The focus in this paper will be on how observations belonging to the training sample affect 

the total probability of misclassification. An approach based on partial influence functions 

will be followed to quantify this effect. Partial influence functions (Pires and Branco, 2002) 

are the extension of the traditional influence function concept to the multi-sample setting. 

In the case of equal covariance matrices 2::1 = 2::2 = 2:: the linear discriminant rule of 

Fisher results as a special case of (1.1): 

(1.6) 

Influence analysis for Linear Discriminant Analysis has been studied in Campbell (1978), 

Critchley and Vitiello (1991) and Fung (1995a). The quadratic case seems to be much 

harder. Some numerical experiments have been conducted to assess the influence of outliers 

in the training sample on QDA (e.g. Lachenbruch, 1979), while Fung (1996) proposes several 

influence measures based on the leave-one-out approach. A more formal approach to influence 

analysis for quadratic discriminant analysis seems not to be existing yet in the literature. 

In Section 2 of the paper a population expression for the total probability of misclassifica

tion is presented. The latter is then used as a starting point to compute the partial influence 

functions of the classification errors in Section 3. Computations are tedious here, and all 

details have been moved to the Appendix. Besides being of theoretical interest, measuring 

the influence of an observation in the training sample on the future classification error can 

be used as a diagnostic tool to detect influential observations. Section 4 presents such a 

diagnostic tool. To make the diagnostic measure robust, i.e. not suspect to masking effects, 
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robust estimates of the population parameters need to be plugged in. Several examples are 

given in Section 5 while Section 6 concludes. 

2 Total Probability of Misclassification 

In this Section a population version of the Total Probability of Misclassification (TPlVI) 

will be presented. Denote HO = (Hf, Hg), where HP and Hg are the distributions having 

generated the training samples. The population version of the quadratic discriminant rule 

is then, by analogy with (l.2), 

where the population values of the coefficient of the discriminant rule are 

~ ((2:g)-l - (2:~tl) 
(2:~)-1f1~ - (2:g)-l f1g 

~lOg C~~:) + ~ ((f1~)t(2:g)-lf1~ - (f1~)t(2:~tlf1n· 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

In the above formula f1~ and f1g are population averages, and 2:~ and 2:g are population 

covariance matrices of HP, respectively Hg. 

The distribution generating the future data is the mixture H = 7flHl + 7f2H2, with 

HI = Np (f11, 2:1) and H2 = Np (f12, 2:2). The probability of classifying observations from the 

first group into the second is defined by 

(2.5) 

and the probability of misclassification for observations following H2 is 

The total probability of misclassification, or the error rate, is then defined as 

(2.6) 

It is important to distinguish between HO and H. In the above definitions, no para

metric assumptions are made on the distribution generating the training data. For example, 

3 



they may contain a few outliers. However, to compute a misclassification rate for future 

data, a parametric assumption is needed to obtain computable expressions. The normality 

assumption on H is taken for conveniency. The next proposition gives an expression for the 

TPM. 

Proposition 1. With the notations above, for H = 7rlNp(f-l1' 2:1) + 7r2Np(f-l2' 2:2), and for 

the quadratic discriminant rule Q(X; HO) defined in (2.1), we get 

(2.7) 

where vV!, ... , vVp are i. i. d. univariate standard normal. Furthermore, d211 is a p-variate 

vector given by 

( ° ) -1/2 (1 ( 0)-1 (0 ) d211 = d211 H ,H = 2:1 2 A H b H ) - f-l1 , (2.8) 

(2.9) 

and Aj = Aj (HO, H) and Vj = Vj (HO, H) are the eigenvalues and eigenvectors of the matrix 

(2.10) 

The expression for II 112 (HO, H) is given by 

(2.11) 

with Aj and Vj eigenvalues and vectors of A112 (HO,H). Here, d211 (HO,H) and A211 (HO,H) 

are given by replacing the index 1 by 2 in the definitions of d112 (HO, H) and A112 (HO, H). The 

total probability ofmisclassification is then TPM(HO,H) = 7r1II211(HO, H) + 7r2IIlI2(HO, H). 

In case HO = H, the training data follow a normal distribution and the quadratic discri

minant rule will be optimal. Then 2:~ = 2:1 and 2:g = 2:2 and therefor TPM can be computed 

in function of the population parameters of location and covariance. Numerical computation 

of TPM requires evaluation of the cumulative distribution function of a linear combination 

of p chi-squared distributions with one degree of freedom. Note that some of the weights Aj 

in this linear combination appearing in (2.7) may be negative, since they are eigenvalues of 
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the symmetric, but in general not positive definite, matrix (2.10). Using modern computing 

power, (2.7) can equally easy be computed with Monte-Carlo integration techniques. For 

diagonal covariance matrices and HO = H, an expression of the TPM for QDA was presented 

by Houshmand (1993). Recently, McFarland and Richards (2002) considered the problem of 

computing exact misclassification probabilities in the normal case for finite samples. 

The expression for TPM in the setting of Linear Discriminant Analysis is much better 

known. In the normality case with equal covariances it is simply given TPMLDA = <I> ( -2.6.) 

with 6. = )(/11 - /12)tI',-1(/11 - /12) the Mahalanobis distance between the populations and 

<I> the standard normal c.d.f.. To study the effect of outliers on the total probability of 

misclassification the partial influence function will be computed in the next section. 

3 Partial Influence Functions 

The influence of observations in the training sample on the TPM can be formalized by com

puting partial influence functions (Pires and Branco, 2002). Partial influence functions (PIF) 

extend the traditional concept of influence function to the multi-sample setting. The first 

PIF gives the influence on the classification error of an observation x being allocated to the 

first group of training data. The second PIF measures the influence on the TPM for training 

data being allocated to the second group. Formally, 

( . P f HO ) _ l' TPM ((1 - c:)Hf + c:6.x , Hg), H) - TPM(HO, H) 
P IF 1 x, T l\I, ,H - 1m , 

EW c: 
(3.1) 

PIF2 (x; TPM, HO, H) = lim TPM ((Hf, (1 - c:)Hg + c:6.x ) , H) - TPM(HO, H), 
EI0 c: 

(3.2) 

where 6.x is a Dirac measure putting all its mass at x. One can see that for the first 

PIF, contamination is only induced for Hf, the distribution generating the first group of 

training data, while the second distribution Hg remains unaltered. Only contamination in 

the training sample is considered, the distribution H of the data to classify is not subject 

to contamination. When actually computing influence functions, we work at the model 

distribution HO = H. Indeed, when no contamination is present, one assumes that the data 

generating processes for the training data and for future data are the same. This model 

condition is natural and implicitly made in the classification literature. At the model, the 

notation PIFs(x; TPM, H) := PIFs(x; TPM, H, H), for s = 1,2, will be used. 
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For linear discriminant analysis, the above influence functions have already been com

puted (e.g. Croux and Dehon, 2001). The result is very simple: 

(3.3) 

for 8 = 1,2. Here cP is the density of a standard normal distribution and 6. again the 

Mahalanobis distance between the 2 source populations. As Critchley and Vitiello (1991) 

noticed, the influence is determined by the factor L(x) - L(/-ls) , which can be considered as 

a residual. For QDA it is not possible to come up with an easily interpretable expression. It 

will be worked out along the following lines. From (2.6) it follows 

for 8 = 1,2. The functional Il211 (HO, H) depends, according to (2.7), on the quantities 

Aj(HO, H), k(HO), and d;(HO, H) where 

(3.4) 

for j = 1, ... ,p, and with d211 (HO, H) defined in (2.8). By the chain rule, one obtains 

P ail (HO H) 
"'""' 211 , . PIF ( . A.. HO H) L....t aA. s X, / J' , 
j=l J 

+ ~ aIl 12 (HO, H) . PIF ( . d~ HO H) 
L....t ad~ s x, J' , 
j=l J 

(3.5) 

+ aIl12 (HO, H) . PIF ( . k HO H) ak s x,, , , 

for s = 1,2. Similarly for P1Fs(x; Il211' HO, H). Recall that HO = H at the model distribu

tion. 

Computing the partial influence functions appearing in (3.5) is tedious but straightfor

ward. An outline is given in the Appendix. Building bricks are the expressions for the partial 

influence functions of the estimators of location and scatter 

for 8 = 1,2 while PIFs(x; 2:sl, HO) = PIFs(x; /-lsi, HO) = 0 for 8' :f. s. From (3.6) all other 

partial influence functions can be computed, since the quantities Aj, d; and k are non

linear functions of the population averages and covariances. The derivation given in the 
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Appendix also applies when using other estimators of Pl, P2, 2:1 and 2:2. For example, 

Randles et al. (1978) proposed to use M-estimators for the population quantities in (1.1) 

and in Section 4 the use of robust estimators will be discussed. 'When computing the PIF 

for the TPM using robust plug-in estimators in the discriminant rule Q, one simply needs to 

replace the formulas (3.6) by the IF of the robust location and covariance matrix estimators. 

Note that the TPM depends not only on the shape and orientation of the covariance matrices 

2:1 and 2:2, but also on their sizes (cfr. Ollila et al., 2003) for a treatment of shape matrices. 

Computation of the partial derivatives of II211(HO, H 1) appearing in (3.5) requires more 

care. Note that these partial derivatives only depend on the population parameters, they 

do not depend on x, neither on the estimators used. Lemmas 1, 2, and 3 formulated in the 

Appendix express them in terms of integrals, which can easily be computed by numerical 

integration. Note that numerical integration is much more stable than numerical integra

tion. Although the formulas for computing the PIF are cumbersome, there are no major 

computational difficulties. A matlab program computing the partial influence functions is 

available from www.econ.kuleuven.ac. bel christophe. croux. 

When deriving the expression for the PIF, the assumption 

(C): All eigenvalues of the matrix 2:12:;-1 are distinct and different from one 

is needed. If the matrix 2:12:;-1, or equivalently 2:22:11, has eigenvalues close to I, or close to 

each other, then it can be noted from equation (7.2) and Lemmas 1 and 2 in the Appendix 

that the influence function will tend to explode. If one is close to a setting where condition 

C is not valid, then the discriminant rule is very sensitive to single observations in the 

training data. One case where C is not valid is the equal covariance matrix case, where all 

eigenvalues of 2:12:;-1 are equal to ones. Hence, for reasons of local robustness, it is advised 

to use LDA whenever one is close to the equal covariance matrix case. Performing a test for 

equal covariance matrices before carrying out a QDA, as is common in applied research, can 

prevent construction of an unstable quadratic discriminant rule. However, there are other 

situations where condition C is not met, for example when 2:1 and 2:2 are both proportional to 

the identity matrix. The latter corresponds with a setting of two spherically symmetric data 

clouds. Here, alternative methods like regularized Gaussian discriminant analysis (Bensmail 

and Celeux, 1996) are preferable to keep the local sensitivity under control. 
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The eigenvalues of E1Ez1 determine the nature of the quadratic form (1.2). For example, 

in the bivariate setting the eigenvalues determine whether the classification regions asso

ciated with the two groups are (i) an ellipse and it complement or (ii) an hyperbole and it 

complement. When an eigenvalue passes from below to above one, the nature of the region 

changes. Eigenvalues of E1Ez1 are indicators of unstable settings for QDA. Finally, note 

that interchanging two eigenvalues close to each other leads to a change in orientation of the 

quadratic form, which explains why the equal eigenvalue case is unstable as well (similar as 

in principal components analysis, efr. Critchley, 1985). 

To end this Section, some pictures of first partial influence functions in the univariate 

and bivariate case are represented. Figure 1 gives the first PIF for Hl = N(O,1) and 

<12=0.6 0'2=0.9 
5 5,-----~------~-----, 

~ 0 ~ 0 

-5 -5 
-5 0 5 -5 0 5 

x x 

0'2=1.1 0"2=1.6 
5 5 

~ 0 ~ 0 

-5 -5 5 -5 '--------5~----~O:------~5-------' 

x x 

Figure 1,' First partial influence function PIF 1 (x; TPM, H) for 

H = 0.5N(O, 1) + 0.5N(O, (]'2) for several values of (]'2. 

H2 = N(l, (]'2), for (]'2 = 0.6,0.9,1.1 and 1.6, all with the same scaling of the axes, and equal 

prior probabilities. Immediately one can see that the influence functions have a quadratic 

shape and are unbounded. When the value of (]'2 approaches 1, the value for the PIF is being 

blown up. For (]'2 = 1.1 the shape of the PIF is reversed: outliers for the first training data 

set tend to decrease the estimated error rate. 
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Of course, in practice one is interested in the higher dimensional case. The shape and 

sign of the PIF depend heavily on the parameter values and are difficult to predict, in 

contrast with the linear case. In Figure 2 the first partial influence function is shown for a 

bivariate distribution where Hl = N(O, h) and H2 = N((l, l)t, diag(0.3, 0.8)). Notice again 

the quadratic shape of the influence surface, being quite flat in the central region here, but 

unbounded in the tails of the distribution. 

1.2 

-2 
-2 

x2 -4 -4 
xl 

Figure 2: First partial influence function PIF 1 (x; TPM, H) for 

H = 0.5N(0, 12 ) + 0.5N((1, l)t, diag(0.3, 0.8)). 

4 Robust Diagnostic Measures 

The heuristic interpretation of (partial) influence functions is that the estimated difference 

between the population TPM and its estimated value is approximatively given by the average 

of the values PIF(xi; T, H) for i = 1, ... , n (efr. Hampel et al., 1986; Pires and Branco, 2002). 

Hence the partial influence functions evaluated at the sample points indicate the contribution 

of every observation in the training set to the classification rate. Large values for the PIF 

reveal points giving a large positive contribution to the TPM. 
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Diagnostic measures are then computed using the first, respectively second, PIF for 

observations belonging to the first, respectively second, group of training data: 

\PIF1(Xi, TPM, H)\ for i = 1, ... , n1 

\PIF2(xi, TPM, H) \ for i = n1 + 1, ... ,n 

( 4.1) 

Plotting Di with respect to the index i, or alternatively w.r.t. the value of Q(Xi), result 

then in a diagnostic plot. Alternatively, the sign information in the PIF could be kept by 

dropping the absolute values in (4.1). To compute the diagnostics Di , the distribution H 

needs to be estimated. Herefore, the parameters of the normal distribution H will simply 

be replaced by their sample counter parts. The prior probability 1T1 can be estimated as the 

frequency of observation from the training sample belonging to the first group, and similarly 

for 1T2. 

The idea for using the influence function as a tool for sensitivity analysis has a long tradi

tion in statistics. For applications in multivariate analysis see for example Critchley (1985), 

and Tanaka (1994). A problem is that in the construction of the Di the non-robust sample 

average and covariance matrix estimators are used for estimating H. Now it is well-known 

that diagnostic measures based on non-robust estimators are subject to the masking effect. 

Outliers and atypical observations might shift the estimated means and blow up the disper

sion matrices, resulting in a non reliable estimate of H. By this it might well be possible 

that influential observations will not be detected anymore. To prevent this masking effect, it 

is proposed to estimate /--l1, /-i2, 2::1 and 2::2 using robust estimators, resulting in robust diag

nostics. A similar approach to robust diagnostics was taken by (Tanaka and Tarumi, 1996; 

Pison et al., 2003; and Boente et al., 2003) in different fields of multivariate statistics. So 

while the aim is to detect influential observations using the classical estimation procedure 

for QDA, robust estimators are used as an auxiliary tool for constructing the diagnostic 

measures. 

As an example of a robust estimator, consider the Minimum Covariance Determinant 

(MCD) estimator (Rousseeuw and Van Driessen, 1999). The MCD-estimator is obtained by 

by selecting the subsample of size h (we selected h = 0.75n) for which the determinant of 

the covariance matrix computed from that subs ample is minimal, and computing afterwards 

the mean and the sample covariance matrix solely from this "optimal" subsample. The 

robustness of the MCD-estimator in the context of QDA has recently been shown by means 
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of simulation studies (Hubert and Van Driessen, 2003; Joossens and Croux 2003). Now, 

using the theoretical results of Section 3, we are able to prove local robustness by means of 

partial influence functions. Figure 3 show the PIF for the same distributions as for Figure 

1, but now using the robust MCD estimator to estimate the discriminant rule. The same 

scaling of the axes as in Figure 1 is used, and it is immediately observed how much lower 

the values for the PIF become. In the central part of the data, the PIF behaves like the 

PIF of the classical estimation procedure, but in the tails we observe a bounded influence. 

Hence far outliers receive a bounded, but non zero, influence. Notice that for (J'2 close to 

1, where condition C is not valid, the influence function also gets blown up, but to a much 

lesser degree. Sure, for (J'2 equal to one, the IF will not exist either. 

i5: a f-------______ 

-5 
-5 

5 

~ 0 

-5 

a 
x 

0-2=1.1 

a 
x 

5 

5 

~ 0 

-5 
-5 a 5 

x 

<J'2=1.6 
5 

-5L-~_5~--~O---5~~ 

x 

Figure 3: As Figure 1, but now using the robust MCD-estimator 

for the parameters in the discriminant rule. 

5 Examples 

To illustrate the risk of masking when using non-robust diagnostics, consider the Skull's 

data, described in Flury and Riedwyl (1988, page 123-125). This well-known data set con

tains skull measurements (6 variables) on two species of female voles: Microtus Californi

cus, and Microtus Ochrogaster. The first group contains 41 observations, and the second 
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45. In Figure 4 diagnostic plots are made, once using the classical estimators, and once 

using robust plug-in estimators for Q. The robust diagnostic measures, denoted by RDi , 

for i = 1, ... ,n, immediately reveal that there is a huge influential observation: number 73. 

The non-robust diagnostic measures suffer from the masking effect and cannot detect any 

influential observations anymore. 

o 
a: 

2.5 

1.5 

0.5 

a .. -.'"" -" _. --.- .. .. - ...... 
o 10 20 30 40 50 60 70 80 

index 

o 

10 

. .... ... . . .o.o •• .o 

. .. .. • .o ... .. . ... 
•• ~ e .. 

o~~~--~~~--~~~~ 

o 10 20 30 40 50 60 70 80 

index 

Figure 4: Diagnostic plot for the Skull data using robust pl'ug-in estimators 

(left figure) or using classical plug-in estimators (right figure). 

Several diagnostic measures for quadratic discriminant analysis have already been in

troduced by Fung (1996). Influence is measured by looking at the effect of deleting an 

observation from the sample on the estimated probabilities of all other observations. Fung 

(1996) proposed different variants, all based on the leave-one-out principle. One of them is 

the Relative Log-Odds SQuared influence for an observation i: 

where Pl(X) is the estimated probability that an observation x belongs to the first group: 

Pl(X) = A(x)/[J~(x) + f~(x)l, 

with jj the density of Np(flj, t j ), for j = 1,2. On the other hand, Pl(i)(X) estimates the 

same probability, but now using the sample with observation i deleted. 

The measures introduced by Fung are useful for most applications, but there are circum

stances where they fail. It is not surprising that leave-one-out methods are most vulnerable 
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to data sets containing multiple outliers. Take the Hawkins-Bradu-Kass data (Hawkins et 

al., 1984) consisting of 75 observations in three dimensions. The first group has 55 observa

tions, the second one 20. It is known that the first 14 observations are outliers, and hence 

possible influential points. From Figure 5 it is seen by the robust diagnostic plot that the 

4 points that are detected are very influential. Observations 1-10, known to be outliers, do 

not appear to be influential. Note that not all observations being outliers in the multivariate 

space need to be influential on the classical discriminant analysis procedure. There is a dif

ference between influential observations and outliers: an observation is influential here if it 

has a huge effect on the estimation for the TPM of classical QDA. These are the observations 

that need to be flagged, since they dominate the statistical analysis. On the other hand, 

outliers are observations that are unlikely to be generated by the (implicitly or explicitly) 

imposed model distribution. Figure 5 illustrates that the RLOSQ-diagnostic is trapped by 

the multiple outliers, and cannot pinpoint any influential observation in the first group of 

training data anymore. A bit strange, the RLOSQ measures detects now a whole sequence 

of influential points in the second group. 

o 
a: 

"",, .. 
... 

,," .... " ................ " 
°0~~,0~~20~~3LO--~40~~50~-6~0~~70~ 

index 

4.5 

3.5 

a 9 2.5 
a: 

1.5 

0.5 

0·············· 
o '0 

. .. 
".. " ..... 

20 30 40 50 60 70 

index 

Figure 5: Diagnostic plot Jor the Hawkins-Bmdu-Kass data using TObust di

agnostics based on TPM (left figure) and using the leave-one-out measure 

RLOSQ (right figure). 

As a last example, consider the Biting flies data, described in Johnson and Wichern 

(2002, page 373). Two species of flies, Leptoconops cartei and Leptoconops torrens, were 

thought for many years to be the same, because they are morphologically very similar. For 
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o 
0: 

10 

4 

o •••••••••••••••• - •• -•• -... •••• •••••• .- ••••••••• -
o 10 20 30 40 50 60 70 

index 

40r-~-~-~-~~-~--"" 

35 

30 

25 

§ 20 
0: 

15 

10 

0~~~--~'~"~'~·~·_' __ 4"~'~' ____ '~ 
o 10 20 30 40 50 60 70 

index 

Figure 6: Diagnostic plot for the Biting Flies data using robllst diagnostics 

based on TPM (left figure) and using the leave-one-out measure RLOSQ (right 

figure). 

each group a sample of 35 observations was drawn and seven measurements where taken. 

Figure 6 shows the comparison between the RLOSQ-diagnostic and the robust diagnostic 

based on the partial influence functions for the TPM. The robust diagnostic clearly indicates 

only 36 as highly influential. The leave-one-out method suggests as well 2, 15, 23. Further 

inspection of the data reveals that 2, 15, and 23 are outlying observations. Hence there is a 

risk that due to the presence of multiple outliers, the whole leave-one-out procedure becomes 

unreliable. Whether 2, 3, and 15 are highly influential, or only outlying, is difficult to find 

out using the RLOSQ indices. 

6 Conclusions 

This paper concerns computing the influence of observations in the training sample on the 

classification error of a discriminant rule. For linear discriminant analysis, answers have 

been given more than a decade ago, but quadratic discriminant analysis is a harder problem 

to tackle. Starting from an expression for the total probability of misclassification (Sec

tion 2) and using the technology of Partial Influence Functions of Pires and Branco (2002), 

a computable expression for the influence function was found. 

Not surprisingly, this influence function was found to be quadratic. Using robust plug-in 

estimators in the discriminant rule Q yields bounded influence estimation procedures. But 
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it also turned out that whenever the matrix ~1~2I has eigenvalues close to each other or 

close to one, then QDA is unduly sensitive to small data perturbations. Focus was on the 

influence on the TPM, and not on the influence on the estimates of the parameters of the 

quadratic discriminant rule. The latter estimates are not of direct interest in QDA. In some 

sense, one could think of PIF(x; T P lVI, H) as an appropriate summary of the influences of 

the estimates of the p(p + 3) components of /-LI, /-L2, ~I' ~2' in the context of QDA. Besides 

of theoretical interest, the PIF can also be used to construct a robust diagnostic tool for the 

detection of influential points in QDA. 

Influence diagnostics in discriminant analysis were proposed and studied in a sequence 

of papers by Fung, for LDA, QDA, and the multiple group case (Fung, 1995ab, 1996). In 

contrast to Fung (1996) a theoretical expression of an influence function is now used at the 

basis of the diagnostic measure we propose, allowing to avoid case-wise deletion measures. A 

completely different approach is taken by Riani and Atkinson (2001), who proposed a forward 

search algorithm to avoid masking effects and to detect influential points. Their approach 

is a useful data-analytic tool for a robust sensitivity analysis of discriminant analysis, and 

requires user-interactive analysis of the data. 

Let us emphasize that the aim here was not to develop a new kind of robust discrimi

nant analysis. Robust high breakdown LDA and QDA has been discussed in several papers 

(Hawkins and McLachen, 1997; He and Fung, 2000; Croux and Dehon, 2001; Joossens and 

Croux, 2003; Hubert and Van Driessen, 2003), most of them focusing on computational 

aspects and simulation comparison. Programs for computing robust linear and quadratic 

discriminant analysis can be retrieved from www.econ.kuleuven.ac.belchristophe.cr01lx.This 

paper quantifies the influence of observations on the estimated error rate using plug-in esti

mates for the parameters of the quadratic discriminant rule. 

7 Appendix 

Proof of proposition 1: 

It is sufficient to prove (2.7). The quadratic discriminant function (2.1) can be rewritten as 

written as 

(7.1) 
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with k = k(HO) defined in (2.9), and d(HO) = -A(HO)-lb(HO)/2. Take now X rv HI, then 

VV = ~~1/2(X - f.Ld rv N(O, Ip), and definition (2.5) yields 

PHI ((X - d(HO)))t A(HO)(X - d(HO)) < k) 

PN(O,Ip) ((vV - d2IdA(HO, H)(vV - d211 ) < k), 

where d211 = d211 (HO, H) is defined in (2.8). Since A(HO, H) is a symmetric matrix, its 

eigenvalues /\j are real and we can write 

p 

A(HO, H) = L AjVjVJ, 
j=l 

where Vj are denoted for the corresponding eigenvectors. Moreover, the eigenvalues of 

A( HO, H) are orthogonal implying that vVj = vVtVj, for j = 1, ... , p, are components of 

a multivariate standard normal distribution. 

As a first step, the PIF for the parameters of the quadratic discriminant rule Q are computed. 

The matrix derivation rule PIFs(x; ~;1, HO) = -~;lPIFs(x; ~s, HO)~;l and straightforward 

derivation from definitions (2.2), (2.3), (2.4) yields, 

PIFs(x; A, HO) 

PIFs(x; b, HO) 

PIFs(x; c, HO) 

( _l)S+1~ {~-lPIF (x· ~ HO)~-l)} 2 s· s, s, s 

(_l)s+1 {~~lPIFs(x; f.Ls, HO) - ~~lPIFs(x; ~s, HO)~~lf.Ls} 

(_l)s+1~ {f.L~PIFs(x; ~s, HO)f.Ls - 2f.L~~~lpIFs(x; f.Ls, HO) - PIF(x; log I~sl, HO)} . 
2 

for s = 1,2. Furthermore 

for s = 1,2 will be used, efr. Magnus and Neudecker (1999). Inserting (3.6) in the above 

formulas results in, with "ax = ~;l(X - f.Ls), 

PIFs(x; A, HO) 

PIFs(x; b, HO) 

PIFs(x; c, HO) 

(_1)S+l~ {"ax"a; _ ~~1)} 
(_1)s+l {"ax - ("ax"a; - ~~1 )f.Ls} 

(_l)S+1~ {f.L~("ax"a; - ~~l)f.Ls + p - "a;(x - f.Ls) - 2f.L~"ax}. 
2 
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Use now the shorthand notations A = A(HO) and b = b(HO). Then, since the functional 

k(HO) is a simple function of the model parameters, 

1 1 
PIFs(x; k, HO) = -4btA-1PIFs(x; A, HO)A- 1b + 2"btA-1PIFs(x; b, HO) - PIFs(x; c, HO), 

for s = 1,2. For the influence functions of the eigenvalues and eigenvectors Aj and Vj 

the following lemma can be used (Sibson, 1979, Lemma 2.1; Croux and Haesbroeck, 2000, 

Theorem 1) 

and 

( .. ° ) _ LP vkP1Fs(X; 11211 , HO, H)vj 
PIFs x,vJ,H ,R - Vk, 

A·-A,-
k=l,kf.j J" 

(7.2) 

for j = 1, ... ,po Note that, by condition C, and since 211211 = 2:::/22::;-12::i/2 - Ip and 

2::12::;-1 - Ip have the same eigenvalues, division by zero in (7.2) is avoided. For computing 

PIFs(x; 11211, HO, H) one has from (2.10) 

(7.3) 

and from (2.8) 

PIFg(x; d211 , HO, H) = }2::i/2 (A- 1PIFs(x; b, HO) - A-1PIFs(x; A, HO)A- 1b) . (7.4) 

Finally, by (3.4), 

When computing P1Fs(x; II211' HO, H) it suffices to replace 2::1 in the above expressions (7.3) 

and (7.4) by /-L2 and 2::2 and to interchange d211 and 11211 with d l 12 and 11112 . 

Computation of the partial derivatives of II211 (HO, H) w.r.t. AjJ dj and k: 

According to Proposition 1 and with dj = vjd211 , write 

where 

where the Xj are independent univariate normal variables, each having density 

(7.5) 
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Now (7.5) can be written as the integral 

Since the eigenvalues of A211 are the same as those of E1E;-1 minus I, condition C implies 

that none of the /\j are zero. 

Using the above notations, we get the following three lemmas. 

Lemma 1. The partial derivatives of II211 (HO, H) w. r. t. /\j is given by 

for all j = 1, ... ,p. 

Proof: For each 1 ::; j ::; p, it holds that a~ II21l (HO, H) equals 
J 

J iJ~/X,("j) ,J~L/X'(X')1 (t,Sign(>.;)X; < k) d:", ... dx, 

J sign(Aj) f)1~'lfXj(Xj) IT fXm(xm)I (tsign(Ai)X; < k) dX1 ... dxp 

] m=l,mi] ~=l 

(7.5) J sign(Aj) htA~t3/2~ ( ~ + d;) + ( -21~jt2 ) ~' ( ~ + d;) 1 

m=Uh fXm(xm)I (t, Sign(A,)X; < k) dx, .. dx, 

J. (A.)_I_ [-1 + Xj(Xj + djJrq)] 
slgn ] 21 Aj 1 1 Aj 1 

<p'(u)=-wp(u) 

D/ Xm (xm) [ (t, sign ( A,)X; < k) dx,.. dx, 

o 
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Lemma 2. The partial derivatives OjIT211 (HO, H) w.r.t. dj, is given by 

-1 
!T\TE[XjI(~isign(/\)Xi2 < k)] - d;P(~isign(/\)X; < k), 

V I)..jl 
jar all j = 1, ... ,po 

Proof: For each 1 ~ j ~ p, it holds that 8~~ IT 211 (HO, H) equals 
J 

(7.5) 

tp'(u)=-utp(u) 

D 

For the partial derivative with respect to k, we will reorder the components of X such that 

the corresponding eigenvalues verify 

where q is the number of positive eigenvalues. Furthermore, let 

q P 

S+ = L XCj) and S- = L XCj) 
j=l j=q+1 

where empty sums are zero by convention. By (7.5) we get IT 211 (HO, H) = P(S+ - S- < k). 

Without lose of generality we will suppose that k > O. For k < 0 one has 

8P(S- - S+ > Ikl) 
81 kl 

8P(S- - S+ ~ Ikl) 
81kl 

and it suffices to interchange the roles of S+ and S- in the lemma below. 
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Lemma 3. With this notations above, and for k > 0, the partial derivative of II12 with 

respect to k is given by 

° U q=O 

E [{ fX(l) (Jk + S-) + fX(l) (-Jk + S-)} /(2jk + S-)] if q = 1 

E [7rq- l jk + s-q-2 fq (Ujk + S-)15(O(U))l] if q 2:: 2 

where fq is the joint density of (X(l),"" X(q))t in polar coordinates, U is uniformly dis

tributed on the periphery of the q dimensional unit sphere Sq-l, independently of S-. Here 

a (O( u)) = sinq- 2 (h sinq- 3 O2 ... sin Oq-2 for q 2:: 2, with O( ll) = (01 , ... , Oq) the angles deter-

mznzng ll. 

Proof: The results is clear for q = ° since it was supposed that k > 0. Now if q = 1 then 

For q 2:: 2, a transformation fq(x(l)' ... ,X(q)) := fq(xq) -+ fq(r, 0) to polar coordinates will be 

carried out, where r = Ilxqll and 0 _ (01, ... , Oq-1), with 01, ... , Oq-2 E [0, 7r[, Oq-l E [0,27r[ 

contains the corresponding angles. Let 8 be the space where the angles vary in, and let O(u) 

be the set of angles associated with a unit vector. Then 15(0) = sinq- 2 01 sinq- 3 O2 , .. sin Oq-2 

is the absolute value of the determinant of the Jacobian of this transformation. For every 

positive k one has 

Fubini 

Leibnitz 
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y1kq-2 r J(yIk,e)o(e)de, 
2 Je 

/kq-2 21fq- 1 Eu[Jq(vk, U)o(e(U))] 
2 

where U is uniformly distributed over the q-dimensional unit sphere Sq-l. Then 

E[:k P(S+ ~ k + S-IS-)] 

E [1fq-l~q-2Jq(Ujk+S-)o(e(U))]]. 

(7.6) 

D 

Finally, it is easy to verify that the partial derivatives of II lI2 (HO, H) w.r.t. /\, dj and k 

are given by similar expressions as in Lemmas I, 2 and 3. In Lemmas 1 and 2 the inequalities 

need to inversed, while the sign of the formula of Lemma 3 needs to be changed. 
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