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Abstract 

When experiments are to be performed in a time sequence, the observed responses 
are affected by a time trend. The construction of trend-resistant run orders is 
extensively described in the literature. However, run orders that are optimally bal­
anced for time trends usually involve huge costs and they are often of low practical 
value in view of economical considerations. This paper presents a design algorithm 
for the construction of trend-resistant run orders under budget constraints. The 
algorithm offers the experimenter a general method for solving a wide range of 
practica I design problems. 

Keywords: optimal design of experiments; time trends; trend"resistance; cost; budget con­
straint; run order 
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1 Introduction 

Performing experiments in a time sequence may result in observed responses that are 
influenced by a temporal trend. For instance, Freeny and Lai (1997) study an experiment 
conducted to evaluate the performance of a polisher used in the fabrication of chips in the 
electronics industry. The goal was to find the maximum rate of oxide removal which could 
be used without degrading the uniformity of the removal over the wafer surface. However, 
the polisher removal rate showed a tendency to drift lower through time. Another time 
dependence occurs when a batch of material is created at the beginning of an experiment 
and treatments are to be applied to experimental units formed from the material over 
time. As a consequence, there will be a temporal effect due to the aging of the material. 
Other variables that affect observations obtained in some specific order are equipment 
wear-out, learning, analyst fatigue, etc. 

The aim of this' paper is to present a method for the construction of budget constrained 
designs that are l).ighly resistant to the time trend. Section 2 gives a survey on cost­
efficient and trend-resistant experimental design. Trend-resistant design of experiments 
under budget constraints is thoroughly dealt with in Section 3 and our proposed design 
algorithm is outlined' in Section 4. Section 5 illustrates practical utility. 

2 Trend effects and costs in experimental design 

Henceforth, let y denote .the response of interest and f(x) the p x 1 vector representing the 
polynomial expansion of design point x for the response model. Besides, get) represents 
the q x 1 vector of the polynomial expansion for the time trend, expressed as a function 
of time t. With a the p x 1 vector of important parameters and {3 the q x 1 vector of 
parameters of the polynomial time trend, the model for the response is given by 

y = f'(x)a + g'(t){3 + c. (1) 

The independent error terms c are assumed to have expectation zero and constant variance 
(J'2. It is convenient to rewrite (1) as 

y = Fa + G{3 + e, 

with y an n x 1 vector of responses and F and G the n x p and the n x q extended design 
matrices respectively. 

2.1 Trend-resistant design of experiments 

There is a vast literature on the existence and the construction of trend-resistant designs. 
An extensive overview can be found in Tack and Vandebroek (1999). However, the ap­
proaches are mainly restricted to two or three level factorials, equally spaced time points 
and regular design spaces. The only exception is the approach of Atkinson and Donev 
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(1996) who present an algorithm to treat almost any design problem. They construct 
exact optimal designs that maximize the information on the important parameters (t, 

whereas the q parameters modeling the time dependence are treated as nuisance param­
eters. We call the corresponding design the Vt-optimal design (1), and it is found by 
maximizing 

(2) 

Note that in the absence of time trend effects, the Vroptimal design equals the V-optimal 
1 

design (1) that maximizes V = IF'FI •. Bradley and Yeh (1980) define a design to be 
trend-free if it completely eliminates the effects of the postulated time trend. over the 
experimental units or if the least-squares estimates of the factorial effects of interest are 
free of bias that might be introduced from the unknown trend effects "in {3. This means that 
a trend-resistant design is obtained if and only if each time trend component is orthogonal 
to the treatment effects or, equivalently, if and only if F'G = o. To compare the V- and 
the Vt-optimal design with respect to information about the important parameters (t, 

the generalized variance of (t is compared through 

(3) 

denoting the protection of the Vroptimal design (1), against time order dependence. 
Henceforth, we call (3) the degree of trend-resistance of the Vt-optimal design. 

Although Vt-optimal designs have good statistical properties, there are practical circum­
stances where they may not be fit for use because of economical reasons. Generally speak­
ing, the difficulty is to· strike a balance between cheap but ineffective designs and costly 
designs with a high degree of trend-resistance. Consider as an example the response model 
f' (x) = (1 Xl X2 X3 XIX2 X;X3 X2X3) and design points to be taken from the 23-factorial. 
Assume also that the observed responses are influenced by a linear time trend g(t) = t. 
Figure 1 shows the cost and the Vrvalue of all 8! possible run orders. The cost of a run 
order is calculated as the number of factor level changes over the course of the experiment. 
The area of the circles in Figure 1 is proportional to the number of run orders found with 
the associated cost and information. The plot shows that the cheapest run orders with 
only seven or eight level changes have rather low Vt-values whereas the most informative 
run orders with a Vrvalue larger than 7.5 involve higher numbers of level changes. As a 
result, cost considerations often limit the usefulness of highly trend-resistant designs. 

2.2 Cost-efficient design of experiments 

Until recently, cost considerations have rarely been taken into account in optimal design 
theory. A few authors consider the costs associated with particular treatment combina­
tions. These costs include equipment costs, the cost of material, the cost of personnel, 
the cost for spending time during the experiment, etc. A second cost approach results 
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Figure 1: Cost and Information of the 23-Factorial Run Orders 

from the fact that it is usually expensive to alter the factor levels from one observation 
to another. Factors such as oven temperature or line set-up are often referred to as hard­
to-change factors. In order to minimize the total cost, the number of factor level changes 
has to be kept low. With the exception of Tack and Vandebroek (1999), we found no 
reference that deals with both cost approaches. They call the cost associated with the 
factor level combination Xi the measurement cost at design point Xi, i.e. Cm(Xi)' The 
mathematical representation is 

where m(xi) is a column vector with Pm elements representing the polynomial expansion 
of design point Xi for the measurement cost and <; is a Pm X 1 vector of coefficients. The 
total measurement cost em of an experiment equals the weighted sum of the measurement 
costs at the d different design points, or, mathematically, 

d 

em = LniCm(Xi), 
i=1 

where ni denotes the number of replicates at design point Xi. The cost for changing the 
factor levels of design point Xi in the previous run to the factor levels of design point Xj in 
the next run is referred to as the transition cost Ct(Xi' Xj) from design point Xi to design 
point Xj. The transition cost is defined as 
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where t(Xi' Xj) is a Pt x 1 vector representing the polynomial expansion of design points 
Xi and Xj for the transition cost and T is a column vector with Pt coefficients. The total 
transition cost at of a run order equals 

d 

C! = L ni,jCt(Xi' Xj), 
i=l,j=l 

where ni,j denotes the number of transitions from design point Xi to design point Xj in 
the considered run order. In contrast with the total measurement cost cm, the total 
transition cost C t of a run order depends on ~he sequence in which the observations are 
taken. The total cost C of a run order simply equals the sum of the total measurement 
cost and the total transition cost. 

2.3 Trend-resistant and cost-efficient design of experiments 

Tack and Vandebroek (1999) introduce a new optimality criterion that strikes a balance. 
between cost-efficiency and trend-resistance. This optimality criterion prefers designs that 
maximize the amount of information on the important parameters a per unit cost. The 
(TJt , C)-optimality criterion is defined as 

(TJt , C) = IF'F - F'G(G'G)-lG'FI~ IC. (4) 

Based on (4), Tack and Vandebroek (1999) present a generic design algorithm for the 
construction of (TJt , C)-optimal run orders and Tack and Vandebroek (2000) extend the 
algorithm to incorporate designs with either fixed or random block effects. 

Consider as an example an experiment with n = 36 observations. The design points 
constitute the full 32-factorial ~d the assumed response model is given by . 

f'(x) = (1 Xl X2 X1X2 xi x~). 
Besides, a linear time trend g(t) = t is postulated. The measurement costs are supposed to 
be proportional to the levels of Xl and X2 and they are shown in Figure 2. The horizontal 
axis relates to factor Xl and the veitical axis is the X2-axis. 
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·1 
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Figure 2: Measurement Costs at the Different Design Points 

The transition costs for both factors are shown in Figure 3. For instance, the cost for 
changing factor Xl or X2 from level 0 in the previous run to the low or the high level in 
the next run equals 2.5 and changing a factor from the high level to the low level or vice 
versa costs 10. 
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Figure 3: Transition Costs for Factors Xl and X2 

The computed V-, Vr and (Vt, C)-optimal designs are shown in Figure 4. There is no 
difference between the V- and the Vroptimal design, whereas the numbers of replicates 
ni for the (Vt, C)-optimal design are quite different. When costs are calculated for, the 
cheapest design point (-1,-1) is replicated many times more and the cheap design point (0,-
1) is replicated once more. All other design points are more expensive and are replicated 
less. 
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Figure 4: Optimal Designs 

As an illustration, the Vr and the (Vt, C)-optilllal run orders are shown in Table 1 and 
Table 2 respectively. It can easily be seen that the Vt-optimal run order has more factor 
level changes than the (Vt, C)-optimal one. Table 3 presents a comparison of the optimal 
run orders in terms of the procentual degree of trend-resistance and the total cost. The 
Vt-optimal run order is nearly optimally balanced for time trends but involves a huge 
cost. As a matter of fact, the (Vt, C)-optimal design is much cheaper. However, the large 
cost saving goes at the expense of the degree of trend-resistance. This example clearly 
illustrates the difficulty in striking a balance between cost-efficiency and trend-robustness. 
In terms of the cost per unit information, it is easy to calculate that the (Vti C)-optimal 
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run order considerably outperforms the Vcoptimal run order. For the (Vt, C)-optimal 
run order, information is 59% cheaper. 

time point Xl X2 time point Xl X2 time point Xl x2 

1 -1 -1 13 -1 1 25 1 -1 
2 -1 1 14 -1 -1 26 1 -1 
3 0 -1 15 1 1 27 1 1 
4 0 0 16 1 -1 28 0 0 
5 1 1 17 1 0 29 -1 -1 
6 -1 1 18 0 0 30 -1 1 
7 0 -1 19 -1 0 31 1 -1 
8 1 0 20 1 1 32 1 0 
9 1 -1 21 -1 1 33 0 1 
10 1 1 22 0 -1 34 -1 -1 
11 -1 0 23 0 1 35 0 1 
12 0 0 24 -1 -1 36 -1 0 

Table 1: The VcOptimal Run Order 

time point Xl X2 time point Xl X2 time point Xl X2 

1 -1 -1 13 -1 0 25 -1 -1 
2 -1 -1 14 -1 0 26 -1 -1 
3 -1 -1 15 -1 1 27 -1 -1 
4 -1 -1 16 1 1 28 -1 -1 
5 -1 -1 17 1 0 29 -1 -1 
6 -1 -1 18 1 -1 30 -1 -1 
7 -1 -1 19 1 -1 31 -1 -1 
8 -1 -1 20 0 -1 32 -1 -1 
9 -1 -1 21 0 -1 33 -1 -1 
10 -1 -1 22 0 -1 . 34 -1 -1 
11 -1 -1 23 0 -1 35 -1 -1 
12 -1 -1 24 -1 -1 36 -1 -1 

Table 2: The (Vt, C)-Optimal Run ~rder 
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optimality trend-resistance cost 
99.99 832 
45.29 155 

Table 3: Comparison of the Dt- and the (Dt , C)-Optimal Run Order 

Figure 5 shows for both optimal run orders the cumulative costs during experimentation. 
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FigUre 5: Cumulative Costs of Optimal Run Orders 

It is clearly visible from Figure 5 that the cumulated cost of the Dt-optimal run order is 
much higher than that of the (Dt , C)-optimal run order. 

It is however impo~tant to stress some major drawbacks of the (Dt , C)-optimality criterion. 
Suppose for instance that the experimenter's budget is much lower than 155, then the 
(Dt , C)-optimal run order has no practical utility. On the contrary, if the experimenter's 
budget at hand is much larger than 155, then one may wonder if it wouldn't be possible 
to construct a run order with a higher degree of trend-resistance. Generally speaking, 
the major deficiency of the (Dt , C)-optimality criterion is that budget constraints are not 
allowed for. 
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3 Trend-resistance under budget constraints 

This section goes into the subject of trend-resistant run orders under budget constraints. 
In the first subsection the design problem will be defined as a constrained optimization 
problem. Next, we will define a new optimality criterion that serves as a suitable tool for 
constructing optimal designs under budget constraints. 

3.1 A constrained optimization problem 

Let us describe the design problem at hand as follows. For a given number of observations 
n, determine the number of replicates ni to be taken at the d different design points Xi, 

with i E {I, ... , d} and n ~ L:f=l ni, in order to maximize the amount of information 

subject to the constraint that the total cost C of the run order must not exceed the 
experimenter's budget B. 

3.2 Pareto optimal run orders 

In order to circumvent the previous hardly solvable problem, the search for optimal run 
orders is approximated by preferring run orders that maximize 

(5) 

with k a strictly positive weighting coefficient that strikes a balance between trend­
resistance and cost-efficiency. Large values of k stress more on trend-resistance whereas 
low k-values put more weight on cost-efficiency. For instance, it can easily be shown that 
if k --+ 00, criterion (5) is nothing else than the 'Dt-optimality criterion (2). If k --+ 0, the 
resulting run order is the cost-optimal run order, i.e. the run order with the lowest total 
cost among all possible run orders. The determination of the weighting coefficient k and 
the connection with budget constraints will be extensively described in Section 4. This 
section goes further into some nice properties of the newly defined optimality criterion 
(5) that are of great interest in the sequel. It is also worthy of mention that optimality 
criterion (5) is a more natural criterion than the ('Dt , C)-criterion (4) in that it better 
relates the scales on which information and cost are measured: information is expressed 
as a negative cost or income and the weighting coefficient k acts as the expected income 
per unit information. 

A relation with the familiar concept of Pareto optimality can be made as follows. A Pareto 
optimum in welfare economics is a situation in which no feasible reallocation of outputs 
and/or inputs in the economy could increase the level of utility of one or more households 
without lowering the level of utility of any other household. Applied to optimality criterion 
(5), the following theorem is proven in the appendix. 
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Theorem 1. An optimal run order under criterion kDt .:.... C is a Pareto optimal 
run order. 

Theorem 1 says that no other run order than the optimal one can be found with a higher 
amount of information at the same or a lower cost or with a lower cost for as much 
information. 

The following theorem elucidates the relation between the (Dt, C)-optimal run order and 
the optimal run order under criterion (5). The proof is given in the appendix. 

Theorem 2. The (Dt, C)-optimal run order 8("Dt,C) is·the Pareto optimal run 
order for 

k _ C(8("Dt,C)) 

- Dt(8("Dt ,C))' 

The corresponding criterion value (5) then equals zero. Theorem 3 relates the total cost 
C and the Devalue of the optimal run orders under criterion (5) with the constant k. 
Again, the proof can be found in the appendix. 

Theorem 3. The total cost C and the Devalue of the Pareto optimal run orders 
are non-decreasing functions of k. 

Note that these functions are in fact of a discrete form because we confine ourselves to 
exact designs. It follows from Theorem 3 that k can be used as a tuning constant in that 
an increased k-value involves at least even expensive and at least even informative run 
orders. As a matter of fact, the opposite holds when the k-value is lowered. 

Returning to the design problem mentioned in the previous section, Pareto optimal run 
orders will be computed by maximizing criterion (5) for several tuning constants k. Figure 
6 shows the performance of the computed Pareto optimal run orders in terms of the total 
cost and the Devalue. Note that the curves in Figure 6 are in fact discrete functions. 
This figure is an obvious illustration of Theorem 3. Based on Theorem 2, the cost and 
the Devalue" of the (Dt, C)-optimal run order of Table 2 is found by setting k equal to 
the inverse (Dt, C)-value 20.06. 

Figure 7 displays the relation between the total cost C and the degree of trend-resistance 
of the Pareto optimal run orders computed for varying constants k. A more general 
relation between both costs and information is given in Theorem 4 and is proven in the 
appendix. 

Theorem 4. The relation between the total cost C and the Devalue of the 
Pareto optimal run orders is a strictly increasing function. 
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Based on Theorem 1, each point in Figure 7 represents a Pareto optimal run order and 
the curve in Figure 7 forms the Pareto set. This means that no other run orders can be 
found that are both cheaper and at least as much informative or run orders that are both 
more informative and equally or less expensive. The Pareto optimal run orders are to be 
preferred in practice. Based on this property, the next section will show how the design 
problems of Section 3.1 and Section 3.2 are related. 
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Figure 6: Performance of Optimal Run Orders for Several Values of k 

4 The design algorithm 

The aim of the design algorithm is the construction of Pareto optimal run orders. At the 
end of this section, Theorem 5 will show that the computed Pareto optimal run orders 
serve as a good approximation to the constrained optimization problem of Section ?? 

The input to the algorithm consists of the fixed number of observations n, the number of 
factors, the order and the number of parameters p of the response model, the polynomial 
expansion for the response model f(x), the order and the number of parameters q of the 
time trend, the polynomial expansion for the time trend g(t), cost information ill, t, " 
and T, and the list of available time points. The list of d candidate design points can 
be either provided or computed as shown in Atkinson and Donev (1992). Besides, the 
experimenter specifies the available budget B. Given the budget constraint, the aim is 
now the selection of n design points and the sequence in which the observations have to 
be taken in order to obtain maximal protection against time order dependence. 

After reading the input, a direct search method iteratively computes Pareto optimal run 
orders 8i for varying values k = ki in criterion (5). Let Ci denote the total cost of the 
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Figure 7: Total Cost and Degree of Trend-Resistance of Optimal Run Orders 

Pareto optimal run order 8i found during iteration i. Roughly speaking, the algorithm 
proceeds as follows .. In the first iteration, k1 is chosen as the midpoint of K1 = [k(1) , k&)l = 
[0, kmax], with km"'" a sufficiently large number. Depending on whether the total cost C1 of 
run order 81 exceeds the budget B or not, the search during the neXt iteration is restriCted 
to K2 = [k(1) , kiJ = [0, k1J. or K2 = [k1' k&)l = [kb km"",l respectively. Now, run order 82 is 
computed for k2 in the middle of K2. Again, depending on the total cost C2, the interval 
K3 for the next iteration is chosen as [k(2) , k2J or [k2' k~)J. In general, the tuning constant 
ki during iteration i is the midpoint of Ki = [k~_l)' ki - 1J or Ki ' = [ki- 1, kt-1)J depending 
on whether Ci - 1 is respectively higher or lower than B. It can easily be understood that 
this iteration process. converges to a Pareto optimal run order 8c with a total cost Cc 

very close or equal to the budget B. Because of the discrete nature of the exact design 
problem, it is not always possil;lle to find a run order Dc with a total cost Cc exactly equal 
to the available budget B. The output of the algorithm consists of the Pareto optimal 
run order Dc. 

The construction of the trend-resistant run order Di during each' iteration i is mainly 
based on the generic point exchange algorithm for the construction of V-optimal designs of 
Atkinson and Donev (1992). The optimal run orders Di are obtained by selecting a random 
starting run order and sequentially adding and deleting design points and time points in 
order to maximize optimality criterion (5) for k = k i . However, to avoid being stuck at a 
local optimum, the probability of finding the global optimum during one iteration can be 
increased by repeating the search several times from different starting ~esigns or 'tries'. 
For a detailed description of the exchange procedures, we refer the interested reader to 
Tack and Vandebroek (1999, 2000). 
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The constructed Pareto optimal run orders usually are the solution to the constrained 
optimization problem. However, if Cc =1= B, it may be possible that the Pareto optimal 
run order Dc obtained with criterion (5) does not coincide with the optimal solution for the 
original constrained optimization problem. In this case, the design algorithm results into 
a Pareto optimal run order that is close to the optimal solution for the original constrained 
maximization problem. Theorem 5 derives an upper bound on the difference in trend­
resistance of the Pareto optimal run order and the optimal design for the constrained 
optimization problem. 

Theorem 5. The Pareto optimal run order is at most 

B-C 
100 x 1 % 

k IF'FIP' 

less trend-resistant than the optimal run order for the constrained optimization 
problem. 

The examples in Section 5 will show that the difference in the degree of trend-resistance 
is small and often negligible. 

5 Examples 

This section presents two examples to illustrate the usefulness of the proposed design 
algorithm for solving practical design problems. The first example turns back to the 
32-factorial studied in the previous sections, whereas the second example is a real-life 
industrial application. 

5.1 A trend-resistant 32-factorial under budget constraints 

Consider as an example the design problem described in Section 2.3 where the aim was the 
construction of Dr and (Dt, C)-optimal run orders for an experiment with 36 observations 
and design points taken from the 32-factorial. The degree of trend-resistance and the 
total cost of both optimal run orders are given in Table 3. However, if we assume that 
the experimenter's budget is lower than 155, then neither the Dr nor the (Dt, C)-optimal 
design have any practical value. On the other hand, if the available budget is somewhere 
between 155 and 832, then it may be possible to construct a run order with a higher degree 
of trend-resistance than that of the (Dt, C)-optimal run order. Here, Pareto optimal run 
orders will be computed for five different budget. constraints (Figure 8). As a matter of 
fact, when the budget at hand is rather low (e.g. B = 100 or B = 200), then the cheap 
design point (-1,-1) is replicated many times. On the other hand, when the experimenter 
has the disposal of a high budget (e.g. B = 500), then the optimal design becomes more 
balanced. 
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Figure 8: Optimal Designs for the 32-Factorial 

(e) B = 500 

Table 4 compares the Pareto optimal run orders in terms of trend-robustness and cost­
efficiency. For example, assuming a budget B = 100 involves a reduction in the degree of 
trend-resistance from 45.29% to 17.78%. On the other hand, if the budget at hand exceeds 
155, the obtained run orders are better balanced for time trends. Based on Theorem 5, 
Table 4 also shows how far away the Pareto optimal run orders are from the optimal 
run orders for the original constrained maximization problem. For instance, it is possible 
that for B = 300 there exists a budget constrained run order that is 1. 74 % more trend­
resistant than the Pareto optimal run order. Remark that the deviation from the optimal 
run orders decreases with increased budget B. 

criterion trend-resistance cost 100 x (B - C)/(k IF/FIf;) 
V t 99.99 832 

(Vt, C) 45.29 155 
B = 100 17.78 85 5.97 
B = 200 53.48 190 2.46 
B = 300 75.38 290 1.74 
B = 400 90.50 397 0.28 
B = 500 98.18 500 0 

Table 4: Comparison of Optimal Run Orders 

5.2 The cryogenic flow meter experiment 

Based on Joiner and Campbell (1976), an experimental plan will be set up to evaluate 
the accuracy of flow meters for use with cryogenic fluids such as liquid oxygen or liquid 
nitrogen. The accuracy of the flow meters is supposed to·be sensitive to the temperature 
Xl, the pressure X2, the flow rate of the liquid X3 and the total weight of the liquid 
pumped during a test X4. Management decides to restrain the factor levels shown in 
Table 5. Besides, the flow meters are known to deteriorate linearly with time and a 
time trend g(t) = t is postulated. The number of observations equals n = 20 and the 
measurement costs are given by 

cm(x) = 20 + 5.XI + 5X2 - 5X3 + 5X4. 
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For instance, rised temperatures Xl and/or higher pressures X2 more heavily load the flow 
meter and are calculated for by means of an increased measurement cost. Rising the total 
weight X4 of the liquid pumped prolongs the total execution time of the experiment and 
increases the measurement cost. The opposite holds for the flow rate X3. Changing the 
temperature from the high level to the low level or vice versa is very time consuming and 
costs 100, whereas changing the pressure level is cheaper and amounts to a cost of 50. 
Changes in flow rate and weight could be made almost instantaneously. The transition 
costs for the latter two factors X3 and X4 are set equal to zero. 

factor coded factor levels 
Xl -1, 1 
X2 -1, 1 
X3 -1, 0, 1 
X4 -1,0, 1 

Table 5: Coded Factor Levels in Cryogenic Flow Experiment 

Run orders will be computed for the following response models: 

(1 Xl X2 X3 X4), 

(1 Xl X2 X3 X4 X1X2 X1X3 X1X4 X2X3 X2X4 X3X4), 

(1 Xl X2 X3 X4 X~ xD, 

(Fl ) 

(F2) 

(F3) 

(F4) 

f'(x) 
f'(x) 
f'(x) 
f'(x) (1 Xl X2 X3 X4 X1X2 X1X3 X1X4 X2X3 X2X4 X3X4 X~ X~). 

The performance of the Vr and the (Vt, C)-optimal run orders is shown in Table 6. 

Fl F2 F3 F4 

Vroptimality cost 1,900 1,480 2,360 2,150 
degree of trend-resistance 100 99.99 99.99 99.99 

(Vt, C)-optimality cost 280 600 310 480 
degree of trend-resistance 49.17 89.97 59.25 73.11 

B =800 cost 800 780 745 800 
degree of trend-resistance 100 99.91 99.99 99.70 

1 

100 x (B - C)/(k IF'FIi» 0 0.018 0.006 0 

Table 6: Performance of the Optimal Run Orders 

Whereas the (Vt, C)-optimal run orders considerably outperform the Vroptimal run or­
ders in terms of the total cost, the Vt-optimal run orders are better balanced for time 
trends. Especially for response models Fl and F3 , the degree of trend-resistance of the 
(Vt, C)-optimal run orders is quite low. 

If we assume the experimenter has at his disposal a budget B = 800, it may be possible 
to construct run orders with a better balance for time trends than the (Vt, C)-optimal 
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run orders. The Pareto optimal run orders are given in Table 7 to Table 10 and their 
performance is shown in Table 6. The budget constrained run orders obviously outperform 
the (Vt, C)-optimal run orders in terms of the protection against time trend effects. Based 
on Theorem 5, Table 6 shows that the difference in trend-resistance of the Pareto optimal 
run orders and the optimal constrained ones is rather negligible. Similar results were 
obtained for other costs. 

time point Xl X2 X3 X4 time point Xl X2 X3 X4 

1 1 1 -1 1 11 -1 1 1 -1 
2 1 1 -1 -1 12 -1 -1 1 1 
3 1 -1 1 -1 13 -1 -1 1 1 
4 . 1 -1 1 1 14 -1 -1 -1 -1 
5 1 -1 1 -1 15 -1 -1 -1 -1 
6 -1 -1 -1 -1 16 1 -1 -1 1 
7 -1 1 -1 1 17 1 -1 -1 1 
8 -1 1 -1 1 18 1 1 1 1 
9 -1 1 1 1 19 1 1 -1 -1 
10' -1 1 1 -1 20 1 1 1 -1 

Table 7: The Budget Constrained Run Order for Response Model Fl 

time point Xl X2 X3 X4 time point Xl X2 X3 X4 

1 1 1 -1 1 11 -1 1 1 -1 
2 1 1 1 -1 12 -1 1 -1 -1 
3 1 -1 -1 -1 13 -1 1 1 1 
4 1 -1 1 1 14 -1 -1 -1 -1 
5 -1 -1 -1 -1 15 -1 -1 -1 1 
6 -1 -1 1 1 16 -1 -1 1 -1 
7 -1 -1 1 1 17 1 -1 1 -1 
8 -1 1 1 -1 18 1 -1 -1 1 
9 -1 1 -1 1 19 1 1 1 1 
10 -1 1 -1 1 20 1 1 -1 -1 

Table 8: The Budget Constrained Run Order for Response Model F2 
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time point Xl X2 X3 X4 time point Xl' X2 X3 X4 

1 1 1 -1 -1 11 -1 1 1 -1 
2 1 1 0 1 12 -1 1 1 0 
3 1 1 0 0 13 -1 1 -1 1 
4 1 -1 1 0 14 -1 1 1 0 
5 1 -1 1 1 15 -1 1 0 1 
6 -1 -1 -1 -1 16 1 1 -1 0 
7 -1 -1 0 0 17 1 1 0 -1 
8 -1 -1 -1 0 18 1 -1 1 -1 
9 -1 -1 1 1 19 1 -1 -1 1 
10 -1 -1 0 -1 20 1 -1 0 0 

Table 9: The Budget Constr~ined Run. Order for Response Model F3 

time point Xl . X2 X3 X4 time point Xl X2 X3 X4 

1 1 1 -1 1 11 -1 1 -1 . 0 

2 1 1 1 -1 12 -1 1 0 -1 
3 1 -1 0 -1 13 -1 1 1 1 
4 1 -1 -1 0 14 -1 -1 -1 1 
5 1 -1 1 1 15 -1 -1 1 -1 
6 -1 -1 1 1 16 1 -1 1 -1 
7 -1 -1 -1 -1 17 1 -1 -1 1 
8 -1 -1 0 0 18 1 1 1 0 
9 -1 1 1 -1 19 1 1 0 1 

10 -1 1 -1 1 20 1 1 -1 -1 

Table 10: The Budget Constrained Run Order for Response Model F4 

As an illustration the cumulative total costs for the optimal run orders are shown in Figure 
9. The Droptimal run orders have the largest total cost during experimentation and the 
(Dt, C)-optimal run orders are the cheapest run orders. The cumulative total cost of the 
budget constrained run orders is somewhere in the middle. 

6 Conclusion 

In practice, time trend effects often affect the observed responses. The solution to this 
annoying problem is the construction of run orders that are optimally balanced for time 
trends. In practical circumstances these run orders are of limited use because they usually 
involve huge transition costs. An optimal run order is not obvious and the main difficulty 
is how to strike the balance between cost-efficiency and trend-resistance. This paper has 
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presented a generic design algorithm for the construction of cost-efficient run orders with 
an optimal protection against time trend effects. The construction algorithm enables the 
practitioner to tackle a wide range of practical design problems. As an example, the 
cryogenic flow meter experiment has shown that the algorithm serves as a proper tool for 
the construction of trend-resistant run orders under budget constraints. 
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Appendix 

Theorem 1. 
An optimal run order under criterion kVt - C is a Pareto optimal run order. 

Proof 

Let 15 denote the optimal run order under criterion kVt - C. It follows that 15 maximizes 
kVt - C or that for any run order 15i , 

(1) 

Suppose now that 15 is not a Pareto optimal run order. Consequently, there must be at 
least one run order 15i among all possible run orders such that 

{ V t(15i ) > V t (15) , 
C( 15i ) C( 15), 

or 
{ V t (15i ) > V t (15) , 

C( 15i ) < C(15), 
or 

{ V t (15i ) V t (15), 
. C(15i ) < C( 15). 

For each of the three cases above it then follows that 

kVt(15i ) - C(15i ) > kVt (15) - C(15), 

which is contrary to (1). As a result, the run order 15 that maximizes kVt - C is a Pareto 
optimal run order. 

o 

Theorem 2. 
The (Vt, C)-optimal run order 15(V,,c) is the Pareto optimal run order for k = C(15(,D,,c») /Vt( 15(1J"C»)' 

Proof 

Since 15(1J,,c) is the (Vt, C)-optimal run order, it follows that 

V t(15(1J,,c») > V t(15i ) 

C(15(1J,,c») - C(15i ) 

for all possible run orders 15i . Consequently, 

C( 15(1J,,c»)Vt( 15i ), C(15i )Vt(15(1J"C») > 
o > C(15(1J"C»)Vt (15i ) - C(15i )Vt(15('D"C»), 

> C(15(1J"C»)Vt (15i ) - C(15i )Vt(15(1J"C»), 

C(15(1J"d V t (15i ) - C(15i ). 

V t( 15(1J"C») 
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Let C(5(vt,c))(Dt(5(vt,c)) = k, then (1) can be rewritten as 

Hence, the (Dt, C)-optimal run order 5(vt,c) maximizes kDt-C for k = C(5(vt,c))/Dt(5(vt,c)). 

o 

Theorem 3. 
The total cost C and the Drvalue of the Pareto optimal run orders are non~decreasing functions 
of k. 

Proof 

Let 51 and 52 denote the optimal run orders under criterion kDt - C with k = k1 and 
k = k2 respectively. Besides, assume that k1 < k2. Then, because 51 maximizes k1Dt - C, 
it follows that 

Similarly, because 52 maximizes k2Dt - C, it follows that 

From (1) and (2), 

or, 

k1Dt (51) - k1Dt (52 ) > C(51) - C(52 ), 

k2Dt(51) - k2Dt(52) < 0(51) - C(52), 

Because k1 < k2' it follows that 

(1) 

(2) 

(3) 

This means that the Dt-value is a non-decreasing function of k. Combining (1) and (3) 
gives 

Similarly, the total cost C of the optimal run orders is a non-decreasing function of k. 
o 
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Theorem 4. 
The relation between the total cost C and the 'Devalue of the Pareto optimal run orders is a 
strictly increasing function. 

Proof 

Let 151 and 152 denote the optimal run orders under criterion k'Dt - C for k = k1 and 
k = k2 respectively. Besides, assume that k1 < k2. Then, because 151 maximizes k1V t - C, 
it follows that 

(1) 

Similarly, because 152 maximizes k2'Dt - C, it follows that 

(2) 

For instance, suppose that V t (t51 ) = 'Dt (t52 ), then (1) and (2) respectively lead to 

and 
C(t51 ) ;::: C(t52 ) 

or C(t51 ) = C(t52 ). Alternatively, if C(t51 ) = 0(152 ), then (1) and (2) give 

'Dt ( 151 ) ;::: 'Dt ( 152 ) 

and 
'Dt (t51) ~ 'Dt (t52 ) 

or 'Dt (t51 ) = 'Dt (t52 ). Based on the these results and Theorem 3 it follows that 

or 

This means that the relation between the total cost C and the 'Devalue of the optimal 
run orders under criterion kVt - C is a strictly increasing function. 

o 
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Theorem 5. 
The Pareto optimal run order is at most 

B-C 
100 x 1 % 

k IF'FI;; 
less trend-resistant than the optimal run order for the constrained optimization problem. 

Proof 

Let b denote the Pareto optimal run order under criterion kDt - C in the design algorithm. 
Then for any run order b; it follows that 

or 

(1) 

From (1) it follows that all run orders with C(b;) ~ C(b) are equally or less trend-resistant 
than the Pareto optimal run order b. However, if C(b) < C(b;) ~ B there may exist a 
budget constrained run order b; that outperforms the Pareto optimal run order b in terms 
of the degree of trend-resistance. It follows from (1) that the highest outperformance 
occurs when C(b;) = B and equals 

B-C 
100 x 1 %. 

k IF'FI;; 
o 
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