
KATHOLIEKE
UNIVERSITEIT

LEUVEN

OEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 9947

MODELING THE DIALOGUE ASPECTS
OF AN INFORMATION SYSTEM

by
M. SNOECK
G. DEDENE

D/1999/2376/47

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling the dialogue aspects of an information system

Monique Snoeck, Guido Dedene

Abstract - In this paper we investigate techniques offered by current object
oriented development methods for the specification of the user-system dialogue
aspect of a software system. Current development methods do not give very
extensive guidelines on how to model this aspect and the available techniques
need some refinement and elaboration to tit this particular task in the software
specification process. The paper first compares a number of approaches. The
common elements of these approaches are summarized and further developed
into one comprehensive set of techniques that addresses the needs of functional
requirements analysis.

I. INTRODUCTION

Current object-oriented development methods offer a whole set of specification

techniques for specifying the various aspects of information systems. More

specifically, special attention is given to the static or structural aspects (object

relationship diagram), the behavioral aspects (statecharts) and the interaction

aspects (sequence charts). Other dimensions we have to consider are the business

rules or domain knowledge that are embedded in the information system and the

required user functionality. Current object-oriented development methods spend

a lot of attention to the modeling of structural and behavioral aspects of the

domain with techniques such as object-relationship diagrams, state charts and

interaction diagrams. Much less attention is spent to the modeling of user-system

interaction. In addition the techniques current methods offer, are not really

sufficient. For example, the specification of a conversation between system and

user is difficult to model only with statecharts and object-relationship diagrams.

Also sequence charts are not completely adequate because they do not allow to

represent branching and iterations. UML proposes several techniques that can be

used to model system behavior. However, it is not really clear how these

1

techniques interact with each other and how they can adequately be combined to

model user-system interaction. In addition, the techniques are either very

conceptual (and informal) or either very close to software design. In this paper

we investigate five current object-oriented development methods and study the

techniques they propose for modeling system behavior, and more in particular

how these techniques can be used to model the dialogue part of a system (section

II). In section ill we compare these techniques, identify common elements and

eventually, in section IV, propose a theoretical framework of techniques that

range from conceptual requirements elicitation to detailed specification for user

system interaction and indicate how each technique can be used as a refinement of

the more conceptual technique. Section V gives a final conclusion and outlines

further research.

II. REVIEW OF CURRENT BEHAVIOR MODELING TECHNIQUES

A. Modeling user functionality in UML

Use cases describe the functional requirements by identifying actors and

scenarios of system usage by these actors. As such this technique is a valid

candidate to model the interaction between a user and the system. The technique

offers some possibilities for modularization by allowing use cases to "include"

and "extend" other use cases. The detailed description of a use case mainly

focuses on the main flow of events and the possible alternative flows. In all

methods [1][6][9], use cases are mainly a support for system design: they are used

for finding objects and determining the systems structure. The main problem with

this technique is its informal definition: there are no rigorous semantics for the

concepts of actor, use case, nor for the relationships "includes" and "extends".

Use cases are a good starting point and useful for requirement elicitation, but we

need another technique for a more detailed analysis of the dialogue components of

a system.

2

Sequence charts are used to model interaction by means of message passing

between objects. Whereas use cases are fairly conceptual, this technique can be

characterized as a more detailed design technique. It identifies essential parts of

object-oriented program code: the objects and the messages they interchange. It

is however possible to use sequence charts at a higher conceptual level, for

example to model the interaction between a user and the system as a whole. The

main shortcoming of this technique is that it does not allow to model alternative

scenarios (branching), iterations, ... and so on. To model these, UML [2]

proposes activity diagrams. Activity diagrams are akin to Petri nets and focus on

the activities that are performed by objects. They allow to model branching,

iterations and parallel threads. By organizing the activities into swirnlanes, one

can partition the responsibilities for activities according to organizational units or

objects. Activity diagrams can also be used to model workflows. It is however

not clear how to link sequence charts to activity diagrams: for example, do we

need to model one sequence chart for each alternative scenario that can be

identified in the activity diagram? Such questions remain largely unanswered in

UML [2] and in the associated methods [1][6][9].

B. Fusion

In Fusion [3], the system interface is defined by (among others) identifying

scenarios of usage. Such scenarios show the flow of communication between

(external) agents and the system, and they are documented by means of timeline

diagrams. These diagrams are graphically equivalent to sequence charts, but are

used at a higher conceptual level: lifelines can be associated to more abstract

concepts such as "agent" and "system" and the communication arrows identify

high level communication "units". The analysis phase being not concerned with

internal messaging between objects, communication is defined in terms of system

operations only. System operations are defined as input events and their

associated effect. They are invoked by agents only. Responses of the system to

the agent are called output messages.

3

The interface model is formed by developing lifecyc1e expressions that

generalize the scenarios of usage. Lifecyc1e expressions are defined as regular

expressions built using system operations, output messages and sub-lifecyc1e

expressions and the operators sequence, choice, iteration and interleaving. Each

system operation is further defined in the data dictionary by means of an

operation schema. Fig. 1 is a small example of such a lifecycle expression ([3], p.

53). In this expression, alternatives are separated by a '+' sign, sequence is

indicated by a dot '.', interleaving by a double bar 'II' and optional elements are

between square brackets. Names of lifecycle expressions are written in small

capitals, system operations in lower case and output messages names are preceded

by a "#".

Life cycle ECOSTORAGE = (DELIVERY + COLLECTION)*II STATUS
DELIVERY =Ioad_bay _empty .

entecmanifest.
(checkjn_drum.#drumjdentifier)*
end_checkjn.

[#discrepancy jn_delivery].
#delivery_aliocation.
[#drums_to_be_retumed]

COLLECTION = ...
STATUS = ...

Fig. 1. Lifecycle expression for ECOstorage

C. Syntropy

Syntropy [4] makes a difference between the real-world model (called essential

model) and the software model. According to Syntropy, events are fundamental

elements of software specification. As such they are one of the building blocks of

the essential model. In the software model, interaction between external agents

and the software system can be described by means of event scenarios. Such

scenarios are documented in a tabular form. In this table, there is one column for

each agent. Consecutive rows denote consecutive events. On each row the event

4

is marked in the column of each involved agent as a stimulus from the user to the

system (indicated by a question mark '?') or a response of the system to the agent

(indicated by an exclamation mark '!'). Each column of the table is an event

scenario, which describes the software system's overall behavior from the

perspective of a single agent. Note that in this table the software system is not

explicitly modeled. This kind of table is more or less equivalent to a timeline

diagram or sequence chart, in that it only can document straight sequences of

events: alternatives, repetitions, and other structures cannot be represented.

Syntropy does not offer a technique that allows to model the structure of

interaction. In fact the complete interaction is partitioned between the system

objects that collaborate to realize the scenario. Statecharts of individual objects

are used to generalize the scenarios.

D.OO-SSADM

Also OO-SSADM [8] is one of the few methods that make an explicit

separation between modeling the domain (called entity-event model) and the

required user functionality (called external model). OO-SSADM defines a User

function as a composite of events and enquiries organized to support the user in

carrying out some task or procedure. JSP is proposed as a technique for dialogue

design. One JSP-structure is identified for user input and one for system

responses. Using the JSP-technique, both structures can be combined to a single

structure that identifies the user-system dialogue. OO-SSADM explicitly states

that this JSP-structure is not necessarily the best program structure. But it

remains of course a valid specification of the dialogue structure. In addition, 00-

SSADM also offers a framework for event-driven interface design. This

frameworks identifies a number of template user interfaces for different types of

events (creation, deletion, modification). These can then be combined into four

mini-dialogue patterns. The main characteristic of these dialogue patterns is their

linear structure: they have only one scenario and no branching or looping.

5

E. The Hierarchical Use Case Model

The combination of use cases and sequence charts to model user functionality is

far from ideal: there is a significant gap between the conceptual levels of both

techniques. It is not really obvious how to refine a use case into one or more

sequence charts. Even when the flow of events is described in a structured way,

e.g. by means of pseudocode, the transition to a description of user-system

interaction is not straightforward. The Hierarchical Use Case Model proposed in

[7] is one attempt to close this gap. Fig. 2 summarizes this approach.

Environment

Level

Structure

Level

Event

Level

System A
,.----------,

Service S Service T Relates and gives

names to Actors, Use

Cases and Services.

Defines pre- and

Postconditions and

episode structure of each

Use Case.

Episodes can be

decomposed into new

episode structures.

Orders events by

sequencing and special

operations.

Fig. 1. Overview of the hierarchical use case model

6

Adding a technique of "episode" modeling between use cases and sequence

charts closes the gap. Use cases are refined by specifying the process as an

episode structure. Such a structure is a combination of episodes using the

operators sequence, choice, iteration, exception and interrupt. Each episode can

in its turn be decomposed into a new episode structure. The leaf nodes in this

episode decomposition are refined by means of sequence charts. Although it is

not explicitly defined in [7], we assume that it is the authors" intent that such leaf

episodes have no branching or repetitions, in other words, that they have a linear

sequential structure.

Ill. COMPARISON

Table 1 summarizes the techniques used in the different methods that were

studied. Events are identified as the basic building blocks in four methods: the

behavior of a use cases is described as a "flow of events" ([2], p.227-228), system

operations in Fusion are defined as input events and their associated effect ([3],

p.4S), and in Syntropy and OO-SSADM events are already identified during the

domain modeling phase and are then used as building blocks during the external

or software modeling phase.

It should however be noticed that only Syntropy and OO-SSADM identify real

world events during the domain modeling phase. It are these real-world events

that are used to express system behavior from a user's perspective. Also Fusion

thinks in this direction in that a system operation is defined as an input event

invoked by an agent. In UML and in the HUM however, the events to which use

cases and sequence charts refer can both be real- world and information-system

events.

All methods also express the need for structuring the behavior according to the

basic operations of sequence, choice (branching) and iteration. The need for

identifying parallel threads is accounted for in UML by means of Activity

diagrams, in Fusion by means of the interleaving operator. In the other methods,

parallelism is discussed as a separate topic, but not necessarily related to the

7

notion of parallel threads in a dialogue. It is however a typical feature of

advanced user interfaces that users are allowed to perform several tasks in parallel

using a single software system. Current windowing systems offer all necessary

technological support for achieving such parallelism. Hence, we believe

parallelism to be an essential feature in dialogue modeling.

Table 1. Comparison of behavioral specification techniques.

Conceptual Behavior Structure Detailed design Basic building
level block

UML Use Cases Pseudocode, structured Sequence Chart Event
English or Natural Activity diagram
language

Fusion Usage scenario Life-cycle expression Operation model System
Time line Operators: sequence, Operation (input
diagram choice, repetition, event)

interleaving Output message
Syntropy Event scenarios - Event (stimuli

and responsest
00- User function standard mini-dialogues, Event -
SSADM JSD-diagrams Enquiry

operations: sequence,
choice, repetition

HUM Use Case Episode structure Sequence chart message
Operators: sequence,
choice, repetition,
exception, interrupt

IV. A THEORETICAL FRAMEWORK FOR USER-SYSTEM INTERACTION

MODELING

During the elicitation phase we need techniques that allow us to identify all

required user functions. A possible information source is to look at business

processes, refine these to the level of elementary tasks (see Fig. 3). These tasks

can then be categorized as either completely manual, fully automated or

interactive. Both automated and interactive tasks will require some user function

in the software system. Such complex user functions can be specified as use

8

cases and refined to the suitable granularity using the "includes" and "extends"

relationships.

In order to obtain a formal and unambiguous specification of the behavioral

aspect of a user function, each use case or complex user function must be defined

as a composition of simple user functions. This composition must be defined

using sequence, choice, iteration and parallel composition. Complex functions

must be decomposed until a granularity of "simple" user functions is obtained.

Simple user functions are characterized by the fact that they have a linear

dialogue without alternative scenarios, iterations or parallel threads. Typically,

such a simple function can be realized by one window in a graphical user

interface, or by means of sequence of modal windows. The relationships

"includes" and "extends" can be formalized accordingly: the relationship

"includes" refers to a substructure, whereas an extension refers to an optional

structure, that is the choice between "do nothing" and performing the use case.

Finally, each simple function is further documented by means of a finite set of

scenarios: one for the basic sequence and one for each possible exception (see

further).

Fig. 3. Business process refmed to identify tasks

9

Both in OO-SSADM and in Syntropy, real-world events are identified as basic

components of the domain model or real world model. Events are atomic units of

action: they represent things that happen in the world. Without events nothing

would happen: they are the way information and objects come into existence

(creating events), the way information and objects are modified (modifying

events) and disappear from our universe of discourse (ending events). Evefits are

not objects. However, we might choose to record the fact that an event has

happened by recording the occurrence of this event as an object. For example in a

banking environment, "withdraw money" is an event that modifies the state an

object "BANK ACCOUNT". We can keep track of all withdrawals by defining

"WITHDRAWAL" as an additional object type. An event withdraw will from then

on have a double effect: it will modify the state of an account and create a

withdrawal. During the analysis stage, it would be irrelevant to determine how

both objects will be notified from the occurrence of the withdrawal event. We

therefore assume (just as in Syntropy and in OO-SSADM) that events are

broadcasted.

The separation of real-world events from information-system events allows a

more user-oriented and task-oriented view of information system design. Real

world events are those events that occur in the real-world, even if there is no

information system around. Information-system events are directly related to the

presence of a computerized system. They are designed to allow the external user

to register the occurrence of or invoke a real-world event. For example, the use of

an ATM-machine to withdraw money from one's account will invoke the real

world event "withdraw" by means of several information-system events such as

"insert-card", "enter PIN-code", "enter amount", and so on.

Once events have been identified in the domain model, the whole domain model

can be considered as one component, which interface is the set of all events that

allow to create, modify and update the information contained in the domain

model. User functions are then nothing more than a way to invoke these real

world events. The user function will translate information system events such as

10

mouse clicks and keystroke actions into the invocation of one or more domain

model event.

The meta-model in Fig. 4 represents the components of a specification and

identifies the suitable modeling techniques for each specification component. The

following simplified banking example shows how the proposed techniques are

used to model a complex user function. The (simplified) domain model of the

bank contains the object types CUSTOMER and ACCOUNT related by a one-to-many

association: a customer holds zero to many accounts and an account is hold by

exactly one customer. Business events for CUSTOMER are create_customer,

modify_customer, end_customer, and for ACCOUNT are open, deposit, withdraw,

close.

extends

requires

modelled
with

* Use Cases requires
* ,..,,.,r/

_____ *~~~~~~:-1*~--~~-------Y
r I Complex User

*
FUNCTION

*

*
Simple

FUNCTION

*
invokes

*
Real-world

EVENT

" " '\

includes

Composition
modelled with
JSP, regular

expressions, or
flow charts

'\~~----~--~,
Basic scenario and
exception scenarios
modelled with
sequence charts

Fig. 4. Meta-model for functionality requirements

11

The withdrawal of cash by means of an ATM is a complex user function that

will eventually invoke a withdraw event. Fig. 5 Represents the behavioral

structure of this function according to the notations of the HUM. Fig. 6 represents

the same structure with a regular expression, such as in Fusion. Notice how this

definition uses a recursive definition of the sub-expression SECOND_PASS. The

recursive definition can however be avoided by using the empty episode denoted

by '1 " as shown in Fig. 7.

Pin Code

Pin Code

Fig. 5. Episode structure of cash withdrawal with an ATM

12

Use_ATM = Enteccard.(check_pin30de)1..5.Menu.
(View_balance.sEcoND_PASS
+ withdraw_cash.sEcOND_PASS
+ exit)

SECOND_PASS = Menu.
(View_balance.sEcoND_PASS
+ (check_pin_code) 1 .. 5. withdraw _cash.sEcOND_PASS
+ exit)

Fig. 6. Function structure of cash withdrawal with an ATM specified with

(recursive) regular expressions

Use_ATM = Enteccard.(check_pin_code)1..5.Menu.
(View_balance + withdraw_cash + 1)
.SECOND_PASS·
.exit

SECOND_PASS = Menu.
(View_balance + (check_pin_code)1..5.withdraw_cash + 1)

Fig. 7. Function structure without recursive definitions

As to be expected, the specification of behavioral structure by means of

flowcharts tends to be less structured than the equivalent description by means of

regular expressions. Notice also how the formal specification of the dialogue

structure allows easily to identify reusable parts of the dialogue.

Refinement of the dialogue aspects of each episode can be done by using a

high-level sequence chart. In such a sequence chart, we include all external

agents, the function and the domain model. In such a diagram, we can make a

clear distinction between "information system events" and "domain events".

Events of the first type are those that cross the information system's boundary.

The latter are the events generated by the function and broadcasted to the domain

objects. Fig. 8 shows a sequence diagram for the simple function Withdraw_Cash.

In this example, it is assumed that the withdrawal is successfuL A further

refmement of simple functions is the specification of all possible exceptions to the

13

basic linear sequence of events. This means that each exception will identify an

additional exit point in case some action fails. In the given example, a possible

exception is the refusal of the withdrawal operation by the domain model

according to some business rule (e.g. insufficient balance). The exception can be

specified as an alternative scenario for the basic scenario. In principle, each

simple function will have one basic scenario and any number of "exception

scenarios", each documented by means of a sequence chart. The exception

scenario for Withdraw_cash is given in Fig. 9.

The specification process given above was presented in a top-down manner.

Following the philosophy of the event-driven design method of OO-SSADM, the

same result can be achieved by first identifying basic event calling functions and

basic enquiries. For the given domain, this means that a simple function is

defined for each of the six domain events. View_balance, Search_customer and

View-customer can be identified as simple enquiries.

~ystem boundary

I customer I I ATM- I machine
I Withdraw I

cash
I domain

model I
amount

withdraw(amount)

take (amount)

eje amount)

Fig. 8. Sequence chart for Withdraw_Cash

14

~ystem boundary

I customer I I ATM- I I Withdraw I I
domain

I machine cash model

amount
y

withdraw ..
refusal (reason)

~"--------

withdrawal reft sed (re n)

Fig. 9. Exception scenario for Withdraw_Cash

These basic building blocks can then be reused to form more complex

dialogues. In the given example, View_ balance and Withdraw_Cash are the simple

functions that are reused in the complex function Use~TM. A service that allows

to withdraw money at the counter would reuse the same building blocks and

maybe additionally the View_ customer function.

V. CONCLUSION

User-system dialogue modeling is not very much elaborated in current object

oriented modeling methods. In practice, the user dialogue is probably often

directly designed by means of prototyping. We believe however, that a more

systematic approach, independent of the eventual implementation technology can

improve the design of user-system interaction.

Although the set of methods that was studied is far from exhaustive, all

investigated methods show a similar pattern. In addition to the identification of

events, some formal specification method is required for establishing the dialogue

structure. Dialogue structure has to be decomposed until simple dialogue

15

components are defined that have a basic linear event sequence. To this basic

event sequence one can then add the possible exceptions as alternative paths. As

a result of this, each simple function can be described by a fmite set of sequence

charts: one for the basic scenario and one for each possible exception. The

identification of such basic dialogue components is encouraging reuse. If real

world events are identified as basic elements of a domain model, one can build

complex functions in a bottom-up way. each domain event will give rise to the

definition of one simple function that allows to invoke this event. In addition

basic enquiries must be identified, typically at two per domain object: one to view

the list of objects in a domain object class and one to view the details of a single

object. The simple functions that have been identified in this way can then be

composed to form more advanced user dialogues.

Notice that although the proposed techniques were elaborated to model on-line

dialogues, they can to some extent be used to model off-line services as well.

Further research should assess the usability of the techniques in this area.

Our fist concern will however be the mathematical elaboration of the proposed

techniques by means of process algebra. In [10] it has been demonstrated that

domain modeling can successfully be formalized by means of a process algebra

similar to CSP. It would be interesting to elaborate this process algebra to allow it

to formalize functionality modeling techniques as well. In parallel a more

advanced practical evaluation of the techniques by means of real-world examples

is planned.

16

VI. REFERENCES

[1] Grady Booch, Object Oriented Analysis and Design with Applications.

Second Edition, Benjamin/Cummings, Redwood City, CA, 1994.

[2] Grady Booch, James Rumbaugh, Ivar Jacobson, The unified modeling

language user guide, Addison Wesley, 1999

[3] Derek Coleman et al, Object-oriented development: The FUSION method,

Prentice Hall, 1994

[4] Steve Cook, John Daniels, Designing object systems: object-oriented

modeling with Syntropy, Prentice Hall, 1994

[5] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall

International, Series in Computer Science, 1985

[6] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Object-Oriented Software

Engineering, A use Case Driven Approach, Addison-Wesley, 1992

[7] Bjorn Regnell, Michael Andersson, Johan Bergstrand, A hierarchical use case

model with graphical representation, Proceedings of the IEEE international

symposium and workshop on engineering of computer-based systems, March

1996

[8] Keith Robinson, Graham Berrisford, Object-oriented SSADM, Prentice Hall,

1994

[9] Rumbaugh, J., Blaha M., Premerlani, W., Eddy, F., Lorensen, W., Object

Oriented Modeling and Design, Prentice Hall International, 1991

[10] M. Snoeck, G. Dedene, Existence Dependency: The key to semantic

integrity between structural and behavioural aspects of object types, IEEE

Transactions on Software Engineering, Vol. 24, No. 24, April 1998, pp.233-

251

17

