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Abstract

In this paper, we study the decision problem of a retailer, who wants
to optimize the amount of shelf inventory of a particular product, given
that the demand for the product is stochastic and replenishment lead
times (from the store’s stockroom to the shelf) are negligible. The shelf
inventory is managed according to a (0, B∗)-inventory policy: when the
shelf inventory is sold out, the retailer gets a fixed amount of B∗ units
from the central stockroom to replenish the shelf inventory.

To adequately reflect the shopping behavior of retail customers, the
demand process is modeled as a compound Poisson process, with Poisson
distributed purchase quantities. When the purchase quantity of a cus-
tomer exceeds the amount of shelf inventory still available, the unsatisfied
demand is considered to be lost sales.

As the demand process is stochastic, the runout time of the shelf in-
ventory will be stochastic too. The costs per cycle related to keeping
inventory on the shelf can be split up into three components: average
holding costs (which may be related to the scarcity of shelf space), a fixed
handling cost (per replenishment trip), and an average lost sales cost. The
purpose of the model is to determine the value of B∗ that minimizes the
average total cost per time unit.

Keywords: Discrete inventory models, compound Poisson process,
lost sales, Jonquière’s function

∗Corresponding author, email: johan.springael@ua.ac.be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In this paper, we look at an inventory setting where demand does not arrive in
units, but in batches following a given discrete probability distribution.
Our research is inspired by a retail store setting, where part of the inventory
is kept on the shelf, and replenishments can be supplied from the warehouse
in negligible time. Every movement of material entails a fixed cost, and the
amount of inventory that can be stored on the shelf is fixed and limited. The
demand pattern of customers in this type of setting will typically be stochastic:
both the time between consecutive store visits and the amount of product pur-
chased at each visit are random variables. In the literature, this type of demand
process is modeled by means of a compound Poisson process [3]: the number of
visits during a given timeframe is assumed to be Poisson distributed, while the
purchase quantities follow an arbitrary discrete distribution of which the first
two moments are given (see e.g. [8; 10; 17]).
As the demand is discrete, and the shelf inventory is fixed, it may happen that
a customer does not find the desired purchase quantity during his visit; in this
case, sales are lost. A replenishment order is triggered as soon as the shelf
inventory drops to zero; in which case it is replenished with a fixed quantity,
determined by the amount of shelf space reserved for that product type.
The amount of inventory kept on the shelf will determine the average number of
replenishment trips to be made over a specified horizon (and, hence, the ordering
costs), the average inventory holding costs related to the shelf inventory, and
the average cost of lost sales. Obviously, a trade-off exists between these three
cost components. The purpose of our model is to determine the amount of shelf
inventory that minimizes the total costs.
Although the presence of stochastic batch-sized demand is common in real life,
the literature on the impact of this demand pattern in an inventory setting
is rather scarce. Most commonly used inventory management models indeed
assume unit sized demand, with total demand following a normal distribution
during replenishment leadtime (see e.g. [4; 22]). Other papers do consider batch-
sized demand (see e.g. [1; 2; 8; 10; 11; 17]) but treat this problem in a very
general manner, without making explicit assumptions about the probability
distribution of the demand. While this approach is certainly useful from a
theoretical point of view, the downside is that the resulting expressions are
not directly usable (e.g. in an optimization scheme), and fail to give insight
into the behaviour of the different cost components in relation to the decision
parameters.
Our work differs from the previous literature in the sense that we explicitly as-
sume the purchase quantities to be Poisson distributed. Though this assumption
introduces an additional restriction in the model, it allows to derive some rather
remarkable analytical insights, more precisely with respect to the behaviour of
the lost sales cost in this setting.
In the next section, we summarize the assumptions of the model and introduce
the notation. Section 3 describes the model, while section 4 takes a closer look
at the optimization problem. Finally, section 5 summarizes the main insights
and results.
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2 Notations and assumptions

We will consider a store setting where for a given product type, an inventory of
B∗ units is kept on the shelf. Customers buy quantities from this shelf inventory
according to a compound Poisson process: more specifically, we assume that the
number of customer visits to the store during a time interval [0, T ] is Poisson
distributed with average λT :

ηT ∼ Poisson(λT ) (1)

This assumption is appropriate, as we can safely assume that the customer pop-
ulation is large, and that customers act independently. The purchase quantities
at arbitrary visits i (denoted by βi) are assumed to be independent and Poisson
distributed with average µ:

βj ∼ Poisson(µ) ∀j (2)

Note that the assumption of a Poisson distribution for purchase quantities takes
into account the possibility that the customer does not buy the product on a
given shopping trip (P [βj = 0] > 0).
It is assumed that the shelf inventory is replenished according to an order-up-to
inventory policy: as soon as the shelf inventory is sold out, a replenishment
order of B∗ units is fetched from the store’s central stockroom. The assumption
of a zero reorder point is actually quite realistic in our setting, as it gives a
clearly visible signal to storeroom personnel. Moreover, as the stockroom in
a retail setting is commonly adjacent to the store, replenishment lead times
can be assumed to be negligible. Hence, replenishment is quasi instantaneous,
eliminating the need for a positive reorder point. Units that cannot be delivered
from the shelf inventory are considered to be lost sales.
As both the time between shopping trips and the purchase quantity per trip
are stochastic, the time between successive shelf replenishments (referred to as
the replenishment cycle or the runout time τB∗) will also be stochastic. Con-
sequently, the value of B∗ will influence the number of replenishment orders
issued over a given horizon, the average number of units in inventory, and the
average cost of lost sales.
In this paper, we develop closed-form analytical expressions for the average
ordering costs, average inventory holding costs and average lost sales costs, in
terms of the system’s characteristics. As a result, an optimization model for the
global cost function is proposed.

3 Model development

3.1 Average runout time

In general, the runout time τB∗ is a stochastic variable, which can be written
as the sum of individual customer intervisit times (Yj):

τB∗ =

N∑

j=1

Yj (3)
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In this expression, N itself is a random variable, referring to the number of
customers whose individual purchase quantities add up to a quantity larger
than or equal to B∗.
Considering τB∗ as a random sum of random variables, we then know that the
average value can be written as (see e.g. [9]):

E [τB∗ ] = E [N ]E [Y ] (4)

As customer visits are Poisson distributed with rate λ, the average time between
two customer visits is:

E [Y ] =
1

λ
(5)

The average of N can in general be determined as follows:

E [N ] =

∞∑

n=1

nP [N = n] (6)

The probability mass function of N depends on the probability mass function
of the purchase quantities:

P [N = 1] = P [β1 > B∗] (7)

P [N = n] =

B∗
−1∑

a=0






P





n−1∑

j=1

βj = a



P [βn > B∗ − a]






, n = 2, . . . ,∞ (8)

Assuming independent Poisson distributed purchase quantities with average
value µ, this yields:

E[N ] = 1 − e−µ
B∗

−1∑

j=0

µj

j!
+

∞∑

n=2

n

[
B∗

−1∑

a=0

e−(n−1)µ ((n− 1)µ)a

a!
×

×



1 − e−µ
B∗

−1−a∑

j=0

µj

j!









(9)
and consequently:

E [τB∗ ] =
1

λ



1 − e−µ
B∗

−1∑

j=0

µj

j!
+

∞∑

n=2

n

[
B∗

−1∑

a=0

e−(n−1)µ ×

×
((n− 1)µ)a

a!



1 − e−µ
B∗

−1−a∑

j=0

µj

j!













(10)

It can be proven by considering equal powers of µ, that this expression is nothing
but

E [τB∗ ] =
1

λ



1 +
B∗

−1∑

j=0

µj

j!
Li−j

(
e−µ

)



 (11)
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where Lin(z) stands for Jonquière’s function [16], which is defined in the fol-
lowing manner, for integer values of n (see e.g. [15]):

Lin(z) ≡

∞∑

k=1

zk

kn
with |z| < 1. (12)

An alternative derivation for expression (11) is given in Appendix A.
In case of a negative integer value of n = −j, Jonquière’s function can also be
written as [18]:

Li−j(z) =

(

z
d

dz

)j
1

1 − z
(13)

with
Li0(z) =

z

1 − z
(14)

showing its strong relation with the geometric series. As a result one may easily
derive, using an inductive procedure, the following explicit expression:

Li−j(z) =

j+1
∑

k=1

(k − 1)!S(a+ 1, k)
zk

(1 − z)k
(15)

where S(n, k) stands for a Stirling number of the second kind (see e.g. [5]),
defined as

S(n, k) ≡
1

k!

k∑

l=0

(−1)l
(
k

l

)

(k − l)n =
1

k!

k∑

l=1

(−1)k−l
(
k

l

)

ln (16)

3.2 Average number of units in inventory at an arbitrary

time

Obviously, we can write the average number of units in inventory E[IB∗ ] at an
arbitrary time as follows:

E[IB∗ ] = B∗ − E[LB∗ ] (17)

where E[LB∗ ] denotes the average number of units purchased at an arbitrary
time. To determine E[LB∗ ], we can rely upon previous research results on the so-
called shuttle dispatch problem, a subject which, in spite of its totally different
setting, strongly resembles our research problem. Figure 1 below illustrates the
similarity.
In the shuttle dispatch problem, passengers arriving according to a simple or
compound Poisson process need to wait until a minimum number of passengers
B∗ (the control limit) is reached before the shuttle is dispatched. The shuttle
may have infinite capacity, which implies that all passengers are transported at
the moment of dispatch (see e.g. [7; 12; 14; 23]), or finite capacity, implying
that the shuttle is loaded up to its capacity (see e.g. [6; 19; 20; 21]).
The inventory problem that we consider is similar to the shuttle dispatch prob-
lem with compound poisson arrivals, an infinite capacity shuttle (as we assume
that sales which cannot be delivered from inventory are lost), and a zero travel
time for the shuttle (as we assume immediate replenishment).
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Inventory
level

B∗

AB∗

τB∗
t

Number of
passengers

B∗

AB∗

τB∗
t

Figure 1: Similarities between the inventory problem in our setting (top), and
the shuttle dispatch problem (bottom)

From Figure 1, it is clear that the average number of units purchased at an
arbitrary time E[LB∗ ], is analogous to the average length of the queue in the
shuttle dispatch problem. Hence, it can be written as (see e.g. [12; 13; 14]):

E [LB∗ ] =
1

2

[

A
(2)
B∗

E[AB∗ ]
−
β(2)

E[β]

]

(18)

where the random variable AB∗ refers to the total number of units demanded
during the runout time, including lost sales (or, in the shuttle dispatch problem,
the total number of passengers on the infinite capacity shuttle at the moment

that it leaves the terminal). In the expression for E[LB∗ ], A
(2)
B∗ and β(2) repre-

sent, respectively, the second factorial moments of AB∗ and β:

A
(2)
B∗ = E [AB∗(AB∗ − 1)] (19)

β(2) = E [β(β − 1)] = µ2 (20)

The expression for A
(2)
B∗ can be efficiently determined using the following result

from [12]:

A
(2)
B∗ −A

(2)
B∗

−1

E [AB∗ ] − E [AB∗
−1]

=
β(2)

E [β]
+ 2(B∗ − 1) for B∗

> 1 (21)

which yields (the inductive proof is given in Appendix B):

A
(2)
B∗ =

β(2)

E [β]
[E [AB∗ ] − E [A1]] + 2B∗E [AB∗ ] − 2

B∗

∑

r=1

E [Ar] (22)
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In this expression, E [Ar] denotes the expected number of passengers on the
shuttle when a control limit r is used. It is determined as (see e.g. [12]):

E [Ar] = λµE [τr] (23)

Using expression (11), relation (23) can be rewritten as

E [Ar] = µ



1 +

r−1∑

j=0

µj

j!
Li−j(e

−µ)



 (24)

On account of eq. (22) and (23), the expression for E [LB∗ ] can be casted into
the following form

E [LB∗ ] =
1

2

[

2B∗ − µ
E [τ1]

E [τB∗ ]
−

2

E [τB∗ ]

B∗

∑

r=1

E [τr]

]

(25)

Hence, the average number of units in inventory reduces to

E [IB∗ ] = B∗ − E [LB∗ ] =
µ

2

E [τ1]

E [τB∗ ]
+

1

E [τB∗ ]

B∗

∑

r=1

E [τr] (26)

3.3 Average number of units lost

As mentioned before, the expected total number of units demanded during the
runout time is given by E [Ar] when the initial stock level is r, which can easily
be determined by means of formula (24). The average number of sales units
that are lost is then given by

E [ZB∗ ] = E [AB∗ ] −B∗ = µ



1 +

B∗
−1∑

j=0

µj

j!
Li−j(e

−µ)



 −B∗ (27)

when the initial inventory level is B∗.
For large values of the replenishment order B∗, this average number of lost sales
tends to µ

2 . In order to prove this, let us first remark that

Li0(e
−µ) =

1

2
coth

(µ

2

)

−
1

2
(28)

and that (see Appendix C)

Lij(e
−µ) =

(−1)j

2

dj

dµj

[

coth
(µ

2

)]

(29)

so that expression (27) is rewritten as

E [ZB∗ ] =
µ

2
+
µ

2

B∗
−1∑

j=0

(−µ)j

j!

dj

dµj

[

coth
(µ

2

)]

−B∗ (30)
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Using the Laurent series for coth
(
µ
2

)
and expanding the obtained rational ex-

pressions as Taylor series in an appropriate manner (see Appendix C), relation
(30) takes the following form:

E [ZB∗ ] =
µ

2
+

∑

n
with 1 6 n

and (2πn)2 6 µ2

µ

nπ

[
µ2

µ2 + (2πn)2

]B∗

2

︸ ︷︷ ︸

yB∗ → ∞

0

sin

[

B∗ arctan

(
2nπ

µ

)]

+
∑

n
with (2πn)2 > µ2 > 1

(−1)B
∗

µ2 sin(πB∗)

2(B∗ − 1)n2π2

︸ ︷︷ ︸

yB∗ → ∞

0

3F2

(
1
2 , 1, 1

∣
∣
∣1 − B∗

2 ,
3−B∗

2

∣
∣
∣ − µ2

4n2π2

)

(31)

with 3F2(a1, a2, a3|b1, b2|x) a so-called hypergeometric function.
Considering the limit B∗ → ∞, both sums vanish, resulting in the conclusion

lim
B∗

→∞



µ



1 +
B∗

−1∑

j=0

µj

j!
Li−j(e

−µ)



 −B∗



 =
µ

2
(32)

This is a rather remarkable result. It states that, when the initial shelf quantity
B∗ is sufficiently large, the average lost sales for the last customer equals half
of his average demand, which is independent of the actual value of B∗.

4 Optimization of the order quantity

In this section we first study the behaviour of the different cost components.
Next the total cost function is derived. The findings will be illustrated by means
of an example, for which the parameters are given in table 1.

Cf Ch Cl µ λ
1 1 7 30 4

Table 1: Parameters of the cost function

4.1 Cost components

Let us assume that a fixed cost Cf is incurred per replenishment cycle and that
a holding cost (per time unit) Ch has to be taken into account for each product
unit. Moreover, a cost Cl per unit of lost sales must be considered.
The expected fixed cost per time unit FCm is given by

FCm =
Cf

E [τm]
(33)

which appears to be a nonincreasing function of the order quantity m. This is a
direct consequence of the positivity of Jonquière’s function Li−n(z), ∀z ∈ [0, 1].
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Furthermore, it can be stated that FCm is a monotonically decreasing function
of m. This follows from the difference

FCm+1 − FCm =
Cf (E [τm] − E [τm+1])

E [τm]E [τm+1]
=

−Cfµ
jLi−j(e

−µ)

j!λE [τm]E [τm+1]
(34)

and is illustrated by the example in Figure 2 for the parameters of Table 1.

1

2

3

4

10 20 30 40 50 60 70 80 90 100
m

FCm
bbbbbbbbbbbbbbbbbbbb

b
b
b
b

b

b

b

b

b

b

b
b
b
b
b
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Figure 2: The expected fixed cost per time unit for the parameters of Table 1.

The expected holding cost per time unit HCm can be written as

HCm = Ch (m− E [Lm]) (35)

where E [Lm] is given by expression (25) with B∗ replaced by m.
From the analysis of the difference HCm+1 −HCm, one can conclude that the
expected holding cost per time unit as a function of m may exhibit oscillatory
behaviour. Indeed, let us consider HCm for the example. As shown in Figure
3, the resulting function oscillates, but clearly shows an upward trend. It seems
to converge to a straight line with positive slope for large values of m, however
the proof is beyond the scope of this paper.

20

40

60

80

10 20 30 40 50 60 70 80 90 100
m

HCm

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
bb
bbb

bbbbbbbbbbbbbbb
bb
bb
bb
bb
bb
bb
bb
bbbb

bbbbbbbb
bbb

bbb
bb
bb
bb
bb
bb
bb
bbb

bbb
bbbb

bbb
bbb

bb
b

Figure 3: The expected holding cost per time unit for the parameter setting in
Table 1.

Finally, the lost sales cost per time unit LCm is given by

LCm =
E [Zm]

E [τm]
(36)
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where E [Zm] is determined by eq.(27) in which we have replacedB∗ bym. Asm
increases, LCm will show a downward trend. Like HCm, it exhibits oscillatory
behaviour: Figure 4 depicts LCm in terms of m for the example.

250

500

750

1000

10 20 30 40 50 60 70 80 90 100
m

LCm

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
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bb
bb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Figure 4: The expected lost sales cost per time unit for the example.

Remarkably, the expected number of units lost sales (E [Zm]) will be a perfectly
oscillating function of m, as shown in Figure 5. The figure also illustrates that
E [Zm] converges to µ/2 for large values of m, as discussed above (see eq.(32)).
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bbbbbbbbbb

bb
bb
bb
bb
bbbbbbbbbbbbbbbbbbbbbbbb

bbb
bbb
bbbbbbbbbbbbbbbbbbbbbbbbbbb
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Figure 5: The expected lost sales for the example.

4.2 Minimization of the total cost

As a result, the total expected cost per time unit, for an arbitrary m, can be
written as

TKm =
Cf

E [τm]
+ Ch [m− E [Lm]] +

ClE [Zm]

E [τm]
(37)

which is nothing but the sum of the three cost components discussed above. On
account of eqs. (23), (25) and (27) this total expected cost per time unit reduces
to

TKm = Clλµ+
1

E [τm]

[

Cf +
ChµE [τ1]

2
+ Ch

m∑

r=1

E [τr] −mCl

]

(38)
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where E [τj ] is given by expression (11).
This function appears to be nonconvex in m, for all possible instances of the
parameters. Figure 6 shows TKm in terms of m, for the example. As discussed
in the previous section, HCm is the only cost component with an upward trend
in terms of m; hence, it is obvious that for large values of m, TKm will be dom-
inated by the almost linearly increasing behaviour of HCm, which implies that
the relevant local minima for an optimization scheme will be finite in number.

250
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50 100 150 200 250 300 350 400 450 500
m

TKm
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b
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b
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b
b
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b
b
b
b
b
b
b
b
bbbbbb
bb
bb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbb
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bbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbb

Figure 6: The expected total cost per time unit for the example.

In order to optimize this function TKm of the integer variable m, we consider
the difference

△TKm ≡ TKm+1 − TKm (39)

which, by using the definition (38) and expression (11), becomes the following

△TKm ≡
−µmLi−m(e−µ)

λ m!E [τm]E [τm+1]




Ch
λ

m−1∑

j=0

µj

j!
(m− j)Li−j(e

−µ) +
mCh
λ

+
µ

2
ChE [τ1] + Cf − Clm



 + Ch −
Cl

E [τm+1]

(40)

This expression can for example be used in a steepest descent based algorithm,
which would be the local search part in a metaheuristic in order to find the
global minimum of TKm for the set of parameters given in Table 1.

m 25 55 85 115 144
TKm 273.560 197.835 171.836 162.310 160.707

Table 2: Results of the optimization of the expected total cost per time unit for
the example.

If we consider the case Cf = Ch = 1, Cl = 7, λ = 4 and µ = 30, we obtain the
results presented in table 2 for the consecutive best values of the cost function.
From this table one may conclude that the optimal order quantity will be B∗ =
144, for which we obtain the following contributions to the cost function:

FCB∗ = 0.7568, HCB∗ = 82.7731, LCB∗ = 77.1767 (41)
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leading to the value TKB∗ = 160.7066. One may also verify that the average
number of lost sales in this case becomes E [ZB∗ ] = 14.5688, which approaches
µ
2 = 15 as expected due to relation (32).

5 Conclusion

In this paper, we have derived a closed-form formula for the average runout time
of a shelf inventory in a retail setting, assuming that customers arrive according
to a Poisson process and purchase quantities are Poisson distributed. It is
revealed that this average runout time can be written by means of Jonquiére’s
functions. Using the analogy of this problem with the shuttle dispatch problem,
closed-form expressions can also be found for the average number of lost sales
and the average number of units in inventory, in terms of these functions.
These results can be embedded in a total cost function, which in general turns
out to be nonconvex. Consequently, the optimal amount of shelf inventory can
only be traced through the use of a common metaheuristic.
As the shape of the total cost function depends on the specific parameters,
settings might be derived for which the convexity of this function is guaranteed.
Hence, we plan to focus our future work on the analysis of these settings, in order
to derive convexity conditions on the parameters. When these conditions are
fulfilled, the application of a simple steepest descent algorithm, using expression
(40), suffices to determine the globally optimal shelf inventory.
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A Appendix

In this section, it will be shown that for the type of process considered, it is
possible to derive a closed-form expression for the average runout time E[τB∗ ].
In order to do this we first derive the cumulative probability distribution and
the frequency distribution of τB∗ .
The cumulative probability distribution is given by:

P [τB∗ 6 T ] = 1 − P [number of units purchased in [0, T ] < B∗]

= 1 −

∞∑

j=0

P [ηT = j]P

[
j

∑

k=1

βk < B∗

]

= 1 −

∞∑

j=0

P [ηT = j]P

[
j

∑

k=1

βk 6 B∗ − 1

]

= 1 −

∞∑

j=0

e−λT (λT )j

j!

[
B∗

−1∑

k=0

e−jµ
(jµ)k

k!

]

= FτB∗ (T ) for T > 0

The frequency distribution is then given by:

fτB∗ (T ) =
dFτB∗ (T )

dT
= 0 −

∞∑

j=0

d

dT

[

e−λT (λT )j

j!

[
B∗

−1∑

k=0

e−jµ
(jµ)k

k!

]]

= −
d

dT

(
e−λT

)
−

∞∑

j=1

d

dT

[

e−λT (λT )j

j!

[
B∗

−1∑

k=0

e−jµ
(jµ)k

k!

]]

= λe−λT −
∞∑

j=1

[
−λe−λT (λT )j + jλe−λT (λT )j−1

j!

] [
B∗

−1∑

k=0

e−jµ
(jµ)k

k!

]

= λe−λT +

∞∑

j=1

[

λ
(
e−λT (λT )j − je−λT (λT )j−1

)

j!

][
B∗

−1∑

k=0

e−jµ
(jµ)k

k!

]

The average runout time can now be determined as follows:

E [τB∗ ] =

∫
∞

0

TfτB∗ (T )dT

=

∫
∞

0

λTe−λTdT

+

∫
∞

0

∞∑

j=1

[
e−λT (λT )j+1 − je−λT (λT )j

j!

][
B∗

−1∑

k=0

e−jµ
(jµ)k

k!

]

dT

Provided that the convergence conditions are satisfied, one may rewrite this
expression for E [τB∗ ] as:

E [τB∗ ] =
1

λ
+

∞∑

j=1

1

j!

[
B∗

−1∑

k=0

e−jµ
(jµ)k

k!

]
∫

∞

0

[
e−λT (λT )j+1 − je−λT (λT )j

]
dT

Since we have that
∫

∞

0

[
e−λT (λT )j+1 − je−λT (λT )j

]
dT =

j!

λ

14



the expression for E [τB∗ ] reduces to

E [τB∗ ] =
1

λ
+

1

λ

∞∑

j=1

B∗
−1∑

k=0

e−jµ
(jµ)k

k!
=

1

λ
+

1

λ

B∗
−1∑

k=0

µk

k!

∞∑

j=1

jke−jµ

=
1

λ

[

1 +
B∗

−1∑

k=0

µk

k!
Li−k(e

−µ)

]

B Appendix

For an arbitrary control limit m, we can write:

A
(2)
m −A

(2)
m−1

E [Am] − E [Am−1]
=

β(2)

E [β]
+ 2(m− 1) for m > 1

Hence, A
(2)
m is given by the following relation:

A(2)
m =

[
β(2)

E [β]
+ 2(m− 1)

]

[E [Am] − E [Am−1]] +A
(2)
m−1 for m > 1

Working recursively one may derive the following expression for A
(2)
m :

A(2)
m =

β(2)

E [β]
[E [Am] − E [A1]] + 2mE [Am] − 2





m∑

j=1

E [Aj ]





In order to prove this, we suppose the above expression is valid for m = M and
prove it for m = M + 1:

A
(2)
M+1 =

[
β(2)

E [β]
+ 2M

]

[E [AM+1] − E [AM ]] +A
(2)
M

=

[
β(2)

E [β]
+ 2M

]

[E [AM+1] − E [AM ]] +
β(2)

E [β]
[E [AM ] − E [A1]]

+2ME [AM ] − 2





M∑

j=1

E [Aj ]





=
β(2)

E [β]
[E [AM+1] − E [A1]] + 2ME [AM+1] − 2





M∑

j=1

E [Aj ]





Adding and substracting the term 2E [AM+1] leads to the expected result.

C Appendix

In this section we prove relation (32), through the use of the theory of special
functions for which we used extensively [16]. First we reconsider the expression
to prove

lim
B∗

→∞





B∗
−1∑

j=0

µj

j!
Li−j(e

−µ) −
B∗

µ



 = −
1

2
(42)
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In the following we analyse the l.h.s. of this expression between brackets and
rewrite it in a more appropriate form, taking into account the number of terms
in the summation over j:

B∗
−1∑

j=0

[
µj

j!
Li−j(e

−µ) −
1

µ

]

. (43)

We first remark that Jonquière’s function Liν(z) is related to Lerch’s transcen-
dent Φ(z, ν, α) for integer values of its parameter ν:

Li−j(z) = zΦ(z,−j, 1), for |z| < 1. (44)

For this transcendental function, there exists a special relationship, called the
functional equation by Lerch:

Φ(e−µ,−j, α)−Γ(j + 1)eµαµ−(j+1) = −i(2π)−(j+1)Γ(j + 1)eµα×

×
[

ei(2πα−
jπ

2
)Φ

(

e2iπα, j + 1, 1 +
µ

2πi

)

−e−i(2πα−
jπ

2
)Φ

(

e−2iπα, j + 1, 1 −
µ

2πi

)]
(45)

with i2 = −1 and Γ(x) the eulerian gamma-function. This functional equa-
tion appears to be very useful since it expresses the relation between a Lerch-
function, in terms of an exponential of an argument, and Lerch-functions in
terms of that same argument.
On account of relation (45) and the fact that j is integer, we may write

Li−j(e
−µ) = e−µΦ(e−µ,−j, 1)

=
j!

µj+1
+

j!

i(2π)j+1

[

e2iπ−
iπj

2 Φ
(

e2iπ, j + 1, 1 +
µ

2iπ

)

−e−2iπ+ iπj

2 Φ
(

e−2iπ, j + 1, 1 −
µ

2iπ

)]

(46)

Using e2iπ = 1, e
iπ
2 = i and e

−iπ
2 = −i, this expression reduces to

Li−j(e
−µ) =

j!

µj+1
+

j!

i(2π)j+1

[

(−i)jΦ
(

e2iπ, j + 1, 1 +
µ

2iπ

)

−ijΦ
(

e−2iπ, j + 1, 1 −
µ

2iπ

)] (47)

Notice that we did not apply these relations in the argument of the Lerch func-
tion, since it admits a branch in the complex plane on the real axis from 1 to
+∞. However, one may use the limiting case:

lim
z→e±2iπ

Φ(z, n, α) = lim
z→e±2iπ

Γ(1 − n)(− ln z)n−1z−α + ζ(n, α) (48)

with ζ(z, α) Hurwitz’ zeta-function.
Using relation (48) one may rewrite expression (47) for j 6= 0 in the following
manner:

Li−j(e
−µ) =

j!

µj+1
+

j!

(2iπ)j+1

[

ζ
(

j + 1, 1 +
µ

2iπ

)

+(−1)j+1ζ
(

j + 1, 1 −
µ

2iπ

)] (49)
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Since j is a nonnegative integer the Hurwitz zeta-function, occurring in (49),
can also be written as

ζ(j + 1, z) =
(−1)j+1

j!
ψj(z) (50)

with ψj(z) ≡ djψ0(z)
dzj the polygamma function. For this polygamma function

there exists a recurrence relation

ψn(z + 1) = ψn(z) + (−1)nn!z−n−1 (51)

and a reflection formula

ψn(1 − z) = (−1)nψn(z) + (−1)nπ
dn cot(πz)

dzn
(52)

On account of the expressions (50),(51),(52) one may rewrite (49) as

Li−j(e
−µ) =

(−1)j

2

dj

dµj
coth

(µ

2

)

, j 6= 0 (53)

From the explicit definition of Li0(z), one may easily derive that

Li0(e
−µ) =

1

2
coth

(µ

2

)

−
1

2
(54)

Let us also remark that
1

µ
=

(−1)jµj

j!

dj

dµj
1

µ
(55)

As a result it suffices to show that

lim
B∗

→∞

B∗
−1∑

j=0

(−µ)j

2j!

dj

dµj

[

coth
(µ

2

)

−
2

µ

]

= 0 (56)

In order to do this, we use the Laurent series for coth(x):

coth
(µ

2

)

=
2

µ
+ µ

∞∑

n=1

1

(nπ)2 + µ2

4

(57)

Hence, the limit (56) may be rewritten as follows:

2 lim
B∗

→∞

B∗
−1∑

j=0

(−µ)j

j!

dj

dµj

[

µ

∞∑

n=1

1

(2nπ)2 + µ2

]

= 0 (58)

or equivalently, when interchanging the sums over n and j and dropping the
common factor 2:

lim
B∗

→∞

∞∑

n=1

B∗
−1∑

j=0

(−µ)j

j!

dj

dµj

[
µ

(2nπ)2 + µ2

]

= 0 (59)
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To prove this limit, we use the Taylor expansion of the fraction. However, one
should be very careful with respect to the convergence of the series. Therefore
we must split the sum over n into two parts:

∑

n:(2nπ)26µ2

1

2nπ

B∗
−1∑

j=0

(−µ)j

j!

dj

dµj

[
∞∑

k=0

(−1)k
(

2nπ

µ

)2k+1
]

+
∑

n:(2nπ)2>µ2

1

2nπ

B∗
−1∑

j=0

(−µ)j

j!

dj

dµj

[
∞∑

k=0

(−1)k
( µ

2nπ

)2k+1
] (60)

It can be shown by induction on the parameter j that

(−µ)j

j!

dj

dµj

[
∞∑

k=0

(−1)k
(

2nπ

µ

)2k+1
]

=
∞∑

k=0

(−1)k
(

2k + j

j

) (
2nπ

µ

)2k+1

(61)

and that

(−µ)j

j!

dj

dµj

[
∞∑

k=0

(−1)k
( µ

2nπ

)2k+1
]

=
∞∑

k=0

(−1)k+j
(

2k + 1

j

) ( µ

2nπ

)2k+1

(62)

Now using the fact that

B∗
−1∑

j=0

(
2k + j

j

)

=

(
2k + B∗

B∗ − 1

)

(63)

and
B∗

−1∑

j=0

(−1)j
(

2k + 1

j

)

= (−1)B
∗
−1

(
2k

B∗ − 1

)

(64)

one may rewrite expression (60), on account of relations (61) and (62), as

∑

n:(2nπ)26µ2

1

2nπ

∞∑

k=0

(−1)k
(

2k +B∗

B∗ − 1

) (
2nπ

µ

)2k+1

+
∑

n:(2nπ)2>µ2

1

2nπ

∞∑

k=0

(−1)k+B
∗
−1

(
2k

B∗ − 1

) ( µ

2nπ

)2k+1
(65)

It can also be shown that

∞∑

k=0

(−1)k
(

2k +B∗

B∗ − 1

) (
2nπ

µ

)2k+1

=

√
(

µ2

µ2 + (2πn)2

)B∗

sin

(

B∗ arctan

[
2πn

µ

])
(66)

and that

∞∑

k=0

(−1)k+B
∗
−1

(
2k

B∗ − 1

) ( µ

2nπ

)2k+1

=
(−1)B

∗

µ sin(πB∗)

2(B∗ − 1)nπ2 3F2

(
1

2
, 1, 1

∣
∣
∣
∣
1 −

B∗

2
,
3 −B∗

2

∣
∣
∣
∣
−

µ2

4n2π2

) (67)
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with 3F2(a1, a2, a3|b1, b2|x) a so-called hypergeometric function.
Since n > 1 it is clear that in the limit B∗ → ∞ the r.h.s. of the expressions
(66) and (67) vanish, which proves relation (42)
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