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This note deepens a problem proposed and discussed by Kadane and O’Hagan
(JASA, 1995). Kadane and O’Hagan discuss the existence of a uniform prob-
ability on the set of natural numbers (they provide a sufficient and necessary
condition for the existence of such a uniform probability). I question the prac-
tical relevance of their solution. I show that a purely finitely additive measure
on the set of natural numbers cannot be constructed (its existence needs some
form of the Axiom of Choice, the prototype of a nonconstructive axiom).
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1 Introduction

Professors Joseph B. Kadane and Anthony O’Hagan (1995) formulate the uniform distri-
butions puzzle as follows:

Suppose that a computer scientist asks you for help with finding the probability
that a random integer has some property, ... She says that by “random” she
means something akin to a uniform distribution, in the sense that every integer,
no matter how large, will have the same probability. How can such a question
be answered in terms of modern probability theory?

This problem of a suitable definition of “pick a natural number at random” has caused
considerable difficulty at the foundational level. Kadane and O’Hagan use relative frequen-
cies and residue classes to make precise notions of uniformity, and they provide a necessary
and sufficient condition for the “existence” of a finitely additive probability defined on all
sets of natural numbers that agrees with these interpretations.

For a study of finitely additive measures, see Bhaskara Rao and Bhaskara Rao (1983).
They indicate that a lot of the standard theory of measure and integration can be carried
through assuming only finite additivity. For discussions on whether countable additivity
should be dispensed with, see, for example, Savage (1954) and Dubins and Savage (1976).
Wakker (1993), Stinchcombe (1997) and Kadane, Schervish, and Seidenfeld (1986) discuss
some implications of the failure of countable additivity.

More than fourty years ago, Deal et al (1963) discuss the existence of a finitely additive
probability on the set of natural numbers which attaches zero probability to all finite sets.
They use a free ultrafilter1 to define a finitely additive 0-1-probability measure (sets that
belong to the ultrafilter obtain probability one, sets that do not belong to the ultrafilter
obtain probability zero). A result of Sierpiński (1938), however, implies that each 0-1-
probability (attaching zero probability to finite sets) generates a non-measurable set of
real numbers. Since the existence of a non-measurable set hinges on the Axiom of Choice
(Solovay, 1970), such a 0-1-probability cannot be constructed.

In view of this observation and—similar to Kadane and O’Hagen—having the computer
scientist in mind, I want to deepen the uniform distributions puzzle: Is it possible to
“construct” a finitely additive measure on the set of natural numbers which attaches zero
probability to all finite sets? This note provides the answer: No!

I show that the uniform distributions puzzle cannot be solved in a constructive way.
The result of Sierpiński extends to arbitrary finitely additive probabilities which attach
zero probability to all finite sets. More precisely and in terms of set theory: the existence
of such a measure is independent of the Zermelo-Fraenkel axioms of set theory together
with the Axiom of Dependent Choice. Although finitely additive probabilities provide the
right approach to the uniform distributions puzzle, each computer scientist is unable to

1A free ultrafilter on the set N of natural numbers is a collection U of subsets of N such that (i) N ∈ U
and ∅ /∈ U , (ii) if A ⊆ B and A ∈ U , then B ∈ U , (iii) if A,B ∈ U , then A ∩ B ∈ U , and (iv) for each
A ⊆ N, either A or N−A belongs to U . The existence of a free ultrafilter follows from Zorn’s Lemma.
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“implement” such a uniform distribution. Results on the “existence” of a finitely additive
probability do not provide any help.

The next section touches the notion of constructivism and recalls the Axiom of Choice
and the Axiom of Dependent choice. Section 3 states and proves the main result.

2 Constructivism

In constructive mathematics, a problem is considered as solved only if its solution can be
explicitly produced. Let me provide a typical example.

Claim. There exist two irrational real numbers a and b such that ab is rational.

Proof. The real number c =
√

2

√
2 either is rational, and then we put a = b =

√
2 ; or is

not rational, and then we put a = c and b =
√

2.

Classical mathematics accepts this proof. On the other hand, this proof uses the law of
the excluded middle which states the truth of ‘P or not-P ’ for each proposition P (i.c.
the real number c is rational) and does not provide an explicit way to indicate which
pair of real numbers satisfies the claim. Therefore, within constructivism this proof is
rejected. In constructivist logic the classical law of the excluded middle is not assumed.
Of course, constructive mathematics also rejects principles that are stronger than the law
of the excluded middle. The Axiom of Choice (AC) is such a principle.

AC postulates for each nonempty family D of nonempty sets the existence of a function
f such that f(S) ∈ S for each set S in the family D. The function f is referred to as a
choice function. AC does not provide an explicit way to construct such a choice function
and provoked considerable criticism in the aftermath of Zermelo’s formulation in 1904.

AC is (i) consistent: AC can be added to the Zermelo-Fraenkel axioms of set theory
(ZF) without yielding a contradiction; and (ii) independent: AC is not a theorem of ZF
(Fraenkel et al, 1973, Section II.4.2). Among the applications of AC, we mention Zorn’s
Lemma, the theorem of Hahn-Banach, and the existence of free ultrafilters. AC also implies
a number of paradoxes such as the decomposition of a sphere into a sphere of smaller size,
and the existence of a non-measurable set of real numbers.

Constructive mathematics rejects AC. On the other hand, the Axiom of Dependent
Choice (DC) is generally accepted by constructivists (Beeson, 1988, p. 42). Let S be a
nonempty set and let R be a binary relation in S such that for each a in S there is a b in
S with (a, b) ∈ R. Then, DC postulates the existence of a sequence (a1, a2, . . . , an, . . .) of
elements in S such that (ak, ak+1) ∈ R for each k = 1, 2, . . ..

The nonconstructive object used in this note is known as a non-Ramsey set. Let I be
an infinite set and let n be a positive integer. Let [I]n collect all the subsets of I with
exactly n elements. Ramsey (1928) shows that for each subset S of [I]n, there exists an
infinite set J ⊂ I such that either [J ]n ⊂ S or [J ]n ∩ S = ∅. When n is replaced by
countable infinity, then Ramsey’s theorem fails. There exists a subset S of [I]∞ such that
for each infinite subset J of I the class [J ]∞ intersects S and its complement [I]∞ − S as
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well. Such a set S is said to be non-Ramsey. Mathias (1977) showed that the existence of
non-Ramsey sets does not follow from ZF (without AC).2

3 Finitely additive probabilities

Let N be the set of natural numbers. Let F be the field of all subsets of N. A finitely
additive probability is a map µ : F → R+ that satisfies µ(N) = 1 and the condition

µ
(
A1 ∪ A2 ∪ . . . ∪ An

)
= µ(A1) + µ(A2) + · · ·+ µ(An),

where the sets A1, A2, . . . , An are disjoint, for all finite n. We now state the main result of
this note.

Theorem. Let µ be a finitely additive probability on N that attaches zero probability to
each natural number. Then, µ generates a non-Ramsey set.

Proof. We start with some additional notation. For two natural numbers i > j, let [ i, j[
denote the set {i, i + 1, . . . , j − 1}. Furthermore, to each infinite set A ⊆ N we connect
a set, denoted by A0, as follows. Let A = {n0, n1, . . . , nk, . . .} with nk < nk+1 for each k,
then A0 = [n0, n1[ ∪ [n2, n3[ ∪ . . . ∪ [n2k, n2k+1[ ∪ . . . .

Now, let µ satisfy the requirements listed in the theorem. We show that

S = {A ⊆ N |µ(A0) > 0.5}

is a non-Ramsey set. It is sufficient to show that each infinite set A = {n0, n1, . . . , nk, . . .}
includes an infinite subset B such either A or B belongs to S (the ‘either-or’ being exclu-
sive). We distinguish three cases.

Case 1. A /∈ S, in particular µ(A0) < 0.5. Let B = A−{n0}. Then, [ 0, n0[∪A0∪B0 = N.
Since µ([ 0, n0[) = 0, µ(A0) < 0.5, and µ(N) = 1; we obtain that µ(B0) > 0.5. Therefore,
B ⊆ A and B ∈ S.

Case 2. A /∈ S, in particular µ(A0) = 0.5. Let B = {n0, n3, n4, n7, . . . , n4k, n4k+3, . . .} and
let B′ = {n0, n1, n2, n5, n6, n9, . . . , n4k+2, n4k+5, . . .}. Then, A0 = B0 ∩ B′0. Hence, we have
µ(B0) ≥ 0.5 and µ(B′0) ≥ 0.5. Furthermore,

[ 0, n0[ ∪ (B0 ∆B′0) ∪ A0 = N.

Conclude that the symmetric difference B0 ∆B′0 has a measure equal to 0.5. Hence, at
least one of the sets B0 or B′0 has a measure strictly larger than 0.5. Select the subset B
or B′ of A for which the corresponding set B0 or B′0 has the highest measure. The selected
subset of A belongs to S.

2More precisely, Solovay (1970) proposed a model in which ZF and DC are true and in which AC fails.
Mathias showed that in this Solovay-model a non-Ramsey set does not exist. Hence, the existence of a
non-Ramsey set is independent of ZF + DC.
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Case 3. A ∈ S. Similar to Case 1, we put B = A− {n0}. Conclude that B ⊆ A and that
B /∈ S. 2

The next summary closes the paper. If each natural number has the same probability,
then this probability is zero and the resulting probability distribution µ is finitely additive
and not countably additive (observe the inequality µ(∪∞0 {k}) >

∑∞
0 µ({k})). Whether

one uses the limiting relative frequency, the residue sets, or translation invariance as an
interpretation of uniformity (Kadane and O’Hagan, 1995), the above Theorem applies:
uniformity of the natural numbers cannot be constructed.
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