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Abstract 

The paper considers several types of dependencies between the different risks of a life 
insurance portfolio. Each policy is assumed to having a positive face amount (or an 
amount at risk) during a certain reference period. The amount is due if the policy holder 
dies during the reference period. 
First, we will look for the type of dependency between the individuals that gives rise to the 
riskiest aggregate claims in the sense that it leads to the largest stop-loss premiums. 
Further, this result is used to derive results for weaker forms of dependency, where the 
only non-independent risks of the portfolio are the risks of couples (wife and husband). 
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1 Introduction 

Consider a portfolio consisting of n life insurance policies, with each policy having a 
positive face amount (or an amount at risk) during a certain reference period, e.g. one 
year. The amount is due if the policyholder dies during the reference period. The 
aggregate claims of the portfolio is the sum of all amounts payable during the reference 
period. To find the distribution of the aggregate claims and related quantities such as 
stop-loss premiums is one of the main topics of the individual risk theory. 
In order to solve this problem in its most general form, not only the marginal distribution 
of claims on each separate contract have to be known, but also knowledge of the depency 
relationships is required. 
In practice and also in theory the problem is almost always simplified by assuming that the 
different contracts are mutually independent, so that the knowledge of the marginal 
distributions suffices to tackle the problem. 
However it is obvious that the independence assumption does not always reflects reality: 

- There may be duplicates in the portfolio, i.e. several policies may concern the same life. 
In this case the number of policies is not equal to the number of insured lives. See e.g. 
Beard and Perks (1949) and Seal (1947). 

- A husband and his wife may both have a policy in the same portfolio. It is clear that 
there must be a dependency between their mortality. Both are more or less exposed to 
the same risks. Moreover there may be certain selectional mechanisms in the matching 
of couples (birds of a feather flock together). It is known that the mortality rate 
increases by the mortality of one's spouse (the "broken heart" syndrome). See e.g. 
Carriere et al. (1986), Norberg (1989) and Frees et al. (1995). 

- A pension fund covers the pensions of persons that work for the same company, so their 
mortality will be dependent to a certain extent. 

- If the density of insured people in a certain area or organisation is high enough then 
catastrophes such as storms, explosions, earthquakes, epidemics... can cause an 
accumulation of claims for the insurer. See e.g. Strickler (1960), Feilmeier et al. (1980) 
and Kremer (1983). 

As pointed out by Kaas (1993) actuarial practioners are well aware of these phenomena 
but for convenience usually assume that their influence on the resulting stop-loss 
premiums is small enough to be negligible. The fact that dependencies may have 
disastrous effects on stop-loss premiums is illustrated numerically in Kaas (1993). He 
compares the stop-loss premiums of a portfolio consisting of independent risks by the 
stop-loss premiums of a portfolio that is identical to the basic portfolio exept for the fact 
that a number of policies of it are based on the same life (duplicates). One finds that the 
stop-loss premiums can be seen to rise astronomically especially for large retentions. 

In this paper we will look for the type of dependency between individuals that gives rise to 
the largest stop-loss premiums. 
A similar non-life problem is treated in Heilmann (1986) where he considers a portfolio of 
two exponential risks and derives the supremum of the stop-loss premiums for this 
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portfolio, where the supremum is taken over the set of all probability measures in R2 

with given exponential marginals. 
In the second part of the paper a life insurance portfolio is considered where the only 
dependencies that occur are the dependencies between the risks (Xi' X; ) of couples (wife 

and husband). We will examine the effect on the stop-loss premiums of changing the 
correlations between the individual risks of a couple. 

2 Description of the model 

Let (XI 'X2 ' ••. ,Xn ) be a portfolio consisting ofn risks Xl ,X 2 , ... ,X n with Xi (i=l, 2, ... , 

n) having a given two-point distribution in 0 and ai > O. 

(1) 

Usually it is assumed that the family(Xl>X 2 , ••• ,X n)is stochastically independent. In this 

case the distribution of the aggregate claims Xl + X2 +. ,,+Xn of the portfolio is uniquely 

determined by the distribution (1) of the marginals Xi' 

In the sequel we will not assume independence. In this case the distribution of the 
aggregate claims is no longer uniquely determined by the survival probabilities Pi of the 

individual risks. Therefore we will introduce the set 9t(Pl , ... , P n ; a 1 ... , an) == m n 

consisting of all random variables S that can be written as 

with the distribution of the individual risks X i determined by (1). 

It follows immediately that for each S E m n the mean is given by 

n 

E(S) = Lqiai 
i=1 

(2) 

Hence, the expected aggregate claims is not influenced by the type of dependence between 
the individual risks. 
For convenience, we will assume that the risks (Xl ,Xl , ... ,Xn) are ordered such that 

which means that a risk with a lower index has a lower survival probability. 
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3 A particular type of dependency 

In this section we will examine a special type of dependency between the risks of the life 
insurance portfolio. This is not only done for illustrative purposes, but we will need it in 
section 4 where we state our main result. 

Let S' E iRn with the dependencies between the individual risks given by the following 

relations 

Pr(Xi+1 = 0IXi = 0) = 1 (i = 1,2, ... ,n -1) 

From (3) we derive the following relations 

Pr(X = 0IX = a.) = Pi+l - Pi 
1+1 I I 1 

-Pi 

Pre X -a I X - 0) - 0 --i+1 - -'i+i --I - -

(3) 

(4) 

(5) 

(6) 

From (3) it follows that if person (i) stays alive then person (i+ 1) stays alive, but if person 
(i+ 1) stays alive then person (i+2) stays alive, .... So we can conclude 

(i = 1,2, ... ,n -l;j = 1, ... ,n - i) (7) 

This means that if a person will survive the exposure period, then all persons with greater 
survival probabilities will also survive. 

From (6) we deduce 

Pr(X' 1 = a· IIX. = a.) = 1 l~ [- I I (i=2, ... ,n) (8) 

and 

Pr(X .. = a· ·Ix. = a.) = 1 l-j l-} I I (i = 2, ... ,n;) = 1, ... ,i -1) (9) 

Hence, if a person dies then all persons with lower survival probabilities will die too. 

From the reasoning above it follows that the possible outcomes for S' are 
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and we have 

PreS' = 0) = Pr(X = o· X = o· . X = 0) = Pr(X = 0) = p I , 2 , ... , n I I 

Pr(S* =a\ +a 2 + ... +a i )=Pr(X! =a\;X2 =a 2 ;"';Xi =ai;Xi+! =O;"';XIl =0) 

= Pr(Xi = ai;Xi+\ = 0) = Pr(X; = ai).Pr(Xi+\ = 0lx; = a i ) = P;+! - Pi(i = 1,2, ... ,n) 

Denoting the distribution of s* by F* we can conclude 

{
PI 

F* (s) = ~i+\ 

:0 S s < a\ 

:a\+. . .+a i ss<a!+. . .+a i+\ 

:s;::: a\ +. . .+a n 

4 The riskiest aggregate claims 

(i = 1,2, ... ,n-l) 

If X and Yare two risks then we say that X precedes Y in stop-loss order (written 

(10) 

X Sst Y), or also X is less risky than Y, if their stop-loss premiums are ordered uniformly: 

E(X - d)+ s E(Y - d)+ 

for all retentions d ;::: 0. 

Y is said to stochastically dominate X (written X Sst Y) if the following order exists 
between their distribution functions: 

for all x. 

In the following theorem we will show that in the class of aggregate claims 

S = XI +. . .+ X n with given marginal distributions of the risks Xi' the aggregate claims S· 

with dependencies given by (3) will give rise to the maximal stop-loss premiums. 

Theorem 1 

Let S* be the random variable contained in iR n with dependencies between the individual 

risks given by (3). Then we have for any S E iRn that 

S Ssz S· (J 1) 

5 



Proof: 

The following expressions for the stop-loss premium with retention d of a random variable 
S having a distribution F(s) will be used: 

00 d 

E(S - d)+ = f (1- F(s))ds = E(S) - d + f F(s)ds 
d 0 

In order to prove (11) we define 

(j = 1,2, .. . ,n) 

and denote their respective distribution functions by Ff . The random variables S; 
G=1,2, ... ,n) are defined by their distribution functions F; : 

:O::;s<a l 

:a l +. . .+a i ::; s < a l +. . .+a i +1 

:s;::: a l +. . .+a f 

For j=l we immediately have that SI ::;sl S;. 

(i = 1,2, ... ,) -1) 

Now assume that Sf ::;sl S; or equivalently, becauseE(Sj) = E(S;), 

d d 

f Ff (s)ds ::; f F; (s)ds (d;::: 0) 
o o 

Then we find for d < a l +. .. +a f 

d d d d 

f Ff+1 (s)ds::; f Ff (s)ds ::; f F; (s)ds = f Ff: 1 (s)ds 
o 0 0 0 

so that 

In order to prove that the inequality above also holds for d;::: a 1+ .. . +a f remark that 

Fj+1 (u l + ... +u j) = Pr(XI + .. . +Xj+1 ::; U I + ... +u) ;::: Pr(XI + ... +Xj+1 ::; U I + ... +u j ;Xj+1 = 0) 

= Pf+1 = F f: 1 (a l +. . .+a f) 
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and hence 

so that for d;:::: a l + ... +a f 

00 00 

E(Sf+1 - dt = f (1- Ff+1 (s))ds ~ f (1- Ff: 1 (s))ds = E(S;+I - dt 
d d 

Q.E.D. 

We have proven that the dependency between the risks Xi as expressed by (3) gives rise 

to the riskiest aggregate claims random variable in the sense that it has the largest stop­
loss premiums. 

As 

F" (0) = PreS = 0) = Pr(XI = 0; ... ; XIl = 0) ~ PI = F",<O) 

and 

we have that neither S stochastically dominates S* nor S* stochastically dominates S. 
More generally, we can say that there are no non-trivial stochastic dominance relations 
between random variables in in n . This follows from the fact that all elements of in n have 

the same mean. 

F or the more general class of risks S defined by its range [0; a 1 +. . .+a n] and its mean 
n 

E(S) = "Luiqi we have that the riskiest risk is Z with 
i=1 

i=1 

Pr(Z = 0) = 1- Pr(Z = a l + .. .+aJ 

see Goovaerts et al. (1990). 

As any risk S E in n is contained in this class, we have 
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(12) 

As E(S) = E(S*) = E(Z) we find from Goovaerts et al. (1990) that 

Var(S) :S; Var(S*) :S; Var(Z) (13) 

Remark that a dependency of the form "if one person dies then all persons die" is in 
general not possible for the portfolio (XI' X2 , ••• , XII) with given survival probabilities. The 

reason is that this latter dependency requires that PI = P2 = ... = Pn . 

If the portfolio is such that PI = P2 = ... = Pn then the distribution of S* equals the 

distribution of Z and the riskiest dependency can be expressed as "if one person dies then 
all persons die". 

5 Applications 

SA. In this subsection we will illustrate Theorem 1 numerically. Therefore we will use 
Gerber's (1979) portfolio which is represented in Table 1. 

amount at risk 

qj 1 2 3 4 5 

0.03 2 3 1 2 
0.04 - 1 2 2 1 
0.05 - 2 4 2 2 
0.06 - 2 2 2 1 

Table 1 Gerber's portfolio 

In Table 2 we give the stop-loss premiums for a number of retentions in the case of 
independent risks and in the case of the dependencies described by (3). 

d inde endent risks de endencies described b (3 
0 4,490 4,490 
4 1,776 4,250 
6 1,001 4,130 
9 0,361 3,950 

14 0,048 3,650 
19 0,004 3,350 

Table 2 Stop-loss premiums for Gerber's portfolio 

From these figures one sees that the riskiest form of dependencies leads indeed to 
"astronomical" increase of the stop-loss premiums, especially for large retentions. 
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5B. Let X be the random present value of a n-year temporary life annuity of 1 at the end 
of year 1,2, ... ,n provided that a certain person of age x, denoted by (x), survives. Further, 
let (Xl)' (X2 ), ... , (X J be n persons of age x with identically distributed remaining life times 
as (x), we do not assume independence between the remaining life times. 1'; (i=1,2, ... ,n) is 
the random present value of 1 due at the end of i years provided that (Xi) survives. Then 
we have that 

n 

E(X) = LE(~) 
i=1 

Now we will show that X will always be riskier (in terms of stop-loss premiums) than 

i=1 

Il 

Let v be the deterministic one year discount factor, then we see that X and L 1'; both 
i=1 

are elements of m n (PI""'P n ;v, V2, ... , VII) with Pi (i = 1,2, ... , n) being the probability that 

a person of age x dies within i years. 
Now we have that PI S P2 S ... S P n so that application of Theorem 1 gives that the most 

risky element of mn (P\> ... ,Pn ;v, v2 , ..• , vn) is S· with 

PreS· = 0) = PI 

PreS· = v+. . .+v i ) = Pi+1 - Pi 

PreS· = v+. . .+vn) = 1- Pn 

(i = 1,2, ... ,n -1) 

As X has the same distribution as S· we can conclude that 

and from Goovaerts et al. (1990) it follows that this implies 

for all a ~ 1. As the expectations of both random variables are equal we also have that 

Il 

var(L 1';) S var(X) 
i=1 
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6 Stop-loss order relations for sums of two dependent random variables 

6A. The results of Theorem 1 can also be used for deriving upper bounds for stop-loss 
premiums of portfolio's with weaker forms of dependency. In the remainder of this paper 
we will consider a portfolio consisting of couples whereby it is assumed that the claims 
produced by the different couples are mutually independent, but the claims of a husband 
and his wife are dependent. In this section we will consider one such couple (Xl> X 2 ) 

and derive some results which we will need in Section 7. We assume that each risk Xi 
(i= 1,2) has a two-point distribution: 

Pr(Xi = 0) = Pi . Pr(X = a.) = q = 1- p. 
, 1 1 J 1 

(14) 

with a i > o. 

with the distribution of the Xi given by (14). 

As we do not assume independency between XI and X 2 the class R2 contains an infinite 

number of random variables. 

In the following lemma an expression is derived which holds for the distribution function 
Fs of any S E 91 2 , We will only consider the cases a I < a 2 and a I = a 2 . 

The case a I > a 2 follows from a symmetry argument. 

Lemma 1 

The distribution F..~ of S E 91 2 is given by 

P2 
1 - Pre S = a I + a 2 ) 

1 

:a l :'S:s<a2 

:a 2 :'S:s<a l +a 2 

:s ~ a l +a 2 

{
P2 - ql + PreS = a I + a 2): 0 :'S: s < a I 

Fs(s)= 1-Pr(S=a l +a 2 ) :a l :'S:s<a l +a 2 

1 :s~al +a 2 
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Consider the case that a I < a 2 . 

Then we find that 

and 

so that 

PreS = 0) = 1- PreS = a l ) - PreS = a 2 ) - PreS = a l + a 2 ) 

= P2 -ql +Pr(S = a l + a 2 ) 

From these expressions we find Fs (s) . 

The case a I = a 2 follows from a similar reasoning. 
Q.E.D. 

6B. Let S = XI + X 2 E m2 then we have 

(15) 

and 

(16) 

From (15), (16) and Lemma 1 we conclude that the distribution of any S E m2 is uniquely 

determined by one of the following quantities: PreS = a I + a 2 ), var(S), COV(XI' X 2 ) . 

Now we are able to state the following result concerning the relation between the 
correlations of XI and X 2 for different elements of m2 

Lemma 2 

Let Si (i=J,2) be random variables contained in m2 with the correlation coefficient 

between XI and X 2 given by corrJXI, X 2 ). Then the following statements are 

equivalent: 
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(a)Pr(Sj = a j +a2)~Pr(S2 = a j +a 2 ) 

(b)var(Sj) ~ var(S2) 
(c)corrj (Xl> X 2 ) ~ corr2 (X p X 2 ) 

(d)Sj ~sl S2 

Proof: 

From (15) and (16) we find immediately that (a), (b) and (c) are equivalent. 
Now suppose that (a) holds, then it follows from Lemma 1 that the distribution functions 
of Sj and S2 cross once, with S2 having the heavier tailed distribution. Hence, from 

Goovaerts et al. (1990) it follows that (d) holds. 
Finally suppose that (d) holds. As E(Sj) = E(S2)' we find from Goovaerts et al. (1990) 

that (b) holds so that the theorem is proven. 
Q.E.D. 

6C. From Lemma 2 it follows that the most risky element S* in m2 is the one which 

maximizes Pre S = a j + a 2). As we have 

we find 

Let us now assume that pj ~ P2 then we find that for the most risky random variable S* 

in m2 the following type of dependency exists between Xj and X 2 

which means that the death of the younger one (the one with the higher survival 
probability) implies the death of the older one. This result could also be found from 
Theorem 1. 

7 A life insurance portfolio with pairwise dependencies 

7A. Let ':J(pj,P;, ... ,Pm,P~,Pm+p ... ,Pn,apa;, ... am,a~,am+l ... ,aJ= ':J be the class of 
all random variables S of the following form: 

m n 

S = L (Xi + X;) + LXi 
i~j i~m+j 
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where each Xi (i = 1,2, ... , n) has a given two-point distribution in 0 and a i > 0, and 

each X; (i = 1,2, ... , m) has a given two-point distribution in 0 and a; > 0 . 

Further, we assume that for any S E 3 all risks are mutually independent, except for the 
"coupled risks". This means that the only dependencies that occur are the dependencies 
between the two risks (Xi,X;) of the couples (i = 1,2, ... ,m). We will also assume that 

the survival probabilities Pi and p; in each couple are ordered such that Pi :s; p; . 

Theorem 2 

Let Sf (j = 1,2) E 3 with the correlation coefficients between the risks of the couples 

given by corr/ Xi' X; ), (i = 1,2, ... , m). Then we have that 

corr! (Xi' X;) :s; corr2 (Xi' X;) (i = 1,2, .. . ,m) 

implies 

Proof: 

The proof follows immediately from the equivalence of the statements (c) and (d) in 
Lemma 2 and from the preservation of stop-loss ordering under convolution for 
independent risks, see e.g. Goovaerts et al. (1990). 

Q.E.D. 

From Section 6C we find the following result concerning the most risky random variable 
in 3. 

Theorem 3 

Let S·· be the random variable in 3 with the dependencies between the risks of the 
couples given by 

(i = 1,2, ... ,m) 

Then we have for any S E 3 

In practice the risks (Xi' X;) of a couple (wife and husband) will be positively correlated. 

Theorem 4 considers this case. 
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Theorem 4 

Let sindep be the random variable in 3 with all risks mutually independent and S be a 

random variable in 3 with positively correlated couples (Xi' X; ). Then we have 

Proof: 

The proof follows immediately from Theorem 2. 
Q.E.D. 

From Theorem 4 we conclude that the assumption of mutually independence will 
underestimate the stop-loss premiums, at least if the couples (Xi' X;) are positively 

correlated. 

7B. The result of Theorem 4 is only valid for portfolio's with individual risks having a 
two-point distribution. This will be shown by the following example where we consider a 
portfolio consisting of only one couple with each individual risk having a three-point 
distribution. 

Let the probability function of Xi (i = 1,2) be given by 

Pr(X; = x) = 1/3 (x=0,1,2) 

Further let Sl be defined by Sl = Xl + X 2 with Xl and X 2 independent. 

Then we find 

and 

E(Sl - 3)+ = Pr(Sl = 4) = 1/9 

The random variable S2 is defined by S2 = Xl + X 2 with 

Pr(X2 = ° \ Xl = 0) = 1 

Pr(X2 = 1\ Xl = 2) = 1 

Pr(X2 = 2\ Xl = 1) = 1 

In this case we have 
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+2Pr(X j = 1,X2 = 2) + 4Pr(X j = 2,X2 = 2) -1 = 1/3 > 0 

and 

E(S2 - 3)+ = Pr(S2 = 4) = 0 

So we find from this example that in general a positive correlation between the individual 
risks of the couple does not imply larger stop-loss premiums than in the independence 
case. 
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