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Abstract 
 
We explore how the ECB sets interest rates in the context of policy reaction 
functions.  Using both real-time and revised information, we consider linear 
and nonlinear policy functions in inflation, output and a measure of financial 
conditions.  We find that amongst Taylor rule models, linear and nonlinear 
models are empirically indistinguishable within sample and that model 
specifications with real-time data provide the best description of in-sample 
ECB interest rate setting behavior.  The 2007-2009 financial crisis witnesses a 
shift from inflation targeting to output stabilisation and a shift, from an 
asymmetric policy response to financial conditions at high inflation rates, to a 
more symmetric response irrespectively of the state of inflation.  Finally, 
without imposing an a priori choice of parametric functional form, 
semiparametric models forecast out-of-sample better than linear and 
nonlinear Taylor rule models. 
 
Keywords:  monetary policy, nonlinearity, real time data, financial conditions 
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1. Introduction 
Empirical models of monetary policy are widely used to study interest rates 

and to investigate the objectives of policymakers.  The great majority of 

studies use the Taylor rule model and its extensions (e.g. Taylor, 1993; 

Clarida et al, 2000), where interest rates relate linearly to the gap between 

actual and desired values of inflation and output.  More recently, however, the 

focus of the monetary policy literature has been increasingly placed on 

nonlinear models resulting from either asymmetric central bank preferences 

(e.g. Nobay and Peel, 2003; Cukierman and Gerlach, 2003; Bec et al, 2002; 

Orphanides and Wieland, 2000, and Favero et al 1999) or a nonlinear 

(convex) aggregate supply or Phillips curve (e.g. Dolado et al 2005; Schaling 

2004), or still when central banks follow the opportunistic approach to 

disinflation (Aksoy et al, 2006).  Dolado et al (2004) discuss a model which 

comprises both asymmetric central bank preferences and a nonlinear Phillips 

curve. 

 

Orphanides (2001) raises another issue previously neglected by the monetary 

policy literature.  He warns that the success of empirical Taylor rule models 

should be judged by the use of the appropriate information set; he shows that 

ex post revised data sets (commonly used in the empirical literature) provide a 

misleading description of the Federal Reserve Bank’s bahavior in real time.  

Focussing on real-time versus ex post revised output gap measures, 

Orphanides and van Norden (2002) show that empirical estimates of the 

output gap are subject to significant revisions, whereas Orphanides and van 

Norden (2005) demonstrate that ex post revised estimates of the output gap 

significantly overstate the ability of the output gap to predict inflation.  They 

also flag the distinction between “suggested usefulness”, which refers to the 

assessment of models that use final data and “operational usefulness”, which 

refers to the assessment of models that use real-time data.  In light of the 

Orphanides and van Norden (2005) findings, it is not surprising that Herrmann 

et al (2005) reiterate the importance of using real-time data to understand the 

behavior of policy makers in real time.   
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The ongoing but nevertheless fading (at the time of writing in autumn 2009) 

financial crisis has provided an additional challenge to simple Taylor rule 

models adding to the debate on whether Central Banks can improve 

macroeconomic stability by targeting financial asset prices (such as exchange 

rates, house prices and stock prices).  For instance, amongst others, De 

Grauwe (2007) argues that asset prices should be targeted as Central Banks 

cannot avoid taking more responsibilities beyond inflation targeting. On the 

other hand, Federal Reserve governor Mishkin (2008) points out that asset 

price bubbles are hard to identify and even if they are identified, their 

response to interest rates is far from certain.  Amongst others, earlier joint 

research by Federal Reserve Chairman Bernanke and Gertler (2001) 

considers the importance of targeting asset prices in an inflation-targeting 

framework and concludes that “there is no significant additional benefit to 

responding to asset prices”. 

 

ECB President Trichet (2005) takes a more cautious view.  He reiterates that 

the primary objective of ECB’s policy is the maintenance of price stability (the 

ECB aims at keeping inflation below but close to 2% over the medium term) 

and adds that “the ECB’s monetary policy strategy does allow for taking into 

account [asset price] boom developments without any amendments to the 

strategy and without providing any additional role to asset prices” (Trichet, 

2005).  Four years on, and armed with the experience of the financial crisis, 

ECB Vice President Papademos (2009) continues to express a cautious view, 

but nevertheless, moves a step closer towards acknowledging the importance 

of monitoring asset prices as part of ECB’s monetary policy.  He notes that 

““leaning against the wind” of booming asset prices by raising the policy 

interest rates would, even in the short to medium term, be compatible with the 

ECB’s monetary policy strategy aiming at consumer price stability”.  He then 

adds that the “leaning against the wind” policy “would be expected to be more 

effective in maintaining price stability over the longer term, by helping to 

prevent the materialisation of deflation risks when the asset bubble bursts” 

(Papademos, 2009). 
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Castro (2008) argues that, instead of attempting to target different asset 

prices, Central Banks could be monitoring asset prices and financial 

information in the form of a composite financial index.  Using such an index, 

Castro (2008) shows that, in contrast to the Federal Reserve and the Bank of 

England, ECB policymakers pay close attention to financial conditions when 

setting the Eurozone interest rate.   

 

Perhaps surprisingly, Taylor-type monetary policy rules have mainly been 

concerned with in-sample fits of linear and nonlinear models to interest rate 

data.  A notable exception is Qin and Enders (2008) who use US data to 

compare the in-sample and out-of-sample properties of linear Taylor rules and 

a nonlinear one driven by large versus small values of past interest rates. 
 
This marks a significant point of departure for our paper: using inflation, output 

gap and a proxy for financial conditions as the main underlying variables, we 

examine whether monetary policy in the form of nonlinear Taylor rule models 

can dominate standard linear Taylor rule models both in-sample and out-of 

sample.  In particular, we employ an extension of the linear Taylor rule to a 

regime-switching framework, where the transition from one regime to the 

other occurs in a smooth way.  The switching between regimes is controlled 

by the state of inflation.  This feature of the smooth transition model allows us 

to test the ability of high against low inflation rates to best describe the 

nonlinear dynamics of the interest rate in the Eurozone area, also accounting 

for the information available in the financial conditions index.  

 

To assess the ability of the alternative policy rules to predict ECB interest 

rates both in-sample and out-of-sample, we use real-time as well as revised 

data.  All models are estimated over expanding windows of data.  Recursive 

estimation of the policy rules provides significant information on how the 

response coefficients to inflation, output gap and financial conditions have 

varied across times and across regimes (high against low inflation rates).  

Out-of sample, we compute one-month-ahead through twelve-months-ahead 

forecasts.  We then consider whether forecast improvement can be achieved 

by combining across different policy rules.  By using sequences of expanding 
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windows to evaluate ECB monetary policy across individual as well as 

combined reaction functions, we believe we go some way towards addressing 

the point made by Bank of England Governor King (2007) that it is impossible 

to write down any stable reaction function.  

 

Forecasts generated from the Taylor-type models are compared to those of 

autoregressive and nonparametric/semiparametric models; the latter are 

flexible in the sense that they can capture the salient features of the data 

without having to base their inference on the assumptions of linearity and 

normality.  That is, rather than assuming a particular functional form for the 

object at hand or assuming that the data are drawn from a given probability 

distribution, the regression technique employs nonparametric/semiparametric 

kernel-based estimators that implement kernel estimation of conditional mean 

functions.  For this reason, non/semiparametric models are referred to as 

‘parameter-free’ or ‘distribution-free’ models. In this respect, 

nonparametric/semiparametric models provide a challenging alternative (at 

least in terms of forecasting superiority) to the Taylor rule models currently 

dominating the monetary policy literature. 

 

We have four main findings.  First, amongst Taylor rule models, linear and 

nonlinear models are empirically indistinguishable within sample and that 

model specifications with real-time data provide the best description of in-

sample ECB interest rate setting behavior.  Second, ECB policy-makers pay 

close attention to the financial conditions index when setting interest rates; the 

effect of the index remains significant even when nonlinearities are accounted 

for.  Third, the response of monetary policy to the financial conditions index 

depends on the state of inflation; the response increases when inflation is 

rising.  A plausible explanation is that booming financial conditions trigger an 

increase in inflationary pressures.  On the other, hand, the 2007-2009 

financial crisis sees a shift from inflation targeting to output stabilisation and a 

shift, from an asymmetric policy response to financial conditions at high 

inflation rates, to a more symmetric response irrespectively of the state of 

inflation.  Fourth, semiparametric models are flexible enough to forecast out-

of-sample better than any linear or nonlinear Taylor rule model; 
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semiparametric model forecasts are also superior to pooled forecasts.  A 

semiparametric model that uses final data forecasts at least as well as a 

semiparametric model with real-time data and better than any other model.  

This is more so during periods of high inflation rates (associated with large 

interest rate values). 

 

The paper proceeds as follows.  Section 2 summarises the linear, nonlinear 

and nonparametric models.  Section 3 discusses the data.  Section 4 reports 

the in-sample analysis and Section 5 presents our out-of-sample forecasting 

exercise.  Section 6 provides some concluding remarks and offers some 

policy implications. 

 

2. Monetary policy rules 
2.1. Linear and nonlinear Taylor rule models 
Existing studies of the impact of inflation and output on monetary policy use a 

version of the Taylor (1993) rule 

(1) * *ˆ ( ) _t t t p y t t q f t t ri i E E y E fin indexπρ π π ρ ρ+ + += + − + +  

 

where *i  is the desired nominal interest rate, î  is the equilibrium nominal 

interest rate, π  is the inflation rate expected at time (t+p), *π  is the inflation 

target (or desired rate of inflation), y  is the output gap expected at time (t+q), 

_fin index  is a measure of financial conditions at time (t+r), πρ  is the weight 

on inflation, yρ  is the weight on output gap, fρ  is the weight on the financial 

index, and p, q and r may be positive or negative.  Allowing for interest rate 

smoothing (see e.g. Woodford, 2003) by assuming that the actual nominal 

interest rate, ti , adjusts towards the desired rate by 

(2) *
1( ) (1 )t i t i ti L i iρ ρ−= + −  

 

we write the empirical Taylor rule as 
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(3)

 

{ }1 0( ) (1 ) _t i t i t t p y t t q f t t r ti L i E E y E fin indexπρ ρ ρ ρ π ρ ρ ε− + + += + − + + + +  

 

where, 1
21 ...)( −ρ++ρ+ρ=ρ n

iniii LLL  (we can use )1(ii ρ≡ρ  as a measure of 

interest rate persistence), *
0 î πρ ρ π= − , and tε  is an error term.   

 

The theoretical basis of the linear Taylor rule (3) comes from the assumption 

that policymakers have a quadratic loss function and that the aggregate 

supply or Phillips curve is linear.  Asymmetric preferences, instead, lead to a 

Taylor rule model in which the response of interest rates to inflation and/or 

output is different for positive and negative inflation and/or output deviations 

from their desired level.  A nonlinear policy rule also results from assuming a 

nonlinear Phillips curve; to the extent that nominal wages are downwards 

inflexible, inflation is a convex function of the unemployment rate (see e.g. 

Layard et al, 1991). This, by Okun’s law, means that inflation is also convex in 

the output gap.  Combined with a quadratic loss function, the nonlinear 

aggregate supply leads to a policy rule where the response of interest rates to 

inflation is higher (lower) when inflation is above (below) target.  

 

The nonlinear policy rule we consider, takes the form 

(4)    1 0 1 2( ) (1 ){ ( ; , ) (1 ( ; , )) }t tt i t i t t p t t t p t ti L i E M E Mπ ππ πθ θρ ρ ρ π γ τ π γ τ ε− + += + − + + − +  

 

where _jt j t t p jy t t q jf t t rM E E y E fin indexπρ π ρ ρ+ + += + +  for j=1,2 and the function 

( ; , )t t t pEπ πθ π γ τ+  is the weight, at the beginning of period t, that inflation in 

period (t+p) will be less than τ  percent.  In this model (and following previous 

literature referred to in the Introduction), the response of interest rates to the 

lagged interest rates and the intercept is linear.  On the other hand, the 

response of interest rates to inflation, the output gap and the financial index is 

allowed to differ between inflation regimes.  1tM  is a linear function that 

represents the behavior of policymakers when inflation is expected to be less 
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than τ  percent.  In effect,  1tM  is a Taylor rule specific to this regime.  2tM  is 

a Taylor rule that describes the behaviour of policymakers in the regime 

where inflation is expected to be more than τ  percent.  If 1 2π πρ ρ= , 1 2y yρ ρ= , 

and 1 2f fρ ρ=  the model simplifies to the linear Taylor rule in (3).  If 1 2π πρ ρ<  

there is a deflation bias to monetary policy as the response to inflation is 

greater for larger inflation values.  The weight ( ; , )t t t pEπ πθ π γ τ+  is modelled 

using the logistic function (see e.g. van Dijk et al, 2002)  

(5) 
( )( ) /

1
1

1
( ; , )

t t p Et t p
t Et t p

e
E π

π

π

γ π τ σ

πθ π γ τ
+ +−+ −

= −
+

, 

 

where the parameter πγ >0 determines the smoothness of the transition 

regimes.  We follow Granger and Teräsvirta (1993) and Teräsvirta (1994) in 

making πγ  dimension-free by dividing it by the standard deviation of t t pE π + .  

We also note that nonlinear policy rules can be defined using the output gap 

and the financial index as possible transition variables in the weight function 

(5).  This implies that the response of interest rates to inflation, output gap and 

the financial index depends on output gap and financial conditions regimes, 

respectively.  These nonlinear models were considered in the current paper 

but were very poorly estimated and for this reason not reported.   

 

2.2. Nonparametric/semiparametric specifications 
In our forecasting exercise, forecasts generated by the models discussed 

above are compared to those of a simple autoregressive model of order n 

(AR(n)) and a nonparametric specification; the latter does not impose any 

distributional condition in modelling the interest rate and is therefore able to 

reveal structure in data that might be missed by classical parametric linear 

and nonlinear models.   

 

The paper employs a nonparametric (more precisely a semiparametric model 

is estimated in the exercise) specification that does not require the researcher 

to specify a functional form; rather it is local in nature and also based on data-

driven techniques for ‘local averaging’.  The introduction of the paper 
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discussed how nonlinear models have challenged linear Taylor rule 

specifications; in turn, nonlinear models might also be inadequate in 

uncovering the true data generating process of the Central Bank’s reaction 

function. Rather than assuming that the functional form is known, 

nonparametric specifications implement kernel estimation of regression 

functions and substitute less restrictive assumptions, such as smoothness 

and moment restrictions.  To this end, we carry out the Nadaraya-Watson 

local constant regression estimator and then consider a more popular 

extension, namely the local linear regression method (Li and Racine, 2004).  

A key aspect to sound nonparametric regression estimation is choosing the 

correct amount of local averaging (bandwidth selection) before passing these 

bandwidth objects to regression and gradient estimation.  We therefore make 

use of a number of bandwidth selections such as the least-squares cross 

validation of Hall et al (2004) and the Akaike Information Criterion (hereafter 

AIC) method of Hurvich et al (1998); our empirical calculations are made in 

the R np package of Hayfield and Racine (2008).  In particular, we employ a 

semiparametric model which is a compromise between fully nonparametric 

and fully parametric specifications; this is formed by combining parametric 

and nonparametric models to reduce the curse of dimensionality of 

nonparametric models.  We employ a popular regression-type model, namely, 

the partially linear model of Robinson (1988).  Adopted to a monetary policy 

setup, the semiparametric model is 

(6) 1( ) ( , , _ )t i t t t p t t q t t r ti L i f E E y E fin indexρ π ε− + + += + +  

 

where ( )i Lρ  is the parametric part of the model (i.e., the response to lagged 

interest rates has often been assumed linear in the literature) and the 

unknown function (.)f  is the nonparametric part.  Without imposing a known 

functional form for (.)f , the model addresses the difficulties of having a fixed 

rule or reaction function as implied by Taylor rule models currently dominating 

the monetary policy literature. 
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3. Data description 

We use Eurozone data for the 1999:M1-2009:M6 period.  This covers the 

period over which the ECB has been operating.  The nominal interest rate is 

the Euro overnight index average lending rate (Eonia).  For inflation we use 

the rate targeted by the ECB (the ECB aims at keeping inflation below but 

close to 2% over the medium term); this is the annual change in the 

harmonized index of consumer prices. We use both real-time inflation and 

revised inflation measures.  We use three measures of the output gap series: 

(i) the difference between real-time industrial production and a Hodrick-

Prescott (HP, 1997) trend 1, (ii) the difference between final industrial 

production and a HP trend, and (iii) the difference between the economic 

sentiment indicator and a HP trend.  The economic sentiment indicator is 

based on surveys of firms and consumers at the national level; the index is 

not subject to revisions.  The economic sentiment indicator places a weight of 

40% on the industrial confidence indicator, and a weight of 20% on each one 

of the consumer confidence, construction confidence and retail trade 

confidence indicators, respectively.  The index, which is discussed frequently 

in the ECB Monthly Bulletins, becomes available earlier than output data and 

correlates strongly with the Eurozone business cycle (Gali et al, 2004).   

 

The financial index variable pools together relevant information provided by a 

number of financial variables.  As in Castro (2008), the index is constructed as 

a weighted average of (i) the real effective exchange rate (with the foreign 

exchange rate in the denominator), (ii) the real house price, (iii) the real stock 

price, (iv) the spread between the yield on the 10-year government bond and 

the yield on A or higher rated corporate bonds, and (v) the spread between 

the 3-month Euribor interest rate futures contracts in the previous quarter and 

the 3-month Euribor rate. The real effective exchange rate, stock price and 

house price variables are detrended by a HP filter. 2 The constructed financial 

                                                 
1 The real-time industrial production output gap series has been calculated recursively using 
the available preceding data points.  
2 To tackle the end-point problem in calculating the HP trend (see Mise et al, 2005a,b), we 
applied an AR(n) model (with n set at 4 to eliminate serial correlation) to each of the real-time 
and revised output measures and the components of the financial index.  The AR model was 
used to forecast twelve additional months that were then added to each of the series before 
applying the HP filter.  
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index is expressed in standardised form, relative to the mean value of 2000 

and where the vertical scale measures deviations in terms of standard 

deviations; therefore, a value of 1 represents a 1-standard deviation 

difference from the mean.  The financial components of the index are rarely 

revised and as such, the index itself is not subject to revisions.  The index is 

also in the spirit of the UK financial conditions index provided by the Bank of 

England’s Financial Stability Report (Bank of England, 2007).  All data are 

seasonally adjusted. 3   

 

Figure 1 plots the data.  From Figure 1a), inflation rose in mid 2007 and then 

dropped sharply followed by drastic interest rate cuts.  There is little difference 

between real-time and final inflation data (revisions occur only to correct 

reported errors; see Coenen et al, 2005).  From Figure 1b), movements in the 

economic sentiment data are much more pronounced compared to the 

industrial production output data.  The economic sentiment gap data indicate 

a much more severe downturn in 2008-early 2009; however, the economic 

sentiment appears to improve quickly towards mid-2009.  Compared to the 

real-time industrial production data, final data suggest a stronger expansion 

shortly before the financial crisis, followed by a more severe economic 

downturn.  From Figure 1c), financial conditions deteriorated sharply from mid 

2007, having improved steadily over the previous five years.  Movements in 

the financial index have a similar pattern to the interest rate (Figure 1a), which 

indicates a close link between the two variables.  

 

Using the above information set, we consider six policy rule models.  Models 

1 to 3 are linear Taylor rule versions of equation (2).  Models 4 to 6 are 

nonlinear Taylor rule versions of equation (4) using the logistic function (5).  

For forecasting purposes, we consider six more models.  Models 7 to 9 are 

semiparametric versions of equation (6) using real-time inflation and real-time 

industrial output, revised inflation and industrial output, and real-time inflation 

                                                 
3 Real-time data have been collected from the ECB Monthly Bulletins. The European house 
price index is available from the Financial Times website (www.ft.com). European stock prices 
refer to the Dow Jones Euro STOXX price index.  House and stock prices are deflated by the 
Consumer Price index.  The rest of the data is available from the ECB website (www.ecb.int) 
and Datastream. 
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and economic sentiment data, respectively.  Model 10 is an AR(4) model (lag 

length chosen by the AIC).  Our preferred specifications allow for one lag of 

the interest rate, p=12 for inflation, q=0 for the output gap (the dependence of 

ECB monetary policy on current rather than expected output gaps agrees with 

the Euro Area Wide Model in Dieppe et al, 2004), and r=-1 for the financial 

index.  Assuming perfect foresight for inflation, we replace forecasts of real-

time inflation by real-time realizations of inflation and forecasts of final inflation 

by final realizations of inflation and then estimate by the Generalised Method 

of Moments (GMM).  4 The implication of using real-time realizations of 

inflation values, when these were not available, is that Models 1, 3, 4, 6, 7, 

and 9 are not truly real-time models, rather, these can be considered as 

“quasi” real-time models.  In our forecasting exercise, we employ two 

straightforward pooling procedures.  First, forecasts are constructed by taking 

the median forecast value from models that use real-time data, that is, models 

1, 3, 4, 6, 7, and 9; we call this Model 11.  Second, we use the median 

forecast from models that use final data, that is, models 2, 5, and 8; we call 

this Model 12.  Our twelve models are summarised in Table 1.  

 

We estimate over expanding windows of data, where the first data window 

runs from 1999:M1 to 2005:M12, and each successive data window is 

extended by one observation, hence, the last data window runs from 1999:M1 

to 2008:M6 (this setup delivers 31 expanding windows).  From a policy point 

of view, this allows us to identify the evolution of the estimated model 

parameters over time and across regimes.  For forecasting purposes, we 

generate out-of-sample forecasts for the Eurozone interest rate at forecast 

horizons h=1,…,12. 5 We use sequences of expanding windows in which the 

sample size for estimation is increased by one observation in each successive 

window, as opposed to sequences of fixed-length rolling windows, simply 

                                                 
4 The ECB website (http://www.ecb.int/stats/prices/indic/forecast/html/index.en.html) provides 
inflation forecasts from the Survey of Professional Forecasters (SPF) on a quarterly basis up 
to 5 years ahead; to overcome this we assumed a constant inflation forecast for each month 
within the same quarter.  Empirical results using these inflation forecasts were very 
unsatisfactory both on economic and statistical grounds.  
5 Our setup delivers 30 one-step ahead interest rate forecasts, 29 two-step ahead forecasts 
and so on, up to 19 twelve-step ahead forecasts.  This is because we replace 12t tE +π  by 
actual values of inflation in our estimated models.  
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because the larger (increasing) windows help the estimation procedures for 

the various models which can be quite parameter intensive; this is arguably 

more so for the semiparametric models that partly use local averaging and 

therefore require a large number of data-points. 6 For robustness reasons, 

however, our forecasting exercise also reports results based on a sequence 

of fixed-length rolling windows where each successive window is constructed 

by shifting the preceding window ahead by one observation.  

 

4. In-sample analysis 
To fix ideas, Table 2 reports estimates of the Taylor rule models 1 to 6 over 

the first data window, which runs from 1999:M1 to 2005:M12.  In all cases, 

and in line with previous literature (see e.g. Castro, 2008 and Gerdesmeier 

and Roffia, 2005), the inflation ( πρ ) and output gap ( yρ ) effects are 

statistically significant.  For all models, the inflation effect πρ  is higher than 

one, satisfying the “Taylor principle” that inflation increases trigger an increase 

in the real interest rate.  Model 1, which uses real-time industrial production 

and inflation data, records much stronger inflation and output gap effects 

compared to Model 2 (which uses revised data); a possible explanation is that 

the magnitude of the response using revised data could suffer from downward 

bias owing to the errors-in-variables problem.  The output gap effect is lower, 

but nevertheless significant, when the economic sentiment measure is 

considered (see Model 3). All linear models record a statistically significant 

response to the financial index ( fρ ); in all cases, a one standard deviation 

increase in the index relative to its mean triggers an interest rate increase in 

excess of one percentage point; the impact, as with the inflation and output 

gap ones, is higher for real-time Model 1.   

 

                                                 
6 On the expanding window versus fixed-length rolling window issue we note that according to 
Stock and Watson (2005, p. 26), “recursive forecasts are more accurate than the rolling 
forecasts” for the representative macroeconomic dataset they study.  On the other hand, 
however, Giacomini and White (2006, p. 1566) find that a “rolling window procedure can 
result in substantial forecast accuracy gains relative to an expanding window for important 
economic time series.” 



 
13

 
 
 

An estimate of the inflation target is derived as * 0î

π

ρπ
ρ
−= , where we rely on 

the sample mean of the interest rate (this is equal to 3.04%) as a proxy for the 

equilibrium nominal interest rate î .  From Table 2, all linear Models 1 to 3 

deliver an implied target of approximately *π =2%, which is consistent with 

ECB’s aim of keeping inflation below but close to this very figure. 

 

For linear Models 1 to 3, the last three rows of Table 2 report the p-value of 

Hamilton’s (2001) λ-test, and the p-values of the λA and g-tests proposed by 

Dahl and González-Rivera (2003).  Under the null hypothesis of linearity, 

these are Lagrange Multiplier test statistics following the χ2 distribution 7.  

These tests are powerful in detecting non-linear regime-switching behavior 

like the one considered by Models 4 to 6.  All three tests reject linearity. 

 

From Table 2, Models 4 to 6 report time-varying inflation, output gap and 

financial index effects depending on whether inflation is higher or lower than 

an inflation threshold; the latter is estimated at τ =2%, which is again 

consistent with ECB’s policy goal.  The smoothness parameter πγ  has an 

estimated value of 10, indicating a rather abrupt switch from one regime to 

another.  For Models 4 and 5 (but not for Model 6) we estimate that 1 2π πρ ρ< ; 

hence, there is some weak evidence of a deflation bias to monetary policy as 

the response to inflation is larger when inflation exceeds 2%.  In contrast to 

revised-data Model 5, Models 4 and 6 estimate that 1 2y yρ ρ< , that is, a 

stronger response to the output gap when inflation exceeds the 2% threshold; 

for these models, the output response is insignificant at low inflation rates.  

 

All three nonlinear models estimate that 1 2f fρ ρ< , that is, a much stronger 

response to the financial conditions index when inflation rises above the 2% 

threshold.  Noting that inflation is positively correlated with the financial 

conditions index (with a correlation coefficient of 0.43), we shed more light on 

                                                 
7 We run the tests using Gauss codes obtained from Hamilton’s web page at: 
http://weber.ucsd.edu/~jhamilto/software.htm#other. To account for the small sample, we 
report bootstrapped p-values of the three tests based on 1000 re-samples. 
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their possible link by estimating a Vector Autoregressive (VAR) system of 

order 2 (the lag length is chosen by the AIC criterion) in inflation and financial 

conditions index, and then apply Granger-causality tests (Granger, 1969).  

These tests indicate causality from the financial conditions index to inflation 

(the F-test for testing the null of no causality delivers a p-value=0.01) and no 

evidence of causality from inflation to the financial conditions index (the F-test 

for testing the null of no causality delivers a p-value=0.35). 8 Hence, a 

plausible explanation for the stronger response of monetary policy to the 

financial index at rising inflation rates is that booming financial conditions 

trigger an increase in inflationary pressures.   

 

We have also attempted linear and nonlinear versions of Models 1 to 6 that 

exclude the financial index variable.  In statistical terms, these models 

performed very poorly compared to the models reported here.  We therefore 

conclude that the ECB pays close attention to financial conditions when 

setting the Eurozone interest rate; moreover, the response to the financial 

index depends on the state of inflation. 

 

There is very little to discriminate amongst the estimated Taylor rule models in 

terms of the adjusted R2 and the regression standard error.  Model 3 (with 

real-time data and the economic sentiment variable) records the lowest 

Akaike Information Criterion (AIC).  Amongst the estimated nonlinear models, 

Model 6 (i.e. the nonlinear version of Model 3) has the best in-sample fit as it 

records the lowest AIC.  Figure 2 plots the recursive AIC values for all models 

over expanding windows; Model 3 and Model 6 report lower values than the 

remaining models; however the estimated models (including Models 3 and 6) 

have overlapping AIC values suggesting that it is hard to distinguish amongst 

these models within sample.  Notice also that the in-sample fit of Model 6 

improves considerably as we move into the financial crisis period.  Within 

sample we would expect the fit of such alternative models to be barely 

distinguishable, given the high correlations between the interest rate and its 

lags.  However, the key distinguishing feature amongst linear and nonlinear 
                                                 
8 Granger-causality test results using real-time inflation rather than inflation are qualitatively 
similar. 
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models lies in their forecast implications, namely that the equilibrium to which 

the reaction function returns depends on the size of the shocks/inflation 

states.  For the nonlinear model, small shocks/low inflation do not alter the 

central bank’s reaction function.  However, at a low interest rate, large positive 

shocks to inflation drive the interest rate to a high level consistent with the 

higher regime reaction function, while at a high interest rate, negative inflation 

shocks, drive it back to a low interest rate.  A linear Taylor type rule model will 

forecast the interest rate to stay roughly where it is if non-stationary; or, if 

stationary, to revert to some deterministic equilibrium.  Thus the forecast 

implications of linear as opposed to nonlinear models are quite different.  We 

keep this in mind when forecasting out-of-sample in section 5 below.  

 

To get an idea of how the response parameters πρ , yρ , and fρ  evolve over 

time, Figure 3 plots their recursive estimates (plus/minus 2*standard errors) 

over expanding data windows for Model 3 which has the best in-sample fit 

amongst all models.  Figure 4 plots recursive estimates (plus/minus 

2*standard errors) of the response parameters jπρ , jyρ , jfρ  (j=1,2) for Model 

6 which has the second-best in-sample fit amongst all models and the best in-

sample fit amongst nonlinear models.  We also note that recursive plots of the 

remaining models are qualitative similar to the ones reported below. 
 

From Figure 3, the inflation response is relatively stable until late 2006 after 

which it drops sharply and rises again from late 2007 onwards.  The response 

to the output gap is relatively stable; it rises in late 2006 and then reverts 

slowly towards its earlier values.  The response to the financial index remains 

relatively stable until late 2007, after which it drops slightly.  Overall, and 

compared to the output gap and financial index responses, the inflation 

response is markedly unstable and statistically insignificant during the 

financial crisis period; at the same time, the increasingly turbulent period has 

somewhat widened the confidence intervals of all response estimates.  Notice 

also that the timing of the sharp drop in the inflation response coincides with 

that of the rise in the output gap response.  A tentative economic 

interpretation (bearing in mind the issue of instability) is that from early 2007, 
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ECB monetary policy shifted its focus from inflation to output stabilisation, 

while responding to financial conditions in a relatively consistent manner.  We 

return to this issue shortly. 

 

Figure 4 plots the recursively estimated response coefficients 1πρ , 1yρ , 1 fρ , 

2πρ , 2 yρ , and 2 fρ  for nonlinear Model 6.  In this model, the policy response 

switches from 1πρ , 1yρ  and 1 fρ  to 2πρ , 2 yρ  and 2 fρ , respectively depending 

on whether expected inflation is below or above the 2% threshold. 9 The 

recursively estimated inflation coefficients 1πρ  and 2πρ  are fairly similar 

suggesting neither deflationary nor inflationary bias in ECB monetary policy.  

From early 2007 onwards and as we move into the financial crisis period, the 

policy response to inflation becomes smaller and largely insignificant.  The 

response to the output gap at low inflation rates is lower than the output gap 

response at high inflation rates (i.e. 1 2y yρ ρ< ).  The former response is 

insignificant at the earlier part of the sample, but becomes significant as the 

financial crisis progresses and takes it toll on the economy; at the same time, 

monetary policy becomes more responsive to output gap fluctuations 

irrespectively of the inflation state.  The financial index response above the 

2% inflation threshold is three times as large as the response below (i.e. 

1 2f fρ ρ< ) prior to the financial crisis.  As the financial crisis unfolds at the 

peak of forecasted inflation around mid 2007 and gains pace even with 

inflation falling, stabilisation of the financial conditions becomes equally 

important irrespectively of the state of inflation; indeed, the response to the 

financial index emerges the same by the end of our sample.  Our nonlinear 

estimates therefore indicate that ECB policymakers used notable discretion 

post 2006 as the financial crisis saw a shift from inflation targeting to output 

stabilisation and a shift, from an asymmetric policy response to financial 

conditions at high inflation rates, to a more symmetric response irrespectively 

of the state of inflation; however, these results should be read with some 

                                                 
9 The recursively estimated values of the inflation threshold and the smoothness parameter 
are remarkably similar to those reported in Table 2. 
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caution as the confidence intervals of the recursive nonlinear responses get 

relatively wider with the financial crisis unfolding. 

 

5. Forecasting analysis 
5.1. Methodological issues 
Generating dynamic out-of-sample forecasts from nonlinear models is more 

complicated compared with generating forecasts from linear models as the 

expected value of a nonlinear function is different from the function evaluated 

at the expected value of its argument (see, e.g., Granger and Teräsvirta 1993, 

and Franses and van Dijk 2000, among others).  We tackle this issue by 

adopting at each step of our forecasting exercise a bootstrap method where 

errors used at step h (h >1) are the average errors obtained from simulating 

the nonlinear model at step h one thousand times.  

 

Forecasting performance is evaluated using the Mean Squared Prediction 

Error (MSPE) and Median Squared Prediction Error (MedSPE) criteria.  To 

compare alternative forecasts, we employ the Diebold and Mariano (1995) 

test.  This is computed by weighting the forecast loss differentials between 

two competing models i and j equally, where the loss differential for 

observation t is given by ( ) ( )| |   – t it t h jt t hd g e g e− −
⎡ ⎤≡ ⎣ ⎦ , where g (.) is a general 

function of forecast errors (e.g. MSPE or MedSPE).  The null hypothesis of 

equal accuracy of the forecasts of two competing models, can be expressed 

in terms of their corresponding loss functions, ( ) ( )| |E   Eit t h jt t hg e g e− −
⎡ ⎤⎡ ⎤=⎣ ⎦ ⎣ ⎦ , or 

equivalently, in terms of their loss differential, [ ]E   0td = .  Let ∑
−++

+=

=
11 hPR

hRt
td

P
d  

denote the sample mean loss differential over t observations, such that there 

are P out-of-sample point forecasts and R observations have been used for 

estimation. The Diebold-Mariano test statistic follows asymptotically the 

standard normal distribution: 
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where N (.) is the normal distribution and )0(ˆ
df  is a consistent estimate of the 

spectral density of the loss differential at frequency 0.  To counteract the 

tendency of the DM test statistic to reject the null too often when it is true in 

cases where the forecast errors are not bivariate normal, Harvey et al (1997) 

propose a modified Diebold-Mariano test statistic: 

(8) ( )1

2/11
* )1(21

−

−

⎯→⎯⎥
⎦

⎤
⎢
⎣

⎡ −+−+= P
d tDM

P
hhPhPDM , 

 

where DM is the original Diebold and Mariano (1995) test statistic for h-step 

ahead forecasts and t(P – 1) refers to the Student’s t distribution with P – 1 

degrees of freedom. 

 

Recently, van Dijk and Franses (2003) argued that the uniform weighting 

scheme employed by the DM and DM* tests may be unsatisfactory for 

frequently encountered situations in which some observations are more 

important than others. For example, in an interest rate forecasting exercise, 

large interest rate observations, ti , generally signal periods of high inflation.  

van Dijk and Franses (2003) modify the test statistic by weighting more 

heavily the loss differentials for observations that are deemed to be of greater 

substantive interest.  In their approach, the weighted mean loss differential is 

given by ∑
−++

+=

ω=
1

)(1 hPR

hRt
ttw dw

P
d , where tω  is the information set available at time 

t.  In the case of interest rates, two cases of particular interest are: 

(9) ( ) ( )LT   1 –  t tw iω = Φ , 

 

where ( ) tiΦ  is the cumulative distribution function of ti , to focus on the left 

tail of the distribution of ti , and: 

(10) ( ) ( )RT   t tw iω = Φ ,  

 

to focus on the right tail of the distribution of ti .  The weighted DM statistic is 

computed as: 
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(11) 
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where )0(d̂wf  is a consistent estimate of the spectral density of the loss 

differential at frequency 0. The weighted DM* test statistic is given by: 

(12) DMW
P

hhPhPDMW −⎥
⎦

⎤
⎢
⎣

⎡ −+−+=−
− 2/11

* )1(21 . 

 

van Dijk and Franses (2003) propose using the Student's t distribution with 

P – 1 degrees of freedom to obtain critical values for the W–DM* test.   

 

In our forecasting exercise, the left-tailed W-DM* statistic focuses on the 

ability of the competing models to forecast small interest rate values, which is 

generally interpreted as evidence of periods of low inflation.  On the other 

hand, the right-tailed W-DM* statistic focuses on the ability to forecast large 

interest rate values, which is generally interpreted as evidence of periods of 

high inflation.  It should be noted that the literature has challenged DM-type 

statistics in two aspects.  First, West (1996, 2001) and West and McCracken 

(1998) analyzed modification of forecast comparison tests in light of the use of 

estimated model parameters in the computation of such tests.  However, van 

Dijk and Franses (2003) pointed out, that for DM-type tests under quadratic 

loss, such parameter estimation uncertainty is asymptotically irrelevant.  van 

Dijk and Franses (2003) went on to argue that corrections of the type 

suggested by West (1996, 2001) and West and McCracken (1998) are not 

necessary when examining the statistical significance of MSPE reductions 

(which is precisely what we are doing in the current paper).  Second, under 

the assumption that the estimation sample size R and the number of out-of-

sample forecasts P tend to infinity, McCracken (2000) and Clark and 

McCracken (2001) showed that, if the underlying forecasting models are 

nested, the asymptotic distribution of the DM statistic is not standard normal.  

van Dijk and Franses (2003) noted that these conditions on the parameters R 

and P effectively mean that expanding windows of data are used for 
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estimation.  On the other hand, when R remains finite, as in the case of fixed-

length rolling estimation windows, Giacomini and White (2006) showed that 

the asymptotic distribution of the DM statistic is still standard normal when 

forecasts are compared from nested models.   

 

5.2. Out-of-sample forecasting comparisons 
Columns (i)-(ii) of Table 3 present the average out-of-sample forecasting 

rankings across the recursive windows and twelve forecast horizons of the 

twelve models according to two evaluation criteria, the mean squared 

prediction error (MSPE) and the median squared prediction error (MedSPE); 

“better” or “higher ranked” forecasting methods have “lower” numerical ranks.  

In examining the average rank results of Table 3, it is useful to note that if the 

average rank of Model i is higher than the average rank of Model j according 

to either the MSPE or the MedSPE, then Model i outperforms Model j 

according to the particular criterion for more than 50% of the forecast 

horizons, that is, for at least seven out of the twelve forecast horizons used. 

 

The key result is that the three semiparametric models 7, 8, and 9 are ranked 

higher than any other model according to both the MSPE and the MedSPE, 

with Model 8, the semiparametric model with final data, being the top-ranked 

forecasting model (Model 8 forecasts at least as well as semiparametric 

Model 7 according to the MedSPE).  The AR model is ranked fourth whereas 

Model 11, which pools forecasts from all models with real-time data, is ranked 

fifth.  According to the MSPE, nonlinear Models 4, 5, and 6 are ranked higher 

than the corresponding linear Models 1, 2, and 3, respectively, with nonlinear 

Model 4 (which uses real-time inflation and real-time industrial production 

data) ranked higher than the remaining linear and nonlinear Taylor rule 

models.  According to the MedSPE, Models 4 and 1 have the same average 

rank).  Models 3 and 6, the models with the best in-sample fit amongst all 

linear and nonlinear policy rules, have very low out-of-sample forecasting 

ability compared to the remaining models.  According to the MSPE, Models 3 

and 6 are ranked ninth and eighth, respectively; according to the MedSPE, 

these are ranked eleventh and ninth, respectively.   
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Our modified Diebold-Mariano (DM*) test results appear in Table 4.  These 

examine the statistical significance of MSPE reductions with uniform weight 

placed on forecast losses.  Left-tailed and right-tailed W-DM* tests in Tables 5 

and 6 examine the statistical significance of MSPE reductions with greater 

weight placed on forecast losses associated with, respectively, low interest 

rate values and large interest rate values.  Recalling that Model 8 is ranked 

first, we see that its forecasting superiority over the remaining models is much 

stronger when it comes to predicting large interest rate values.  Indeed, as we 

move from left-tail weighting to right-tail weighting, Model 8 increases its 

forecasting dominance over seven models (that is, Models 1,3,4,9,10,11, and 

12) and reduces its forecasting dominance over only two models (that is, 

Models 2 and 5).  As we move from uniform weighting to right-tail weighting, 

Model 8 increases its forecasting dominance over five models (that is, Models 

1,9,10,11, and 12) and reduces its forecasting dominance over only two 

models (that is, Models 2 and 5).  This observation is most striking by 

comparing Model 8 with Model 10 (the AR model).  Model 8 generates 

significant MSPE reductions, at the 10% significance level, relative to the AR 

model (Model 10) at 8.3% of the forecast horizons with left-tail weighting (see 

Table 5) and at 66.7% of the forecast horizons with uniform weighting (see 

Table 4).  With greater weight given to large interest rate values, however, 

Model 8 generates significant MSPE reductions relative to the AR model at 

75% of the forecast horizons (see Table 6).   

 

Model 10 (the AR model) is the only model to deliver a statistically lower 

MSPE relative to the top-ranked Model 8.  In particular, the MSPE of Model 

10 is significantly lower, at the 10% significance level, than the MSPE of 

Model 8 at 8.3% of the forecast horizons; investigation of these results at the 

individual forecast steps reveals this significant MSPE reduction occurs at h=1 

step, that is, at the very short term.  This is the case with all uniform, left-tail, 

and right-tail weightings placed on the forecast loss differentials.  Model 11, 

which pools forecasts from models with real-time data, generates significant 

MSPE reductions relative to Model 12 (which pools forecasts from models 

with final data) at 16.7% of the forecast horizons with right-tail weighting (see 

Table 6).  When it comes to predicting low interest rates, however (i.e. with 
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left-tail weighting), its ability to forecast better than Model 12 increases to 

83.3% of the forecast horizons (see Table 5). 

 

To sum up, our forecasting results show that semiparametric models are 

flexible enough to forecast better than any other linear or nonlinear Taylor rule 

model; semiparametric model forecasts are also superior to pooled forecasts.  

Semiparametric model 8, which uses final data, forecasts better (based on the 

MSPE) or at least as well (based on the MedSPE) as semiparametric Model 7 

(which uses real-time data) and better than any other model.  This is more so 

during periods of high inflation rates (associated with large interest rate 

values).  The relative forecasting superiority of models that use final as 

opposed to real-time data is not uncommon; for instance, Orphanides and van 

Norden (2005) report similar findings in forecasting the relationship between 

inflation and the output gap in the US.  The forecasting superiority of 

semiparametric Model 8 with final data might be due to the revision process; 

real-time data might be subject to "noise" that degrades the accuracy of their 

out-of-sample forecasts relative to those obtained with final data.   

 

We have also tried other pooled forecasts, such as pooled forecasts from all 

Taylor rule models (Models 1 through 6) and pooled forecasts from all models 

(Models 1 through 10).  None of these forecasts was ranked any higher than 

the pooled forecasts reported in the paper.  

 

In the interest of robustness, columns (iii)-(iv) of Table 3 report our forecasting 

rankings based on sequences of fixed-length rolling windows.  According to 

the MSPE criterion, semiparametric Model 9 is the top-ranked model followed 

by Model 10 (the AR model) and then by Model 11 (the model that pools 

forecasts from models with real-time data).  According to the MedSPE 

criterion, semiparametric models 7, 9, and 8 are ranked, first, second, and 

third, respectively.  Therefore, rolling estimates confirm to some extent the 

forecasting superiority of semiparametric models based on the sequence of 

expanding windows discussed above.   
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6. Conclusions 
In this paper we explore how the ECB sets interest rates in the context of 

Taylor-type policy reaction functions.  We consider both linear and nonlinear 

policy functions in inflation, output and a measure of financial conditions.  

Using both real-time and revised information, we assess policy both in-sample 

and out-of sample.  We find that amongst Taylor rule models, linear and 

nonlinear models are empirically indistinguishable within sample and that 

model specifications with real-time data provide the best description of in-

sample ECB interest rate setting behavior.   We also find that ECB policy-

makers pay close attention to the financial conditions index when setting 

interest rates.  In addition, the response of monetary policy to the financial 

conditions index depends on the state of inflation; the response increases 

when inflation is rising.  A plausible explanation is that booming financial 

conditions trigger an increase in inflationary pressures.  On the other, hand, 

the 2007-2009 financial crisis witnesses a shift from inflation targeting to 

output stabilisation and a shift, from an asymmetric policy response to 

financial conditions at high inflation rates, to a more symmetric response 

irrespectively of the state of inflation.  Finally, semiparametric models, that 

relax the assumption of a Taylor rule specification and the restriction of a 

parametric structure on the reaction of monetary policy to observable 

economic variables, are flexible enough to forecast out-of-sample better than 

any linear or nonlinear Taylor rule model.  This could help in some way to 

design new nonlinear parametric models to reflect the importance of such 

determinants. 

 

The response of ECB policy-makers to financial conditions arguably has 

important policy implications as it might shed some light on why the current 

downturn in the Eurozone area is less severe than in the US where financial 

conditions do not feature in the Federal Reserve Bank’s reaction function.  

According to OECD calculations, annual US real output gap dropped from 

0.7% in 2007 to -0.4% in 2008 and is expected to drop to -3.6% in 2009 and 

to -4.2% in 2010.  On the other hand, annual real GDP output gap in the 

Eurozone area dropped from 0.8% in 2007 to -0.1% in 2008 and is expected 
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to drop to -2.4% in 2009 and to -3.1% in 2010. 10  Although the Eurozone 

economic structure is less flexible than the US one, therefore providing more 

protection against bad economic outcomes (Trichet, 2009), targeting financial 

conditions might also be an additional reason.  Our results offer some 

preliminary support to this argument.  To further assess the importance of 

targeting financial conditions for economic stability, a more detailed study 

would allow (both in-sample and out-of-sample) for linear and regime 

switching behavior in joint estimates of the policy rate, aggregate supply and 

aggregate demand equations within a structural Vector Autoregressive (VAR) 

system in the interest rate, inflation, output gap and the financial index.  We 

intend to extend our work to this very direction.  Further, it would be 

interesting to estimate our model using data for different Central Banks in 

order to investigate the ability of linear, nonlinear and semiparametric models 

to predict in-sample and out-of-sample fluctuations in interest rates.  It would 

also be interesting to investigate the robustness of our results with respect to 

the construction and evaluation of both interval and density forecasts; the use 

of interval and density forecasts may show improved forecasting performance 

for nonlinear models (Clements and Hendry, 1999).  We note, however, the 

simulation results in Clements et al (2003) which suggest that the Diebold and 

Mariano test is in fact more powerful than interval and density forecast-based 

tests in discriminating between linear and nonlinear models.  We intend to 

address these issues in future research. 
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Table 1: Model definitions  
1 { }1 1 1 0 12 1(1 ) _t t t t y t f t ti i E y fin index− + −= + − + + + +πρ ρ ρ ρ π ρ ρ ε  

Linear model: It uses real-time inflation and real-time industrial production.  
2 { }1 1 1 0 12 1(1 ) _t t t t y t f t ti i E y fin index− + −= + − + + + +πρ ρ ρ ρ π ρ ρ ε  

Linear model: It uses final inflation and final industrial production. 
3 { }1 1 1 0 12 1(1 ) _t t t t y t f t ti i E y fin index− + −= + − + + + +πρ ρ ρ ρ π ρ ρ ε  

Linear model: It uses real-time inflation and economic sentiment.  
4 

1 1 1 0 12 1 12 2(1 ){ ( ; , ) (1 ( ; , )) }t tt t t t t t t t ti i E M E Mπ ππ πθ θρ ρ ρ π γ τ π γ τ ε− + += + − + + − +  

where 12 1_jt j t t jy t jf tM E y fin index+ −= + +πρ π ρ ρ  for j=1,2 and 12t tE π +  is the 
transition variable.   
Nonlinear logistic model: It uses real-time inflation and real-time industrial 
production. 

5 
1 1 1 0 12 1 12 2(1 ){ ( ; , ) (1 ( ; , )) }t tt t t t t t t t ti i E M E Mπ ππ πθ θρ ρ ρ π γ τ π γ τ ε− + += + − + + − +  

where 12 1_jt j t t jy t jf tM E y fin index+ −= + +πρ π ρ ρ  for j=1,2 and 12t tE π +  is the 
transition variable.   
Nonlinear logistic model: It uses final inflation and final industrial production. 

6 
1 1 1 0 12 1 12 2(1 ){ ( ; , ) (1 ( ; , )) }t tt t t t t t t t ti i E M E Mπ ππ πθ θρ ρ ρ π γ τ π γ τ ε− + += + − + + − +  

where 12 1_jt j t t jy t jf tM E y fin index+ −= + +πρ π ρ ρ  for j=1,2 and 12t tE π +  is the 
transition variable.   
Nonlinear logistic model: It uses It uses real-time inflation and economic 
sentiment.  

7 1 12 1( ) ( , , _ )t i t t t t t ti L i f E y fin indexρ π ε− + −= + +  
Semiparametric model: It uses real-time inflation and real-time industrial 
production.  

8 1 12 1( ) ( , , _ )t i t t t t t ti L i f E y fin indexρ π ε− + −= + +  
Semiparametric model: It uses final inflation and final industrial production.  

9 1 12 1( ) ( , , _ )t i t t t t t ti L i f E y fin indexρ π ε− + −= + +  
Semiparametric model: It uses real-time inflation and economic sentiment. 

10 
0 1 1 2 2 3 3 4 4t t t t t ti i i i iρ ρ ρ ρ ρ ε− − − −= + + + + +  

Linear Autoregressive model (AR) of order 4. 
11 Median forecast from models with real-time data, that is, models 1, 3, 4, 6, 7, 

and 9. 
12 Median forecast from models with final data, that is, models 2, 5, and 8. 
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Table 3: Average out-of-sample forecasting ranks 

Model i (i) 
MSPE 
rank 
(recursive 
estimates) 

(ii) 
MedSPE 
rank 
(recursive 
estimates) 

(iii) 
MSPE rank 
(rolling 
estimates) 

(iv) 
MedSPE 
rank 
(rolling 
estimates)

     
1   6.8   7.3   6.2   7.6 
2 11.5 10.8 11.2 11.3 
3   9.1   9.8   8.6   9.5 
4   6.2   7.3   4.8   5.5 
5 10.8   9.5 10.7   9.8 
6   8.0   9.1   7.5   8.9 
7   2.6   1.8   5.0   1.5 
8   2.2   1.8   6.5   3.7 
9   2.8   3.4   1.8   2.3 
10   3.4   3.6   2.9   3.9 
11   5.3   6.3   4.7   5.4 
12   9.4   7.4   8.3   8.7 
Notes: Columns (i)-(ii) report the average out-of-sample forecasting ranks of Model i across 
the recursive windows and forecasting horizons h=1,…,12, using the Mean Squared 
Prediction Error (MSPE) and Median Squared Prediction Error (MedSPE) criteria. Columns 
(iii)-(iv) do the same for rolling windows.  See Table 1 for the forecasting model definitions. 
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Figure 1: Interest rate, inflation, output gap measures and the financial index 

a) Interest rate and inflation measures 
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b) Output gap measures  
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c) Financial conditions index 
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Figure 2: Recursive Akaike Information Criterion (AIC) values, Models 1 to 6. 
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Figure 3: Recursive inflation, output gap, and financial index coefficients, Model 3 

a) Inflation coefficient πρ  
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b) Output gap coefficient yρ  (economic sentiment measure) 
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c) Financial conditions index coefficient fρ  
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Figure 4: Recursive inflation, output gap, and financial index coefficients, Model 6 
a) Inflation coefficients 1πρ  and 2πρ  

1πρ       2πρ  
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b) Output gap coefficients 1yρ  and 2 yρ  (economic sentiment measure) 
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c) Financial conditions index coefficients 1 fρ  and 2 fρ  
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