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1 Introduction

Closed-form solutions for European options on pure discount bonds and on discount
bond portfolios have been established in a classical option-pricing framework by Jam-

shidian (1989). Using Vasicek’s (1977) mean-reverting Gaussian interest-rate model
and assuming that the term structure is completely determined by the value of the
instantaneous interest rate, the author derives a closed-form Black-Scholes-type pric-

ing formula. In this paper we leave this classical option-pricing framework and mod-
ify Jamshidian’s (1989) results by taking into account that a country’s interest-rate

dynamics—which is relevant to option-pricing—may be closely linked to the interest
rates of the partner countries via the current exchange-rate system.

Two alternative exchange-rate arrangements under which the interest rates of the

countries involved are intimately connected to each other are well-documented in the
economic literature. The first arrangement is a so-called exchange-rate target zone as

introduced by Krugman (1991). The dynamic interrelationships between the partic-
ipating countries’ interest rates (of arbitrary terms) are derived in Svensson (1991a,
1991b). The second exchange-rate arrangement is represented by the time period prior
to the fixing of a currently floating exchange rate on a given future date at a publicly

announced fixing parity. In a stylized model, Wilfling (2003) derives the term struc-
ture of the bilateral interest-rate differentials under such an exchange-rate regime thus
providing dynamic equations for the link governing the interest rates in both countries.

Owing to its political topicality, this paper focusses on the second of the just-

mentioned exchange-rate regimes. In practice, the introduction of a common currency
is typically initiated by a switch in exchange-rate system from (more or less) float-

ing exchange rates to completely fixed rates. For example, the introduction of the
euro among the member countries of the European Monetary Union (EMU) was im-

plemented by the irreversible fixing of the EMU countries’ bilateral exchange rates at
their respective central parities from the European Exchange Rate Mechanism (ERM)
from 1 January 1999 onwards. Since then, the same exchange-rate fixing procedure has

been applied to all later EMU entrants and it is very likely that future EMU accession

countries will also enter the currency union at conversion rates equal to their ERM
central parities vis-à-vis the euro.

Up to date, the EMU consists of 16 countries including the large economies of
France, Germany, Italy and Spain. There are, however, several other major European
economies that have not yet become EMU members, but are likely to adopt the euro

in the future (like Poland, Sweden and the UK). It is the financial market participants

operating in these future EMU accession countries to whom our closed-form formulas
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for zero-coupon bond options established below should be of particular relevance.
The remainder of the paper is organized as follows. Section 2 reviews some previous

results on exchange-rate dynamics and on international interest-rate differentials in the
run-up to a currency union. Based on these results we derive the interest-rate dynamics

crucial to our option-pricing problem. In Section 3 we first value zero-coupon bonds
under the new interest-rate dynamics and then value European call options on these
pure discount bonds. In Section 4 we conduct a Monte-Carlo simulation study in order

to assess the validity of our option-pricing formula. Section 5 offers some concluding
comments.

2 Previous results on exchange-rate and interest-
rate dynamics

In what follows we consider a world with two open economies under perfect capital
mobility and assume the domestic economy to be small. In this general setting, let

the political authorities of the two economies decide to create a currency union in the

future. On the analogy of Stage III of EMU, the authorities therefore announce at date
tA to irreversibly fix the exchange rate from the future date tS onwards (i.e. tA < tS)
at the specific exchange-rate parity s.

The exchange-rate dynamics under such a time-contingent switch in exchange-rate
regime has been characterized in the literature by various authors on the basis of
the well-known monetary exchange-rate model with flexible prices (see, among oth-
ers, Sutherland, 1995; De Grauwe et al., 1999; Wilfling and Maennig, 2001). In this

continuous-time equilibrium model with rational expectations, the logarithmic spot ex-
change rate at time t, x(t), equals the sum of two components: (a) an exogenously given

’macroeconomic fundamental variable’ k(t), and (b) a speculative term representing the
expected (instantaneous) rate of change in the nominal exchange rate:

x(t) = k(t) + α · E[dx(t)|φt]
dt

, α > 0. (1)

In Eq. (1), E[·|φt] denotes the expectation operator conditional on the information

set φt which contains all information available to market participants at time t. The

parameter α represents the semi-elasticity of money demand with respect to the in-

stantaneous interest rate. Alternatively, α may simply be interpreted as a parameter
weighting the fundamental component against the speculative motives for currency
valuation.
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In the monetary flex-price model the fundamental k(t) represents an aggregate of
given macroeconomic variables (such as the domestic and foreign money supplies and
outputs) as well as stochastic shocks to money demand. Via the domestic and foreign
money supplies k(t) is under direct control of the two central banks involved and,
prior to the fixing-date tS, k(t) should follow an appropriate continuous-time stochastic
process. In this paper, we model the evolution of k(t) over time (up to tS) by a driftless

Brownian motion with stochastic differential representation

dk(t) = σ̃ · dW̄ (t), t < tS, (2)

with (constant) infinitesimal standard deviation σ̃ > 0 and dW̄ (t) the increment of
standard Wiener process. The driftless Brownian motion is particularly adequate when
modeling a situation in which the central banks refrain from intervening in the foreign
exchange market. Thus, modeling the fundamental k(t) as in Eq. (2) is consistent with
assuming a pure free-float exchange-rate regime prior to the currency union.1

Given the specification (2) of the fundamental process, the general law of exchange-
rate dynamics in Eq. (1) constitutes a stochastic differential equation. This can be
solved by standard techniques and the imposition of adequate economic constraints,

which appropriately reflect the anticipations of foreign exchange market participants

with regard to the entrance of both economies into the currency union on date tS at
the parity s. Ruling out currency-arbitrage opportunities at the moment of transition

into the currency union (i.e. imposing the condition limt→tS x(t) = s with probability
1) it is straightforward to check that the (bubble-free) solution to Eq. (1) is given by

x(t) =



















k(t) for t < tA

k(t) + e(t−tS)/α · [s− k(t)] for t ∈ [tA, tS)

s for t ≥ tS

. (3)

Next, we establish the interest-rate dynamics in the two economies by adopting

the model set-up presented in Wilfling (2003). Let P (t, T ) denote the price at time

t of a domestic zero-coupon bond maturing at time T , t ≤ T , with unit maturity

value P (T, T ) = 1 and define P ∗(t, T ) to be the analogous price of a foreign-currency

discount bond. Furthermore, let us denote the domestic and the foreign instantaneous
1More interventionist exchange-rate policies prior to the currency union can be modeled by speci-

fying alternative driving processes for the fundamental k(t). Sondermann et al. (2010), for example,
model (a) an exchange-rate system of managed floating and (b) a system of continuously increasing
interventionst activity towards the entrance into the currency union by letting the fundamental k(t)
follow an Ornstein-Uhlenbeck process and a scaled Brownian bridge, respectively.
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short rates at time t by r(t) and r∗(t), respectively, and suppose that the small domestic
economy cannot affect the foreign short rate by economic policy, but has to accept r∗(t)

as exogenously given. We further assume (a) perfect international capital mobility, and

(b) that international investors consider the domestic and the foreign discount bonds
as perfect substitutes. Under this scenario the following form of the uncovered interest

parity condition should hold among the instantaneous short rates at all points in time:2

SRD(t) ≡ r(t)− r∗(t) =
E[dx(t)|φt]

dt
. (4)

The exchange-rate path (3) plus the uncovered interest parity condition (4) now
allow us to represent the short-rate differential SRD(t) in closed form. To this end, we
apply Ito’s lemma to the exchange-rate path (3) which yields the stochastic differential
dx(t). After taking conditional expectations and dividing by dt we obtain the short-rate
differential during the run-up to the currency union:

SRD(t) = r(t)− r∗(t) =



















0 for t < tA

e(t−tS)/α · s− k(t)
α for t ∈ [tA, tS)

0 for t ≥ tS

. (5)

Finally, we follow Vasicek (1977) and let the exogenously given foreign short rate
r∗(t) evolve according to a mean-reverting Ornstein-Uhlenbeck process with stochastic
differential

dr∗(t) = b(c− r∗(t))dt + σdW1(t), (6)

where b, c, σ are positive constants and W1(t) denotes a standard Wiener process. Given

the initial value r∗0 ≡ r∗(0) the solution to Eq. (6) is known to be

r∗(t) = (r∗0 − c)e−bt + c + A(t) (7)

with A(t) defined as

A(t) ≡ σe−bt
∫ t

0
ebsdW1(s).

Inserting Eq. (7) into Eq. (5) and taking as given the initial value k0 ≡ k(0) for the
2We understand the uncovered interest parity as an equilibrium condition in the sense that the

foreign exchange market is in equilibrium when deposits of all currencies offer the same expected rate
of return (with respect to the country-specific short rates). This is (approximately) the case if the
short-rate differential equals the expected instantaneous rate of change in the exchange rate.
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fundamental process (2), we obtain the domestic short-rate process:

r(t) =



















(r∗0 − c)e−bt + c + A(t) for t < tA

(r∗0 − c)e−bt + c + A(t) + e(t−tS)/α · s− k0 − σ̃W̄ (t)
α for t ∈ [tA, tS)

(r∗0 − c)e−bt + c + A(t) for t ≥ tS

. (8)

In what follows we assume that the Wiener processes W̄ (t) and W1(t) from the Eqs. (2)
and (6) are interrelated by W̄ (t) = βW1(t)+

√

1− β2W2(t) with −1 ≤ β ≤ 1 and W2(t)
being an intermediary Wiener process independent of W1(t). Via this assumption, we

allow our driving Wiener processes W̄ (t) and W1(t) to be correlated with constant
correlation coefficient β (i.e. Corr[W̄ (t),W1(t)] = β for all t).

3 Bond and option valuation

For the purpose of bond and option valuation, we denote the (risk neutral) martingale

measure by Q. Following the well-established martingale modeling approach, we specify
our short-rate dynamics from Eq. (8) under Q.3 In Section 3.1 we first value zero-
coupon bonds under our Q-dynamics for the short rate and then proceed with the
pricing of zero-coupon bond options in Section 3.2.

3.1 Valuation of zero-coupon bonds

The price P (θ, T ) at time θ of a domestic zero-coupon bond maturing at time T is
given by the risk-neutral valuation formula

P (θ, T ) = EQ
[

e−
R T

θ r(t)dt|φθ

]

(9)

(see for example Björk, 2004, p. 322). To calculate this conditional expectation under
Q three distinct cases concerning the dates θ and T have to be distinguished:

Case 1: θ < tA or θ ≥ tS.

Case 2: tA ≤ θ < tS and T < tS.

Case 3: tA ≤ θ < tS and T ≥ tS.

Case 1 represents the following two extreme scenarios. (a) If θ < tA the prospective
currency union has not yet been announced so that financial market participants are
currently not aware of the future currency union. (b) If θ ≥ tS our two economies

3For alternative classical models of the Q-dynamics for the short rate r(t) see, among others,
Vasicek (1977), Cox et al. (1985), Ho and Lee (1986), Hull and White (1994).
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already live in the currency union. In contrast to these two scenarios, the Cases 2 and
3 represent a transitional setting (the so-called interim period) in that for tA ≤ θ <
tS the currency union has already been announced to financial market participants,
but has not yet been implemented. However, according to the Eqs. (3) and (5), the

mere announcement of entering a currency union in the future already affects today’s
exchange-rate as well as today’s domestic short-rate dynamics and, consequently, also
has an impact on today’s pricing of zero-coupon bonds. Moreover, as will become

evident below, the exact bond-pricing formula additionally hinges on the question of

whether the maturity date T lies before or after the start of the currency union (Case

2 or Case 3).
The calculation of the conditional expectation on the right-hand side of Eq. (9) re-

quires knowledge of the probability distribution of the short rate r(t). In view of Eq. (8)

it is straightforward to verify that {r(t)} is a Gaussian process and is thus completely

characterized in terms of its first and second moments. Setting the present date θ = 0
for ease of notation, we summarize the expectations, variances and covariances of {r(t)}
in the following lemma.

Lemma 3.1: The expectations, variances and covariances of the short-rate process
{r(t)} are given as follows:

(a) For t < tA we have

E[r(t)] = (r∗0 − c)e−bt + c,

Var[r(t)] =
σ2

2b
(1− e−2bt),

Cov[r(t), r(t′)] =
σ2

2b
e−b(t+t′)(e2b min{t,t′} − 1).

(b) For tA ≤ t, t′ < tS we have

E[r(t)] = (r∗0 − c)e−bt + c + e
t−tS

α
s− k0

α
,

Var[r(t)] =
σ2

2b
(1− e−2bt) +

σ̃2

α2 e
2t−2tS

α t

− 2β
σ̃σ

α
√

2b
e−bte

t−tS
α min{e2bt − 1, t},

Cov[r(t), r(t′)] =
σ2

2b
e−b(t+t′)(e2b min{t,t′} − 1) +

σ̃2

α2 e
t+t′−2tS

α min{t, t′}

− β
σ̃σ

α
√

2b
e−bt′e

t−tS
α min{e2bt′ − 1, t} − β

σ̃σ
α
√

2b
e−bte

t′−tS
α min{e2bt − 1, t′}.
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(c) For t ≥ tS we have

E[r(t)] = (r∗0 − c)e−bt + c,

Var[r(t)] =
σ2

2b
(1− e−2bt),

Cov[r(t), r(t′)] =
σ2

2b
e−b(t+t′)(e2b min{t,t′} − 1).

Next, we address the integral of the short rate r(t) appearing on the right-hand side
of Eq. (9). The following lemma provides helpful insight into the probabilistic nature

of this integral. Its proof is sketched in Elliot and Kopp (2005, p. 265).

Lemma 3.2: Let {X(t)} be a Gaussian process with continuous sample paths and
mean and covariance functions m(t) ≡ E[X(t)] and n(t, t′) ≡ Cov[X(t), X(t′)]. Then,
the process defined by

Z(t) ≡
∫ t

0
X(s)ds

is also a Gaussian process with mean and covariance functions given by
∫ t
0 m(s)ds and

∫ t
0

∫ t′

0 n(u, v)dudv, respectively.

Lemma 3.2 implies that the process defined by
∫ T
0 r(t)dt is a Gaussian process. Thus,

the random variable exp{−
∫ T
0 r(t)dt} appearing on the right-hand side of Eq. (9)

has a lognormal distribution the expectation of which is uniquely determined by the
expectation and the variance of

∫ T
0 r(t)dt. These latter moments follow from Lemma

3.2 and are compiled in the following lemma.

Lemma 3.3: For the three cases considered above the expectations and variances of
∫ T

0 r(t)dt are given as follows:

Case 1: For θ = 0 < tA or for θ = 0 ≥ tS we have

E
[∫ T

0
r(t)dt

]

= cT +
r∗0 − c

b
(1− e−bT ),

Var
[∫ T

0
r(t)dt

]

=
σ2

2b3 (2bT − 3 + 4e−bT − e−2bT ).
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Case 2: For tA ≤ θ = 0 < tS and T < tS we have

E
[∫ T

0
r(t)dt

]

= cT +
r∗0 − c

b
(1− e−bT ) + (s− k0)(e

T−tS
α − e

−tS
α ),

Var
[∫ T

0
r(t)dt

]

=
σ2

2b3 (2bT − 3 + 4e−bT − e−2bT ) +
σ̃2α
2

e
2T−2tS

α (2
T
α
− 3 + 4e−

T
α − e−2T

α )

− 2β
σ̃σ

α
√

2b
e−

tS
α

∫ T

0

∫ T

0
e

v
α e−bu min{e2bu − 1, v}dudv.

Case 3: For tA ≤ θ = 0 < tS and T > tS we have

E
[∫ T

0
r(t)dt

]

= cT +
r∗0 − c

b
(1− e−bT ) + (s− k0)(1− e

−tS
α ),

Var
[∫ T

0
r(t)dt

]

=
σ2

2b3 (2bT − 3 + 4e−bT − e−2bT ) +
σ̃2α
2

(2
tS
α
− 3 + 4e−

tS
α − e−2 tS

α )

− 2β
σ̃σ

α
√

2b
e−

tS
α

∫ tS

0

∫ T

0
e

v
α e−bu min{e2bu − 1, v}dudv.

Finally, we exploit the well-known result that for a normally distributed random
variable X ∼ N(µ, σ2) the transformed variable Y ≡ exp{−X} has a lognormal distri-
bution with expected value E(Y ) = exp{−µ + σ2/2}. Using this relationship, we are

able to calculate the expectation on the right-hand side of Eq. (9) and thus obtain our

bond-price formulas which we compile in the following proposition.

Proposition 3.4: In the run-up to a currency union the price P (θ, T ) at time θ = 0
of a domestic zero-coupon bond maturing at time T is given as follows:

Case 1: For θ = 0 < tA or for θ = 0 ≥ tS the bond price is given by

P (0, T ) = exp
{

−cT +
r∗0 − c

b
(e−bT − 1) +

σ2

4b3 (2bT − 3 + 4e−bT − e−2bT )
}

.

Case 2: For tA ≤ θ = 0 < tS and T < tS the bond price is given by

P (0, T ) = exp
{

−cT +
r∗0 − c

b
(e−bT − 1)− (s− k0)(e

T−tS
α − e

−tS
α )

+
σ2

4b3 (2bT − 3 + 4e−bT − e−2bT ) +
σ̃2α
4

e
2T−2tS

α (2
T
α
− 3 + 4e−

T
α − e−2 T

α )

− β
σ̃σ

α
√

2b
e−

tS
α

∫ T

0

∫ T

0
e

v
α e−bu min{e2bu − 1, v}dudv

}

.
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Case 3: For tA ≤ θ = 0 < tS and T ≥ tS the bond price is given by

P (0, T ) = exp
{

−cT +
r∗0 − c

b
(e−bT − 1)− (s− k0)(1− e

−tS
α )

+
σ2

4b3 (2bT − 3 + 4e−bT − e−2bT ) +
σ̃2α
4

(2
tS
α
− 3 + 4e−

tS
α − e−2 tS

α )

− β
σ̃σ

α
√

2b
e−

tS
α

∫ tS

0

∫ T

0
e

v
α e−bu min{e2bu − 1, v}dudv

}

.

3.2 Valuation of call options on zero-coupon bonds

We now consider a European call option on a zero-coupon bond with maturity date
T . Denoting the exercise date of the option by τ (τ < T ) and the option’s strike price
by K, we can write its contract function as max{P (τ, T )−K, 0} and the risk-neutral

valuation formula of the European call option is given by

C(0) = EQ
[

e−
R τ
0 r(t)dt ·max{P (τ, T )−K, 0}|φ0

]

, (10)

where again we have set the current date equal to 0 for ease of notation.
It is important to note here that the bond price P (τ, T ) constitutes a random variable

for all exercise dates τ > 0. Thus, the calculation of the expected value on the right-

hand side of Eq. (10) requires knowledge of the following three distributions:

(a) the distribution of
∫ τ
0 r(t)dt,

(b) the distribution of P (τ, T ),

(c) the joint distribution of
∫ τ
0 r(t)dt and P (τ, T ).

Since the normal distribution of
∫ τ

0 r(t)dt has already been characterized by Lemma
3.3, it remains to find the distributions of the random variable from item (b) and the
random vector from item (c). To this end, the following four cases concerning the dates
τ and T have to be distinguished:

Case (a): 0 < tA or 0 ≥ tS.

Case (b): tA ≤ 0 < τ < T < tS.
Case (c): tA ≤ 0 < τ < tS ≤ T .

Case (d): tA ≤ 0 < tS ≤ τ < T .

According to Proposition 3.4 we can write the stochastic bond prices P (τ, T ) as

follows.
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Lemma 3.5: Case (a): For 0 < tA or for 0 ≥ tS the bond price can be written as

P (τ, T ) = exp
{

−c(T − τ) +
r∗(τ)− c

b
[

e−b(T−τ) − 1
]

+
σ2

4b3

[

2b(T − τ)− 3 + 4e−b(T−τ) − e−2b(T−τ)]
}

.

Case (b): For tA ≤ 0 < τ < T < tS the bond price can be written as

P (τ, T ) = exp
{

−c(T − τ) +
r∗(τ)− c

b
[

e−b(T−τ) − 1
]

− (s− k(τ))
[

e
T−tS

α − e
τ−tS

α

]

+
σ2

4b3

[

2b(T − τ)− 3 + 4e−b(T−τ) − e−2b(T−τ)]

+
σ̃2α
4

e
2T−2tS

α

[

2
T − τ

α
− 3 + 4e−

T−τ
α − e−2T−τ

α

]

− β
σ̃σ

α
√

2b
e

τ−tS
α

∫ T−τ

0

∫ T−τ

0
e

v
α e−bu min{e2bu − 1, v}dudv

}

.

Case (c): For tA ≤ 0 < τ < tS ≤ T the bond price can be written as

P (τ, T ) = exp
{

−c(T − τ) +
r∗(τ)− c

b
[

e−b(T−τ) − 1
]

− (s− k(τ))
[

1− e
τ−tS

α

]

+
σ2

4b3

[

2b(T − τ)− 3 + 4e−b(T−τ) − e−2b(T−τ)]

+
σ̃2α
4

[

2
tS − τ

α
− 3 + 4e−

tS−τ
α − e−2 tS−τ

α

]

− β
σ̃σ

α
√

2b
e

τ−tS
α

∫ tS−τ

0

∫ T−τ

0
e

v
α e−bu min{e2bu − 1, v}dudv

}

.

Case (d): For tA ≤ 0 < tS ≤ τ < T the bond price can be written as

P (τ, T ) = exp
{

−c(T − τ) +
r∗(τ)− c

b
[

e−b(T−τ) − 1
]

+
σ2

4b3 (2b(T − τ)− 3 + 4e−b(T−τ) − e−2b(T−τ))
}

.

One immediate consequence of Lemma 3.5 is that for each of the four Cases (a) to
(d) the required joint distribution of

∫ τ
0 r(t)dt and P (τ, T ) is completely characterized
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in terms of the following joint distributions:

Case (a):
(∫ τ

0 r(t)dt, r∗(τ)
)

.

Case (b):
(

∫ τ
0 r(t)dt, r∗(τ)

[

1− e−b(T−τ)
]

+ k(τ)
[

be
τ−tS

α − be
T−tS

α

])

.

Case (c):
(

∫ τ
0 r(t)dt, r∗(τ)

[

1− e−b(T−τ)
]

+ k(τ)
[

be
τ−tS

α − b
])

.

Case (d):
(∫ τ

0 r(t)dt, r∗(τ)
)

.

It is obvious from the preceding section that the random variables
∫ τ

0 r(t)dt, r∗(τ)
and k(τ) have normal distributions and that the latter bivariate random vectors all
have bivariate normal distributions which are completely characterized in terms of

their respective marginal expectations, variances and covariances. Exact expressions
for these magnitudes are given in the technical appendix.

From here, we are able to find the joint distribution of
∫ τ

0 r(t)dt and P (τ, T ) and thus,
ultimately, to calculate the expectation on the right-hand side of Eq. (10). We defer the
technical details of this procedure to the appendix. The following Proposition 3.6 sum-
marizes the results by stating price equations for a European call option on zero-coupon
bonds in the run-up to a currency union. In these case-specific option-pricing formulas
we introduce some new notation. Φ(·) denotes the standard normal cumulative dis-

tribution function, while Γ(b, α, β, σ, σ̃, τ, T, tS) is a case-specific parameter-dependent
function the intricate structural form of which is given in the Eqs. (A.8) to (A.10)
of the appendix. Moreover, the pricing formulas contain the parameters µ1, µ2, σ1, σ2

and ρ which have not yet been defined. As described in the equation blocks (A.2) to
(A.5) of the appendix these case-specific auxiliary parameters are certain functions of

previously defined parameters.

Proposition 3.6: In the run-up to a currency union the current price C(0) of a Eu-
ropean call option on a zero-coupon bond maturing at time T with strike price K and
exercise date τ is given as follows:

Case (a): For 0 < tA or for 0 ≥ tS the option price is given by

C(0) = P (0, T ) · Φ





y0 −
[

µ2 − ρσ1σ2 + σ2
2
b (e−b(T−τ) − 1)

]

σ2





−K · P (0, τ) · Φ
(

y0 − (µ2 − ρσ1σ2)
σ2

)

.
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Case (b): For tA ≤ 0 < τ < T < tS the option price is given by

C(0) = P (0, T ) · Γ(b, α, β, σ, σ̃, τ, T, tS) · Φ

(

y0 − (µ2 − ρσ1σ2 − σ2
2
b )

σ2

)

−K · P (0, τ) · Φ
(

y0 − (µ2 − ρσ1σ2)
σ2

)

.

Case (c): For tA ≤ 0 < τ < tS ≤ T the option price is given by

C(0) = P (0, T ) · Γ(b, α, β, σ, σ̃, τ, T, tS) · Φ
(

y0 − (µ2 − ρσ1σ2 − σ2
2
b )

σ2

)

−K · P (0, τ) · Φ
(

y0 − (µ2 − ρσ1σ2)
σ2

)

.

Case (d): For tA ≤ 0 < tS ≤ τ < T the option price is given by

C(0) = P (0, T ) · Γ(b, α, β, σ, σ̃, τ, T, tS) · Φ





y0 −
[

µ2 − ρσ1σ2 + σ2
2
b (e−b(T−τ) − 1)

]

σ2





−K · P (0, τ) · Φ
(

y0 − (µ2 − ρσ1σ2)
σ2

)

.

We end this section by remarking that the option-price dynamics presented in Case

(a) of Proposition 3.6 coincides with a well-known bond-option formula that has been

derived by several authors under the classical scenario in which no currency union is
planned (see for example Björk, 2004, pp. 337, 338).

4 Simulation study

In this section we implement a Monte-Carlo simulation to assess the potentiality for op-
tion mispricing that might emerge from ignoring the specific exchange-rate and interest-

rate dynamics during the run-up to a currency union. To this end, we assume that

the currency union is announced at date tA—implying that the option-price dynamics
from Proposition 3.6 constitutes the ’correct’ model—and simulate pricing paths of

some zero-coupon bonds plus corresponding pricing paths of some bond options. We
further suppose that, despite of the fact that the currency union has been announced,
agents ignore the ’correct’ option-price dynamics given by the Cases (b), (c), (d) of
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Proposition 3.6 and erroneously presume instead that the bond-option dynamics from
Proposition 3.6(a) still continues to be in force after tA. As a result, agents misprice

newly issued options by using this wrong option-price dynamics.
Our simulation starts in t = 0 and ends in t = 2. The dates relevant to the currency

union are chosen as tA = 0.5 and tS = 1.5 implying an interim period of one year. For

every parameter constellation we run a Monte-Carlo simulation with 10000 iterations
and choose the distance between two points in time as 0.01. We set the mean-reversion
level in the foreign short-rate process (6) to c = 0.05 and specify the irreversible
exchange-rate fixing level as s = ln(1.00) = 0. Following the line of argument in
Wilfling (2003), we choose α = 2 and, to simplify numerical procedures, set β = 0

implying that all Γ(b, α, β, σ, σ̃, τ, T, tS) function-values in Proposition 3.6 take on the
constant value 1. For the parameters b, σ and σ̃ we choose the alternative setups shown
in Table 2.

Based on these parameter constellations, we first simulate paths of the short rate

r(t) according to the dynamics given in Eq. (8). In a second step, we calculate five
zero-coupon bond prices for the respective maturities of 1, 3, 6, 12, 24 months. Using

these bond prices and the option-valuation formulas from Proposition 3.6, we then
price six distinct options with strike prices K, option maturities τ and bond maturities

T as shown in Table 1. It should be noted that these eleven bond and option prices

represent arbitrage-free market prices.

Table 1 about here

In a next step, we price six newly issued zero-coupon bond options with strike prices

K ∈ {0.915, 0.920, . . . , 0.940}, option maturity τ = 2 months and bond maturity T =
14 months according to Proposition 3.6 at every of our supporting points in time. In
contrast to our ’correct’ pricing scheme, agents price these six options according to
their erroneous assessment of option-price dynamics described above. In particular,
using the 11 arbitrage-free bond and option prices observable in the market, agents

calibrate their misspecified short-rate model consisting of the parameters b, c, σ thus

obtaining different prices for the six newly issued options.
Table 2 displays the differences in the option prices obtained from (a) our pricing

scheme (correct price), and (b) the misspecified valuation scheme employed by the
agents (wrong price). We computed two measures of deviation, namely the average

percentage deviation defined as the arithmetic mean of the values ’100×(wrong price−
correct price)÷wrong price’ and the average absolute percentage deviation defined as
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the mean of ’100 × |wrong price − correct price| ÷ wrong price’. Both measures were
computed at the dates 3, 6, 9 months after the announcement date tA.

Table 2 about here

Figure 1 about here

Table 2 reveals that both deviation measures exhibit (ceteris paribus) the tendency to
increase as the strike price K increases. In particular, given the values of the parameters

b, σ, σ̃ under the strike price K = 0.940, we observe substantial deviations of more than
61 per cent. To gain deeper insight into the nature of such deviations, Figure 1 plots

the paths of average percentage deviations generated from the 10000 replications in
our simulation study using the parameter values b = 1, σ = 0.01, σ̃ = 0.05 and the

distinct strike prices K ∈ {0.915, 0.920, 0.925, 0.930}. For comparative reasons, we
have chosen a common range of the deviations along the vertical axis, thus truncating
many deviation paths in the lower panels. In accordance with Case (a) of Proposition

3.6, all deviations are equal to zero before tA and after tS simply reflecting the fact
that no mispricing occurs before the announcement of the currency union and after the

union has been implemented. In all of the four panels, however, two striking features of

the deviation dynamics during the interim period between tA and tS become apparent.

(a) Deviations tend to exhibit a heteroskedastic fluctuation pattern over time. (b)
During the first half of the interim period most deviations are positive, while we find
more negative than positive deviations during the second half.

Figure 2 about here

To characterize the distribution of the pricing error, we have fitted kernel densities to
the deviations measured at some specifically chosen points in time. Figure 2 displays
the kernel densities obtained under the parameters b = 1, σ = 0.01, σ̃ = 0.05 and strike

prices K = 0.915, 0.920 at the dates t1 = 0.75 (3 months after tA), t2 = 1.0 (6 months
after tA) and t3 = 1.25 (9 months after tA). Obviously, the kernel density at t1 exhibits
more mass at positive deviations while the reverse holds for the densities at t2 and
t3. Moreover, higher strike prices appear to be associated with more leptokurtic error
distributions.
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5 Conclusions

Based on a continuous-time modeling framework characterizing the dynamic link be-
tween international interest rates in the run-up to a currency union, this paper derives

closed-form valuation formulas for European call options on zero-coupon bonds. Taking
into account the specific interest-rate dynamics induced by the switch in the exchange-
rate regime, we extend the classical option-pricing framework and obtain novel pricing

formulas. As the key result of our simulation study we find that disregarding the spe-
cific dynamic link between international interest rates prior to the currency union can

generate substantial option-pricing errors.
It is obvious that our option-valuation formula may be used to price more complex

contingent claims. As an example we could consider interest-rate floors which can be

viewed as a portfolio of European call options on zero-coupon bonds. Interest-rate
floors typically are among the most traded of all interest-rate derivatives so that our

results should be of high value for traders in all sorts of financial and derivative markets
located in the upcoming EMU accession countries. It is worth noting, however, that
our option-price dynamics is not confined to the episode of a future entrance into a
currency union. In fact, it is also applicable to comparable transitional periods in

the international monetary system such as the run-up to an exchange-rate peg or the
implementation of a currency board.

The exact forms of our option-pricing formulas crucially hinge on two of our specifi-

cations chosen in Section 2, namely (a) the Vasicek-dynamics of the foreign short rate

r∗(t) in Eq. (6), and (b) the driftless Brownian-motion specification of the exchange-

rate fundamental k(t) in Eq. (2). Clearly, alternative specifications are conceivable for
both variables such as the classical short-rate models proposed by Cox et. al. (1985),
Ho and Lee (1986) or Hull and White (1994) for r∗(t).

In this context it should be recalled that the specification of the exchange-rate funda-
mental k(t) is of particular importance since the k-dynamics characterizes the monetary
policy regime during the run-up to the currency union. As described in Section 2, our

(driftless) Brownian-motion specification represents a free-float exchange-rate regime
between the countries involved. However, more interventionist exchange-rate policy
stances prior to the currency union are conceivable and have indeed been pursued

by some countries during the run-up to EMU (see Sondermann et al., 2010). Such
active policy regimes can be modelled by Ornstein-Uhlenbeck and Brownian-bridge

specifications for k(t) (cf. Footnote 1) and one possible line of future research could

be the investigation of how these alternative specifications affect our option-valuation
dynamics derived in Proposition 3.6.
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Appendix

To obtain the price dynamics of a European call option presented in Proposition 3.6
we have to calculate the expectation given on the right-hand side of Eq. (10):

EQ
[

e−
R τ
0 r(t)dt ·max{P (τ, T )−K, 0}|φ0

]

. (A.1)

To this end, we follow the line of argument in Section 3.2 and consider the four distinct
Cases (a) to (d) along with the corresponding bivariate probability distributions

(∫ τ
0 r(t)dt, r∗(τ)

)

, [Case (a)]
(

∫ τ
0 r(t)dt, r∗(τ)

[

1− e−b(T−τ)
]

+ k(τ)
[

be
τ−tS

α − be
T−tS

α

])

, [Case (b)]
(

∫ τ
0 r(t)dt, r∗(τ)

[

1− e−b(T−τ)
]

+ k(τ)
[

be
τ−tS

α − b
])

, [Case (c)]

(∫ τ
0 r(t)dt, r∗(τ)

)

. [Case (d)]

For ease of notation let us denote the first marginal distribution of any arbitrary
bivariate random vector by X with expectation µ1 ≡ E(X) and variance σ2

2 ≡ Var(X)

and the respective magnitudes of the second marginal distribution by Y, µ2 ≡ E(Y )

and σ2
2 ≡ Var(Y ). Furthermore, let us write the covariance of X and Y as Cov(X, Y ) =

ρσ1σ2. It is straightforward to obtain all these magnitudes for the case-specific bivariate

random vectors from above by standard means of probability calculus.

Case (a): For (X, Y ) =
(∫ τ

0 r(t)dt, r∗(τ)
)

we have

µ1 = cτ +
r∗0 − c

b
(

1− e−bτ) ,

σ2
1 =

σ2

2b3 (2bτ − 3 + 4e−bτ − e−2bτ ),

µ2 = (r∗0 − c)e−bτ + c, (A.2)

σ2
2 =

σ2

2b
(

1− e−2bτ) ,

ρσ1σ2 =
σ2

2b2

(

1− e−bτ)2
.

Case (b): For (X,Y ) =
(

∫ τ
0 r(t)dt, r∗(τ)

[

1− e−b(T−τ)
]

+ k(τ)
[

be
τ−tS

α − be
T−tS

α

])

we
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have

µ1 = cτ +
r∗0 − c

b
(

1− e−bτ) + (s− k0)
(

e
τ−tS

α − e
−tS

α

)

,

σ2
1 =

σ2

2b3

(

2bτ − 3 + 4e−bτ − e−2bτ) +
σ̃2α
2

e
2τ−2tS

α

(

2
τ
α
− 3 + 4e−

τ
α − e−2 τ

α

)

− 2β
σσ̃

α
√

2b
e−

tS
α

∫ τ

0

∫ τ

0
e

v
α e−bu min

{

e2bu − 1, v
}

dvdu,

µ2 =
(

1− e−b(T−τ)) [

(r∗0 − c)e−bτ + c
]

+ k0

[

be
τ−tS

α − be
T−tS

α

]

, (A.3)

σ2
2 =

(

1− e−b(T−τ))2 σ2

2b
(

1− e−2bτ) +
(

be
τ−tS

α − be
T−tS

α

)2
σ̃2τ

+ 2β
σ̃σ√
2b

(

1− e−b(T−τ))
(

be
τ−tS

α − be
T−tS

α

)

e−bτ min
{

e2bτ − 1, τ
}

,

ρσ1σ2 =
σ2

2b2

(

1− e−bτ)2 (

1− e−b(T−τ)) + bασ̃2e
τ−2tS

α

(

e
T−τ

α − 1− τ
α

e
τ
α + e

τ
α +

τ
α

e
T
α − e

T
α

)

+
(

be
τ−tS

α − be
T−tS

α

) σ̃σ√
2b

β
∫ τ

0
e−bu min

{

e2bu − 1, τ
}

du

+
(

e−bT − e−bτ) σ̃σ
α
√

2b
β

∫ τ

0
e

u−tS
α min

{

e2bτ − 1, u
}

du.

Case (c): For (X,Y ) =
(

∫ τ
0 r(t)dt, r∗(τ)

[

1− e−b(T−τ)
]

+ k(τ)
[

be
τ−tS

α − b
])

we have

µ1 = cτ +
r∗0 − c

b
(

1− e−bτ) + (s− k0)
(

e
τ−tS

α − e
−tS

α

)

,

σ2
1 =

σ2

2b3

(

2bτ − 3 + 4e−bτ − e−2bτ) +
σ̃2α
2

e
2τ−2tS

α

(

2
τ
α
− 3 + 4e−

τ
α − e−2 τ

α

)

− 2β
σσ̃

α
√

2b
e−

tS
α

∫ τ

0

∫ τ

0
e

v
α e−bu min

{

e2bu − 1, v
}

dudv,

µ2 =
(

1− e−b(T−τ)) [

(r∗0 − c)e−bτ + c
]

+ k0

[

be
τ−tS

α − b
]

, (A.4)

σ2
2 =

(

1− e−b(T−τ))2 σ2

2b
(

1− e−2bτ) +
(

be
τ−tS

α − b
)2

σ̃2τ

+ 2β
σ̃σ√
2b

(

1− e−b(T−τ))
(

be
τ−tS

α − b
)

e−bτ min
{

e2bτ − 1, τ
}

,
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ρσ1σ2 =
σ2

2b2

(

1− e−bτ)2 (

1− e−b(T−τ))− bασ̃2e
τ−tS

α

(

1− τ
α
− e−

τ
α +

τ
α

e
τ−tS

α + e−
tS
α − e

τ−tS
α

)

+
(

be
τ−tS

α − b
) σ̃σ√

2b
β

∫ τ

0
e−bu min

{

e2bu − 1, τ
}

du

+
(

e−bT − e−bτ) σ̃σ
α
√

2b
β

∫ τ

0
e

u−tS
α min

{

e2bτ − 1, u
}

du.

Case (d): For (X,Y ) =
(∫ τ

0 r(t)dt, r∗(τ)
)

we have

µ1 = cτ +
r∗0 − c

b
(

1− e−bτ) + (s− k0)
(

1− e
−tS

α

)

,

σ2
1 =

σ2

2b3

(

2bτ − 3 + 4e−bτ − e−2bτ) +
σ̃2α
2

(

2
tS
α
− 3 + 4e−

tS
α − e−2 tS

α

)

− 2β
σσ̃

α
√

2b
e−

tS
α

∫ tS

0

∫ τ

0
e

v
α e−bu min

{

e2bu − 1, v
}

dudv,

µ2 = (r∗0 − c)e−bτ + c, (A.5)

σ2
2 =

σ2

2b
(

1− e−2bτ) ,

ρσ1σ2 =
σ2

2b2

(

1− e−bτ)2 − σ̃σ
α
√

2b
e−bτβ

∫ tS

0
e

u−tS
α min

{

e2bτ − 1, u
}

du.

Using this case-specific notation and noting that the bond price P (τ, T ) is a function
of the second marginal distribution Y , which justifies our expressing the bond price as
P (τ, T, Y ), we may rewrite the expectation (A.1) as

EQ [

e−X ·max{P (τ, T, Y )−K, 0}|φ0
]

=
∫ ∞

−∞

∫ ∞

−∞
e−x max{P (τ, T, y)−K, 0}f(x, y)dxdy, (A.6)

where f(x, y) represents the joint probability density function of (X,Y ). The integrand
of the double integral in Eq. (A.6) contains a maximum function. However, it is easy to

check that the term P (τ, T, y)−K is monotone decreasing in y so that we can simplify

the double integral by (a) calculating those case-specific values y0 for which this term
becomes zero, and (b) by changing the integration limits accordingly. These y0-values
are given as follows:
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Case (a):

y0 =
−b ln(K)− bc(T − θ) + c

(

1− e−b(T−θ)
)

+ σ2

4b2
[

2b(T − θ)− 3 + 4e−b(T−θ) − e−2b(T−θ)
]

1− e−b(T−θ) .

Case (b):

y0 = −b ln(K)− bc(T − θ) + c
(

1− e−b(T−θ)) +
σ2

4b2

[

2b(T − θ)− 3 + 4e−b(T−θ) − e−2b(T−θ)]

+
bσ̃2α

4
e

2T−2tS
α

(

2
T − θ

α
− 3− e−

2T−2θ
α + 4e−

T−θ
α

)

− bs
(

e
T−tS

α − e
θ−tS

α

)

− bβ
σ̃σ

α
√

2b
e

θ−tS
α

∫ T−θ

0

∫ T−θ

0
e

v
α e−bu min

{

e2bu − 1, v
}

dudv.

Case (c):

y0 = −b ln(K)− bc(T − θ) + c
(

1− e−b(T−θ)) +
σ2

4b2

[

2b(T − θ)− 3 + 4e−b(T−θ) − e−2b(T−θ)]

+
bσ̃2α

4

(

2
tS − θ

α
− 3− e−

2tS−2θ
α + 4e−

tS−θ
α

)

− bs
(

1− e
θ−tS

α

)

− bβ
σ̃σ

α
√

2b
e

θ−tS
α

∫ tS−θ

0

∫ T−θ

0
e

v
α e−bu min

{

e2bu − 1, v
}

dudv.

Case (d):

y0 =
−b ln(K)− bc(T − θ) + c

(

1− e−b(T−θ)
)

+ σ2

4b2
[

2b(T − θ)− 3 + 4e−b(T−θ) − e−2b(T−θ)
]

1− e−b(T−θ) .

Using these case-specific y0-values, we can remove the maximum function and sim-
plify the double integral in Eq. (A.6) to give

∫ y0

−∞

∫ ∞

−∞
e−x [P (τ, T, y)−K] f(x, y)dxdy.

Inserting the explicit form of the bivariate normal probability density function for

f(x, y) and performing some straightforward manipulations, we obtain

∫ y0

−∞
[P (τ, T, y)−K]

1√
2πσ2

e
− (y−µ2)2

2σ2
2

∫ ∞

−∞
e−x 1√

2πσ1

√

(1− ρ2)
e
− 1

2

(x−(µ1+ρy
σ1
σ2
−ρµ2

σ1
σ2

))2

(1−ρ2)σ2
1 dxdy.

The second integral in the latter term constitutes the expected value of a lognormal
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distribution yielding the equivalent expression

∫ y0

−∞
[P (τ, T, y)−K]

1√
2πσ2

e
− (y−µ2)2

2σ2
2 e−(µ1+ρy σ1

σ2
−ρµ2

σ1
σ2

)+
(1−ρ2)σ2

1
2 dy,

which can be expanded to give

∫ y0

−∞
P (τ, T, y)

1√
2πσ2

e
− (y−µ2)2

2σ2
2 e−(µ1+ρy σ1

σ2
−ρµ2

σ1
σ2

)+
(1−ρ2)σ2

1
2 dy

−
∫ y0

−∞
K

1√
2πσ2

e
− (y−µ2)2

2σ2
2 e−(µ1+ρy σ1

σ2
−ρµ2

σ1
σ2

)+
(1−ρ2)σ2

1
2 dy.

The second integral in this last term can be expressed in terms of the standard

normal cumulative distribution function (cdf) Φ(·) yielding

∫ y0

−∞
P (τ, T, y)

1√
2πσ2

e
− (y−µ2)2

2σ2
2 e−(µ1+ρy σ1

σ2
−ρµ2

σ1
σ2

)+
(1−ρ2)σ2

1
2 dy

−K · P (0, τ) · Φ
(

y0 − (µ2 − ρσ1σ2)
σ2

)

. (A.7)

Note that P (0, τ) in Eq. (A.7) is the price of a zero-coupon bond maturing at time τ
the (case-specific) form of which is established in Proposition 3.4.

Finally, substituting the bond price P (τ, T, y) by its explicit formulas for the four
distinct Cases (a) to (d) and applying analogous steps as before, we are able to write the

remaining integral in the expression (A.7) in terms of the standard normal cumulative
distribution function. More precisely, the integral can be expressed as the product

of the following three factors: (a) the bond price P (0, T ), (b) an auxiliary function

Γ(b, α, β, σ, σ̃, τ, T, tS), and (c) a specific value of the cdf Φ(·). The exact forms of
the product are given in the respective first lines of the option-valuation formulas in

Proposition 3.6 (Cases (a) to (d)). The precise form of the auxiliary function Γ, which
can only be different from 1 for the Cases (b) to (d), are given as follows:

Case (b): Γ(b, α, β, σ, σ̃, τ, T, tS) =

exp
{

− βe−
tS
α

σ̃σ
α
√

2b

∫ T−τ

0

∫ T−τ

0
e

v+τ
α e−b(u+τ) min

{

e2bu − 1, v
}

dudv

− βe−
tS
α

σ̃σ
α
√

2b

∫ T

0

∫ T

0
e

v
α e−bu

(

min
{

e2bu − 1, v, e2bτ − 1, τ
}

−min
{

e2bu − 1, v
}

)

dudv
}

. (A.8)
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Case (c): Γ(b, α, β, σ, σ̃, τ, T, tS) =

exp
{

− βe−
tS
α

σ̃σ
α
√

2b

∫ tS−τ

0

∫ T−τ

0
e

v+τ
α e−b(u+τ) min

{

e2bu − 1, v
}

dudv

− βe−
tS
α

σ̃σ
α
√

2b

∫ tS

0

∫ T

0
e

v
α e−bu

(

min
{

e2bu − 1, v, e2bτ − 1, τ
}

−min
{

e2bu − 1, v
}

)

dudv
}

. (A.9)

Case (d): Γ(b, α, β, σ, σ̃, τ, T, tS) =

exp
{

βe−
tS
α

σ̃σ
α
√

2b

∫ tS

0

∫ T

τ
e

v
α e−bu min

{

e2bu − 1, v
}

dudv

− βe−
tS
α

σ̃σ
α
√

2b

∫ tS

0

1
b
e

v
α e−bτ min

{

e2bτ − 1, v
}

dv
}

. (A.10)

In each of the three Cases (b) to (d) the function Γ(b, α, β, σ, σ̃, τ, T, tS) depends

inter alia on the parameter β which represents the (constant) correlation coefficient

of the Wiener processes W1(t) and W̄ (t) driving the foreign short rate r∗(t) and the
instantaneous short-rate differential SRD(t) = r(t)− r∗(t), respectively (cf. Section 2).

If these Wiener processes are uncorrelated, i.e. for β = 0, the Γ-function takes on the
value 1, which considerably simplifies our option-valuation formulas in Proposition 3.6.



Figures and Tables



Figure 1: Average percentage deviations under the parameters b = 1, σ = 0.01, σ̃ = 0.05
for alternative strike prices K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2: Kernel densities with b = 1, σ = 0.01, σ̃ = 0.05, K = 0.915 (solid lines),
K = 0.92 (dashed lines) for alternative points in time after tA

 

 

 

 

 



Table 1
Parameters of options used for yield inversion

τ T K
(in months) (in months)

1 3 0.99
1 6 0.98
1 12 0.96
3 6 0.99
3 12 0.97
6 12 0.98



Table 2
Deviations of option prices for alternative parameters when valuing (a) under the

’correct’ and (b) under the ’wrong’ bond-option dynamics
K = 0.915 K = 0.920

Time after tS Parameter Average Average Average Average
(in months) setup perc. dev. abs. perc. dev. perc. dev. abs. perc. dev.

3 b = 1, 0.413 1.928 0.720 2.442
6 σ = 0.015, −0.262 2.025 −0.383 2.384
9 σ̃ = 0.050 −0.037 3.584 −0.073 4.208
3 b = 1, 0.072 0.950 0.109 1.119
6 σ = 0.015, −0.087 0.962 −0.113 1.118
9 σ̃ = 0.025 0.146 2.149 0.169 2.519
3 b = 1, 0.374 2.094 0.618 2.569
6 σ = 0.010, −0.309 2.055 −0.453 2.432
9 σ̃ = 0.050 0.035 3.489 0.007 4.077
3 b = 1, 0.086 1.005 0.122 1.176
6 σ = 0.010, −0.130 0.916 −0.170 1.070
9 σ̃ = 0.025 0.139 2.091 0.155 2.439
3 b = 2, 0.596 2.319 0.839 2.793
6 σ = 0.015, −0.339 1.464 −0.474 1.747
9 σ̃ = 0.050 −0.159 3.049 −0.219 3.558
3 b = 2, 0.078 1.124 0.114 1.311
6 σ = 0.015, −0.047 0.544 −0.068 0.636
9 σ̃ = 0.025 0.027 1.529 0.024 1.781

Note: The deviation measures ’Average percentage deviation’ and ’Average absolute percentage devia-
tion’ are defined as the arithmetic means of the values ’100×(wrong price−correct price)÷wrong price’
and ’100× |wrong price− correct price| ÷ wrong price’, respectively.



Table 2 (continued)
K = 0.925 K = 0.930

Time after tS Parameter Average Average Average Average
(in months) setup perc. dev. abs. perc. dev. perc. dev. abs. perc. dev.

3 b = 1, 1.488 3.487 3.697 6.102
6 σ = 0.015, −0.515 2.861 −0.434 3.654
9 σ̃ = 0.050 −0.142 5.110 −0.295 6.562
3 b = 1, 0.197 1.388 0.475 1.933
6 σ = 0.015, −0.120 1.335 0.043 1.785
9 σ̃ = 0.025 0.203 3.050 0.257 3.905
3 b = 1, 1.200 3.455 2.833 5.509
6 σ = 0.010, −0.681 2.966 −0.948 3.701
9 σ̃ = 0.050 −0.051 4.907 −0.179 6.173
3 b = 1, 0.191 1.429 0.359 1.861
6 σ = 0.010, −0.226 1.282 −0.288 1.591
9 σ̃ = 0.025 0.174 2.928 0.194 3.669
3 b = 2, 1.342 3.598 2.634 5.307
6 σ = 0.015, −0.710 2.177 −1.151 2.881
9 σ̃ = 0.050 −0.319 4.271 −0.507 5.341
3 b = 2, 0.176 1.576 0.303 1.991
6 σ = 0.015, −0.102 0.767 −0.169 0.968
9 σ̃ = 0.025 0.017 2.131 −0.001 2.653

Note: The deviation measures ’Average percentage deviation’ and ’Average absolute percentage devia-
tion’ are defined as the arithmetic means of the values ’100×(wrong price−correct price)÷wrong price’
and ’100× |wrong price− correct price| ÷ wrong price’, respectively.



Table 2 (continued)
K = 0.935 K = 0.940

Time after tS Parameter Average Average Average Average
(in months) setup perc. dev. abs. perc. dev. perc. dev. abs. perc. dev.

3 b = 1, 11.555 14.751 56.106 61.371
6 σ = 0.015, 0.977 5.827 10.314 16.466
9 σ̃ = 0.050 −0.702 9.461 −1.354 17.122
3 b = 1, 1.667 3.613 9.590 12.978
6 σ = 0.015, 1.232 3.298 9.891 12.432
9 σ̃ = 0.025 0.297 5.741 0.571 11.791
3 b = 1, 8.332 11.645 34.768 39.374
6 σ = 0.010, −0.636 4.871 4.693 10.522
9 σ̃ = 0.050 −0.512 8.388 −1.506 13.541
3 b = 1, 0.973 2.887 4.985 7.726
6 σ = 0.010, −0.165 2.186 2.634 5.110
9 σ̃ = 0.025 0.206 4.957 0.234 8.139
3 b = 2, 6.956 10.234 30.862 35.236
6 σ = 0.015, −1.979 4.092 −3.388 6.196
9 σ̃ = 0.050 −0.916 7.144 −1.917 10.739
3 b = 2, 0.666 2.788 2.262 5.140
6 σ = 0.015, −0.313 1.316 −0.518 1.946
9 σ̃ = 0.025 −0.051 3.513 −0.191 5.210

Note: The deviation measures ’Average percentage deviation’ and ’Average absolute percentage devia-
tion’ are defined as the arithmetic means of the values ’100×(wrong price−correct price)÷wrong price’
and ’100× |wrong price− correct price| ÷ wrong price’, respectively.
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