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How to Obtain the Routines Described

Software written by members of the section is freely available to anyone. Readers
with Internet access and a browser might note the following web site addresses:

University of Texas M. D. Anderson Cancer Center Home Page:
http://utmdacc.mdacc.tmc.edu/

Department of Biomathematics Home Page:
http://odin.mdacc.tmc.edu/

Available Software:
http://odin.mdacc.tmc.edu/anonftp/

Our code can also be obtained by anonymous ftp to odin.mdacc.tmc.edu. The
index is on file ./pub/index. The index can be viewed by issuing the following Unix
command:

finger software@odin.mdacc.tmc.edu

Our code is eventually posted to statlib, which can be accessed accessed at:

http://lib.stat.cmu.edu/

See the S subdirectory.



Legalities

The authors wish to make this code as widely available as possible and hence
place no restriction on its copying or use. The authors would appreciate appropriate
acknowlegement of the use or incorporation of this code in other packages. This
code does incorporate code that is copyrighted to the ACM, for which there are
restrictions on commercial distribution

The Fortran routine, gratio and those routines called by it are from the following
reference:

DiDinato, A. R. and Morris, A. H. “Computation of the incomplete gamma function
ratios and their inverse.” ACM Trans. Math. Softw. 12 (1986), 377-393.

The zero finding routines, dstinv and dstzr are transliterations from Algol to
Fortran of algorithm R of the following reference:

Bus, J. C., and Dekker, T. J. “Two efficient algorithms with guaranteed convergence
for finding a zero of a function.” ACM Tran. Math. Softw. 1(1975), 330-345.

TOMS has the following policy on dissemination of their algorithms:

Submittal of an algorithm for publication in one of the ACM Transac-
tions implies that unrestricted use of the algorithm within a computer
is permissible. General permission to copy and distribute the algorithm
without fee is granted provided that the copies are not made or dis-
tributed for direct commercial advantage. The ACM copyright notice
and the title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing Machin-
ery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

Krogh, F. “Algorithms Policy.” ACM Tran. Math. Softw. 13(1987), 183-186.



1 Introduction

The asypow library consists of routines written in the S language that calculate
power and related quantities utilizing asymptotic methods. A paper describing
these methods with examples is in preparation [1]. Two methods are available. The
likelihood ratio method (LR) is described in [2]. Another general method appears
recently in [3]; and we designate it the SMO method after the initials of the authors.
Here we outline the overall steps in the use of asymptotic sample size and power

calculations.

1. The statistician specifies a complete parametric alternative hypothesis model.
The specification includes the form of the model model, values of its parame-
ters and the design. If the model involves the comparison of a single parameter
over multiple groups, then the design consists of the proportion of subjects in
each group. In more complex cases, covariates are involved. If the experi-
menter controls the covariate values, the design consists of these values and
the relative number of observations at each. In an observational study in
which the covariate values are not under experimental control, a probability
distribution of covariate values must be specified.

2. The designer specifies the constraints on the model parameters that transform
the alternative hypothesis into the null hypothesis. Each constraint either sets
a parameter value to a constant or it posits the equality of several parameters
without specifying their common value. Let the number of constraints be C.
If there are equality constraints, the model must be reparameterized so that
there are only constant constraints. This reparameterization is achieved by
replacing each set of parameters, equal according to the null hypothesis, by
their differences and by the value of one of them. Fortunately, this process
can be automated.

Both methods described use the model from step 1 and the constraints from
step 2 to compute the noncentrality parameter, η, of a noncentral χ2 distribu-
tion that describes the asymptotic distribution of the likelihood ratio under
the alternative hypothesis.

3. The critical value, V , is computed from the significance level, α, from 1−α =
χ2C(V ) where χ

2
C(.) is the central χ

2 cumulative distribution function with C
degrees of freedom. Power is the probability that a random variable distribued
as a noncentral χ2 with C degrees of freedom and noncentrality parameter, η,
exceeds V . If sample size is to be calculated, an iterative calculation finds the
requisite noncentrality parameter.
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2 Documentation/Help

The asypow routines, unfortunately, are inherently more difficult to use than many
others in Splus. This is a result of the need to specify a comparatively large amount
of information for each calculation.
To mitigate this problem, a cheatsheet and an online routine, asypow.help, are

available as well as the traditional help files. The routine, asypow.help prints most
of the text available in the cheatsheet as items chosen from a menu.

3 Methods

3.1 Likelihood Ratio (LR) Method

(This presentation follows Cox and Hinkley [2, Section 9.3].) Let y = {y1, . . . , yn} be
a realization of independent, identically distributed random variables,{Y1, . . . , Yn},
having a density f(y; θ), where θ is a vector of unknown parameters. The log
likelihood of the observations, y, at the parameter value θ is

l(y; θ) =
n∑
s=1

log(f(ys; θ)). (1)

Let θ̃ denote the alternative hypothesis value of θ. The expected information
matrix i is defined by

ij,k = −
n∑
s=1

Eθ̃
(
∂2l(Ys; θ)

∂θj∂θk

)
. (2)

This expectation can be written as

Eθ̃
(
∂2l(Yl; θ)

∂θj∂θk

)
=
∫
∂2l(y; θ)

∂θj∂θk
f(y; θ̃)dy, (3)

where the integration is over the set of possible values of Y . Note that the expecta-
tion is calculated at the assumed true value of θ. If the Yi assume discrete values,
f(y|θ) is the probability that Y = y, and the above integral is replaced by a sum
over all possible outcomes, y.
The presence of covariates in the model requires another level of computation

to obtain the information matrix. When the experimenter chooses covariate values,
the information matrix is computed separately for each value, and the results are
summed. In observational studies in which covariates are random, the informa-
tion matrix is integrated, component by component, over the population covariate
distribution.
The null hypothesis determines the values of specific components of θ, which

is partitioned into (ψ, λ), where the first set of parameter values, ψ, have been
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set by the null hypothesis to the value ψ0. The remaining parameters, λ, are not
constrained by the null hypothesis.
The expected information matrix, i, is partitioned in correspondence to θ into

(
iψψ iψλ
iλψ iλλ

)
.

Let θ̂ be the maximum likelihood estimate of θ, θ̂0 be the value that maximizes the
likelihood subject to ψ = ψ0, and ψ̃ be the presumed true value of ψ. The results
central to LR power and sample-size calculations are as follows:
The asymptotic distribution of 2[l(θ̂) − l(θ̂0)] is noncentral χ

2, χ2C(x|η) with
noncentrality parameter

η =
[
ψ̃ − ψ0

]T [
iψψ − iψλi−1λλ iλψ

] [
ψ̃ − ψ0

]
(4)

and degrees of freedom, C equal to the number of elements in ψ0, i.e., the number
of constraints.

3.2 SMO Method

This method is named with the initials of its authors, [3]. The method is easily
motivated from the assumption that asymptotically, 2(l(y; θ̂)−l(y; θ̂0)) is distributed
as χ2C(x|η), as per the likelihood ratio calculations but with a different value of η.
The model parameters are again partitioned into sets constrained and unconstrained
by the null hypothesis. Let the partitioning yield θ̃0 = (ψ0, λ̃0); λ̃0 is that value of
λ that maximizes Eθ̃(l(Y |(ψ0, λ)).
For large n, θ̂ → θ̃ and θ̂0 → θ̃0, so

2Eθ̃{l(y; θ̂)− l(y; θ̂0)} → 2Eθ̃{l(y; θ̃)− l(y; θ̃0)} (5)

The expectation of the non-central χ2 is C + η, so by equating expectations, we
have the approximation

η = 2Eθ̃{l(y; θ̃)− l(y; θ̃0)} − C (6)

SMO used an expansion around the null hypothesis parameter values that pro-
duced a term involving first and second derivatives of the expected log likelihood.
They found that in practice, this term nearly cancels C above, and arrive at the
above formula without this term.

η = 2Eθ̃{l(y; θ̃)− l(y; θ̃0)} (7)

Equations (6) and (7) above give two means of estimating the noncentrality
parameter. The more conservation includes the degrees of freedom term C.
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In simple cases, the value of λ̃0 is immediate, but in more complex cases it must
be determined through nonlinear maximization. The LR method implicitly uses an
asymptotic approximation to λ̃0 , a value which usually does not maximize the log
likelihood under the null hypothesis. This may be one reason that the SMO method
offers superior performance in some cases.

4 Example: Single Sample Poisson

PROBLEM: What sample size is required to reject with power 0.8 the null hy-
pothesis that a Poisson mean is λ = 2.0 when λ = 3.0 using a two-sided test with
0.05 significance level?

4.1 Noncentrality Parameter: LR

The only parameter of the model is the mean, λ, so the information matrix is a
scalar. The Poisson density is

f(y) =
(λy) ∗ exp(−λ)

y!
.

For a single observation, the log likelihood is

l(y;λ) = y ∗ log(λ)− λ− log(y!).
The second derivative of the log likelihood with respect to lambda is

∂2l(y;λ)

∂λ2
=
−y
λ2
.

Since the number of events, y, is distributed Poisson the expectation of y is λ, the
information matrix is

i =
1

λ
.

The expected information for a single observation is 1
3
= 0.33, so for n observa-

tions, the expected information will be 0.33n. Using (4), the noncentrality param-
eter for a null hypothesis value of λ0 is (λ0 − 3.0)2∗0.33n, which at λ0 = 2.0 is 0.33n.

4.2 Noncentrality Parameter: SMO

The Poisson density is

f(y;λ) =
(λy) ∗ exp(−λ)

y!
.
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For a single observation, the log likelihood is

l(y;λ) = y ∗ log(λ)− λ− log(y!).
The expected value of the log likelihood of λa, the alternative hypothesis value of λ
over λ0 is given by the Poisson density at λa times the log likelihood at λ0.

Eλa(l(y;λ0)) =
∞∑
y=0

f(y;λa)l(y;λ0)

=
∞∑
y=0

(y ∗ log(λ0)− λ0 − log(y!)] ∗ f(y;λa)

= log(λ0)(
∞∑
y=0

yf(y;λa))− λ0(
∞∑
y=0

f(y;λa))− (
∞∑
y=0

log(y!)f(y;λa))
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NOTES:

• ∑∞y=0 y ∗ f(y;λa) is the expected value of y, i.e., λa.
• ∑∞y=0 f(y;λa) is the sum of the density of y, i.e., 1.
• Let K = −∑∞y=0 log(y!) ∗ f(y;λa).

Then,
Eλa(l(y;λ0)) = log(λ0) ∗ λa − λ0 +K.

The most conservative SMO methods for estimating the noncentrality parameters
for n observations shown in (6) is

2(Eλa(l(y;λa))− Eλa(l(y;λ0)))n− C.
which is

= 2(log(λa)λa − λa +K − log(λ0)λa + λ0 −K)n− 1

= 2 ∗ (λa log(λa
λ0
)− λa + λ0)n− 1.

Hence, the noncentrality parameter for a null hypothesis value of λ0 = 2.0 and
alternative hypothesis of λ = 3.0 is .43n− 1.
A less conservative methods given in (7) does not include the degrees of freedom

term, C, and the noncentrality parameter is .43n.

4.3 Requisite Noncentrality Parameter

We will reject the null hypothesis if twice the LR is greater than the 0.95 quantile
of the (central) χ21 distribution, i.e., 3.84. The probability of exceeding 3.84 is

1− χ21(3.84|ν)
where χ2d(x|ν) is the cumulative distribution function of the noncentral chi-square
distribution with d degrees of freedom and noncentrality parameter ν. The value of
ν making the probability of exceeding 3.84 equal to 0.8 is 7.85.

4.4 Sample Size

Equating the noncentrality parameters to 7.85, we obtain n = 24 for the LR method
and n = 20 for the more conservative SMO method or n = 18 for the less conserva-
tive SMO method.
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5 The Routines

The asypow library provides routines for calculating the sample size, power or sig-
nificance level for hypothesis testing. The available asypow routines can be divided
into four categories:

1. No-Covariate Models: Single or multiple groups without covariates. The
names of these routines end in the characters, ‘.kgp’.

Routine Name Outcome Type
binomial.kgp Binomial
poisson.kgp Poisson
expsurv.kgp Exponential Survival
ordinal.kgp Ordinal
multinomial.kgp Multinomial

2. Single-Covariate Models: Single or multiple groups using models involving
a single covariate, which may occur either only in a linear term or in a linear
and quadratic term. The names of routines considering covariate values end
in the characters, ‘.design’.

Routine Name Outcome Type
binomial.design Binomial
poisson.design Poisson
expsurv.design Exponential Survival
ordinal.design Ordinal

3. Multivariate Models: Single or multiple groups using models with multiple
covariates. These routines are primarily used for tabulated data.

Routine Name Model Type
mvlogistic.design Logistic
mvloglin.design Log-Linear

4. Generic (User Specified) Models:

Routine Name Method
generic.model.lr Likelihood Ratio
generic.model.smo SMO
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6 Use of the Routines

6.1 No-Covariate Models

The following steps explain the use of the asypow routines for the models that do
not consider a covariate, (binomial.kgp, poisson.kgp, expsurv.kgp, multino-
mial.kgp, ordinal.kgp). A typical calling sequence for a prototype model is shown
below where <model> is replaced with the name of the model being used.

<model>.kgp(method,

<theta.ha>,group.size=1,

const.constraint.group,

const.constraint.param,

const.constraint.value,

equal.constraint.group,

equal.constraint.param,

significance,power,sample.size,

smo.df=T)

The argument <theta.ha> is named after the parameters of the distribution, for
example, p.ha for the binomial distribution and lambda.ha for the poisson distribu-
tion. Some routines have extra options. The exact calling sequence and the model
parameters for each routine are available in the individual help files.
Each routine returns a list containing all values used in the construction of

the problem. Printing the return value produces a reconstruction of the original
problem. The various components of the list can be identified using the ‘names()’
function.

6.1.1 Choose a method.

The two asymptotic methods discussed are available for calculations. To choose
one, set the argument method to “lr” for the likelihood ratio method or “smo” for
the SMO method.

6.1.2 Set the alternative hypothesis.

Define the parameter values of the alternative hypothesis. For example in the bi-
nomial.kgp routine the parameter is the probability of event, p. If the value of p
under the alternative hypothesis is 0.4, then set p.ha to 0.4.

> p.ha <- 0.4

Each model allows for more than one treatment group. If there is more than one
treatment group in the model, the parameter values must be set for each group.
This is done by making the argument a matrix with a row for each group. For
example, if there were three groups in the binomial models and the value of p was
0.4 for the first group, 0.3 for the second group and 0.9 for the third group p.ha
would be set to a column vector.
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> p.ha <- rbind(0.4,0.3,0.9)

6.1.3 Set the proportions of subjects in each group.

The routines allow for unequal sample sizes for models with more than one group.
If this is the case then set the argument group.size to be a vector of the relative
sample sizes. The value of the ith component is the relative sample size of the ith
group. If this value is specified, it should be a vector whose length is the same as
the number of rows in <theta.ha>, the alternative hypothesis parameters.
For example, in the three group binomial model above if 50% of the subjects are

assigned to group 3 while 25% are assigned to group 1 and the final 25% to group
2, then group.size would be

> group.size <- c(.25,.25,.5).

If the model has only one group or there are equal sample sizes in each group then
the argument group.size does not need to be set.

6.1.4 Specify constraints on the parameters that transform the alterna-
tive hypothesis into the null hypothesis.

There are two types of constraints. Constant constraints set a parameter to a specific
value and equality constraints posit the equality of two or more parameters.

6.1.5 Setting constant constraints.

Constant constraints are defined by three values, a character description of the
parameter, the group number of the parameter, and the value the parameter is
being set to. These are set in the arguments:

• const.constraint.group
• const.constraint.param
• const.constraint.value

If more than one constant constraint is being defined then the above arguments
should be vectors of the same length with the ith component defining the ith con-
straint.
Each model has different parameters available

Routine Parameter Names Meaning
binomial.kgp p The probability of an event.
poisson.kgp lambda The mean.
expsurv.kgp rate The exponential failure rate.
multinomial.kgp p1,p2,. . . ,p(r-1) The probabilities for r-1 categories.
ordinal.kgp p1,p2,. . . ,p(r-1) The probabilities for r-1 categories.
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Note that for the multinomial and ordinal model with r categories, there are
only r-1 parameters. This is because the probabilities of the categories must add to
one, hence the final probability is redundant. For a more detailed description of the
model parameters available see the individual help files.
The arguments const.constraint.group and const.constraint.param do not

need to be specified if there is only one group or one parameter in the model re-
spectively. If the const.constraint.* arguments are not specified then there are no
constant constraints.
For example, if the null hypothesis in a one group binomial is to set the parameter

’p’ to 0.5 then the argument values would be set in the following fashion

> const.constraint.group <- 1

> const.constraint.param <- "p"

> const.constraint.value <- 0.5

Since there is only one group and one parameter value in the model the values for
const.constraint.group and const.constraint.param do not need to be set.
For another example, consider a 5 category multinomial model with 2 groups. In

this case the available parameter are “p1”, “p2”, “p3” and “p4”. Assume we want
to set the values in group 1 to (0.1,0.2,0.3,0.3) and in group 2 to (0.2,0.2,0.3,0.2).

> const.constraint.group <- c(1,1,1,1,2,2,2,2)

> const.constraint.param <- c("p1","p2","p3","p4","p1","p2","p3","p4")

> const.constraint.value <- c(0.1,0.2,0.3,0.3,0.2,0.2,0.3,0.2)

6.1.6 Setting equality constraints.

Equality constraints are defined by the character description and group number
of each parameter being set equal to the others. The group number is set in the
vector equal.constraint.group and the character description is set in the vector
equal.constraint.param.
These arguments do not need to be specified if there is only one group or only

one parameter in the model respectively. If the equal.constraint.* arguments are
missing then there are no equality constraints in the model.
For example, to set the probabilities equal in a two group binomial model set

> equal.constraint.group <- c(1,2).

The argument equal.constraint.param is not required because there is only one
parameter in the model.
To set all the probabilities equal in a one group, five category multinomial model

set (Recall the parameters are “p1”,...,“p4”).

> equal.constraint.param <- c("p1","p2","p3","p4")
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The argument equal.constraint.group is not required because there is only one
group in the model.
For more than one equality constraint, the arguments equal.constraint.param

and equal.constraint.group should be a list of vectors where each element in the
list defines an equality constraint. For example, in a three category ordinal model
the parameters are the category probabilities “p1” and “p2”. Suppose the model
has two groups and the null hypothesis is that the category probabilities in the 2
groups are the same, then set

> equal.constraint.param <- list(c("p1","p1"),c("p2","p2"))

> equal.constraint.group <- list(c(1,2),c(1,2)).

6.1.7 Entering constraints at the terminal.

If all five constraint arguments:

const.constraint.param const.constraint.group
const.constraint.value equal.constraint.group
equal.constraint.value

are missing, then the routines will query the user to enter the constraints interac-
tively. This is often easier for the user.

6.1.8 Set the significance level, power and sample size.

The <model>.kgp routines can calculate the significance level, power or sample size
for a hypothesis test given the other two values. The user should enter values for
two of the three arguments: significance, power or sample.size. The third will
be calculated by the routine. To make multiple calculations at once the values of
significance, power or sample.size can be vectors. The missing argument can
be specified by a -1 or not sending argument to the function.
For example, to calculate the sample size at a power of 0.8 and significance level

of 0.01, 0.05 and 0.1 set

> significance <- c(0.01,0.05,0.1)

> power <- 0.8

6.1.9 Set the degrees of freedom option for the SMO method.

The final argument for the routines is smo.df. This is a logical variable which is
only relevant if method is “smo”. If smo.df is TRUE sample size is calculated via
the equation η = 2Eθ̃{l(y; θ̃)−l(y; θ̃0)}−C where η is the non-centrality parameter of
the Chi-Square model and C is the degrees of freedom. This is the most conservative
calculation. If FALSE, sample size is calculated via the equation η = 2Eθ̃{l(y; θ̃)−
l(y; θ̃0)}. By default, the more conservative calculation is made.
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6.2 Univariate Design Models

Popular likelihood based models posit that the parameter of the distribution depends
on a covariate, x, through design parameters, a,b,c,.... A linear combination of the
covariates is widely used to model this dependence. For example, let

u = a + bx+ cx2

The asypow routines allow for a linear or quadratic combination. The function
which ties u to the value of the parameter is called a link function. Different link
functions are appropriate depending on the model.
The following steps explain the use of the asypow routines for design models,

(binomial.design, poisson.design, expsurv.design, ordinal.design). A typi-
cal calling sequence for a designed models is show below where <model> is replaced
with the name of the model being used.

<model>.design(method,

theta.ha,design="linear",link,

xpoints, natx=1, group.size=1,

const.constraint.group,

const.constraint.param,

const.constraint.value,

equal.constraint.group,

equal.constraint.param,

significance,power,sample.size,

smo.df=T)

Some routines have extra options. The exact calling sequence and the model pa-
rameters for each routine are available in the individual help files.

6.2.1 Choose a method.

The argument method functions the same in the design routines as the no-covariate
routines to select the likelihood ratio or SMO method for the calculations.

6.2.2 Select a design.

The parameter design specifies the function of the covariate x that will be used.
Linear indicates, u = a + bx, and quadratic indicates, u = a + bx + cx2. Design is
“linear” for a linear combination and “quadratic” for a quadratic combination.
Note: For the ordinal model with r categories a linear design specifies u[i] =

a[i]+bx and a quadratic design specifies u[i] = a[i]+bx+cx2 for i = 1, . . . , r−1. The
model assumes a different intercept term for each category but the other regression
terms are the same for all categories.
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6.2.3 Select a link function.

The parameter link specifies the function which transforms the linear combination of
the covariate into the distribution parameters. The available link functions depend
on the model.

Routine Links Available Link Formula

binomial.design logistic p = exp(u)
(1+exp(u))

complementary log p = 1− exp(− exp(u))
poisson.design exponential p = exp(u)
expsurv.design exponential rate = exp(u)

ordinal.design logistic p[i] = exp(u[i])
(1+exp(u[i]))

complementary log p[i] = 1− exp(− exp(u[i]))
The link is a parameter only in the routines binomial.design and ordinal.design,

where there is more than one available.

6.2.4 Set the alternative hypothesis.

Define the parameter values at the alternative hypothesis. For the binomial, poisson
and clinical trial with exponential survival models the parameters of the model are
“a” and “b” for a linear design and “a”, “b” and “c” for a quadratic design. For an
r category ordinal design the parameters of the model are “a1”,“a2”,. . . up to the
number of categories minus one, plus “b” for a linear design or “b” and “c” for a
quadratic design.
The value of these parameters under the alternative hypothesis are defined in

the argument theta.ha. theta.ha is a vector with the values of the parameters
under the null hypothesis. For example, in a linear binomial design where a is 1 and
b is .3 set

> theta.ha <- c(1,.3).

For a 3 category quadratic ordinal design where the parameters are a1,a2,b and c
giving rise to the following linear combinations

u1 = a1 + bx+ cx2

u2 = a2 + bx+ cx2

suppose a1 is .1, a2 is .2, b is .3 and c is .4. Set

> theta.ha <- c(.1,.2,.3,.4).

Each model allows for more than one treatment group. If there is more than one
treatment group in the model, the parameter values must be set for each group.
This is done by making the argument a matrix with a row for each group. For
example, theta.ha in a three group linear binomial model might be

> theta.ha <- rbind(c(1,.3),c(2,.4),c(3,.5)).
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6.2.5 Set the covariate values.

The argument xpoints is a vector containing the covariate values in the trial. If
there is more than one group in the trial and each group has different covariate
values, then xpoints is a matrix where each row represents a group. In this case,
xpoints must have the same number of rows as theta.ha.

6.2.6 Set the number of observations at each covariate value.

The routines allow for unequal sample sizes at each covariate value in the design. If
this is the case then define the argument natx so that natx[i,j] is the relative sample
size at covariate xpoints[i,j].
For example, if a trial has 2 covariate values defined in xpoints as

> xpoints <- c(1,2)

and 60% of the subjects have covariate value 1 while 40% of the subjects have
covariate value 2 then set natx

> natx <- c(0.6,0.4)

6.2.7 Set the percentage of subjects in each group.

The routines allow for unequal sample sizes for models with more than one group.
If this is the case then set the argument group.size to be a vector of the relative
sample sizes. The argument group.size functions the same in the design routines
as the no-covariate routines.

6.2.8 Specify constraints on the parameters that transform the alterna-
tive hypothesis into the null hypothesis.

The constraints are defined by the arguments

const.constraint.param const.constraint.group
const.constraint.value equal.constraint.group
equal.constraint.value

These arguments are the same as for the no-covariate routines.

6.2.9 Set the significance level, power and sample size.

The <model>.design routines can calculate the significance level, power or sample
size for a hypothesis test given the other two values. The user should enter values
for two of the three arguments: significance, power or sample.size. The third
will be calculated by the routine. These arguments function the same in the design
routines as the no-covariate routines.
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6.2.10 Set the degrees of freedom option for the SMO method.

The final argument for the routines is smo.df which determines if the degrees of
freedom are used in the SMO calculations. This argument functions the same in the
design routines as the no-covariate routines.

6.3 Multivariate Design Models

The asypow library provides two functions which provide a binomial design where
the probability of an event is a function of k multiple covariates, x[1],. . . ,x[k] via a
combination of coefficient coef[1],. . . ,coef[k].
In the multivariate logistic design (mvlogistic.design) the probability of an

event is a logistic function of u where u = x[1]coef [1] + · · ·+ x[k]coef [k].
In the multivariate log-linear design (mvloglin.design) the probability of an

event is an exponential function of u where u = log(coef [1])x[1]+· · ·+log(coef [k])x[k].
The usual use of these routines is for tabulated data in which case the x’s will

all be 0 or 1 valued indicator variables.
The following steps explain the use of the asypow routines for multivariate design

models, mvlogistic.design and mvloglin.design. A typical calling sequence for
a designed models is show below where <model> is replaced with the name of the
model being used, either logistic or loglin for log-linear.

mv<model>.design(method,

coef.ha, xpoints, rss=1,

const.constraint.param,

const.constraint.value,

equal.constraint.param,

significance,power,sample.size,

smo.df=T)

Use of these routines is similar to using other asypow routines.

6.3.1 Choose a method.

This argument method functions the same in the design routines as the no-covariate
routines to select the likelihood ratio or SMO method for the calculations.

6.3.2 Set the alternative hypothesis.

The parameters for multivariate designs are named “coef1”, “coef2”,. . . up to the
number of covariates in the model. The value of these parameters under the null
hypothesis are defined in the argument coef.ha.
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6.3.3 Set the design points.

The design points are the values of the k covariates included in the trial. These are
set in the arguments xpoints. xpoints is a matrix of dimension (n× k), each row
of which gives values of the k covariates at one of the n design points.
Note: Most models will include a constant term and the column of xpoints

corresponding to this term will be identically 1.
For example, if there are three covariates x1, x2, and x3 and three design points

(x1,x2,x3) = {(1,1,0),(1,0,1) or (1,1,1)} then xpoints would be
> xpoints <- rbind(c(1,1,0),c(1,0,1),c(1,1,1)).

6.3.4 Set the proportion of subjects at each design point.

The routines allow for unequal sample sizes at each design point in xpoints. If this
is the case then the define the argument rss so that rss[i] is the relative sample size
at the design point defined in row i of xpoints.
For example, if for the three design points defined in xpoints above we put 50%

of the subject at design point 1 and 25% of the subjects at design points 2 and 3
rss would be

> rss <- c(0.5,0.25,0.25).

6.3.5 Specify constraints on the parameters that transform the alterna-
tive hypothesis into the null hypothesis.

The constraints are defined by the arguments:

• const.constraint.param
• const.constraint.value
• equal.constraint.param.

There are no group indicators since these models are not programmed to consider
multiple groups. Setting constraints works the same as it does with other asypow
routines.

6.3.6 Set the significance level, power and sample size.

The mv<model>.design routines can calculate the significance level, power or sam-
ple size for a hypothesis test given the other two values. The user should enter
values for two of the three arguments: significance, power or sample.size. The
third will be calculated by the routine. These arguments function the same in the
design routines as the no-covariate routines.
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6.3.7 Set the degrees of freedom option for the SMO method.

The final argument for the routines is smo.df which determines if the degrees of
freedom are used in the SMO calculations. This argument functions the same in the
design routines as the no-covariate routines.

6.4 Generic Models using the Likelihood Ratio Method

The function generic.model.lr allows the user to calculate the significance level,
power or sample size for a hypothesis test using the likelihood ratio method for a
model not provided by the asypow library. The calling sequence of this routine is
shown below.

generic.model.lr(theta.ha,info.mat,

const.constraint.param,

const.constraint.value,

equal.constraint.param,

significance,power,sample.size)

This routine works similar to other asypow library routines. The parameters are
named “theta1”, “theta2”, . . .
The user must provide the information matrix for the model. The information

matrix is the second derivate matrix of the expected log likelihood under the al-
ternative hypothesis, the negative of the hessian matrix. The information matrix
should be scaled to be the information for one observation.

6.5 Generic Models using the SMO Method

The function generic.model.smo allows the user to calculate the significance level,
power or sample size for a hypothesis test using the SMO method for a model not
provided by the asypow library. The calling sequence of this routine is shown below.

generic.model.smo(theta.ha,theta.lo,theta.hih,

expect.loglike,

const.constraint.param,

const.constraint.value,

equal.constraint.param,

significance,power,sample.size,

smo.df=T)

This routine works similar to other asypow library routines. The parameters are
named “theta1”, “theta2”, . . .
The user must provide the arguments theta.lo and theta.hi: theta.lo is an

array of lower limits on the parameters, and theta.hi is an array of upper limits on
the parameters.
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The user must also provide an S function that calculates the expected log-
likelihood of the model assuming that parameter values, theta.ha,are correct at a
parameter point, theta.ho. This function is passed in the argument expect.loglike.
expect.loglike is a function of the two vectors: theta.ha and theta.ho.
If density(theta,. . . ) is a function which calculates the density of the model at

the parameter values theta, and loglike(theta,. . . ) is a function which calculates
the log-likelihood of the model at the parameter values theta, then the expected
log-likelihood at theta.ho over theta.ha is density(theta.ha)*loglike(theta.ho) in-
tegrated over the appropriate space.
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