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Abstract

We consider the �tting of normal or t-component mixture models to multivariate data,

using maximum likelihood via the EM algorithm. This approach requires the initial speci-

�cation of an initial estimate of the vector of unknown parameters, or equivalently, of an

initial classi�cation of the data with respect to the components of the mixture model under

�t. We describe an algorithm called EMMIX that automatically undertakes this �tting,

including the provision of suitable initial values if not supplied by the user. The EMMIX

algorithm has several options, including the option to carry out a resampling-based test

for the number of components in the mixture model.

1 INTRODUCTION

Finite mixtures models are being increasingly used to model the distributions of a wide

variety of random phenomena. For multivariate data of a continuous nature, attention
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has focussed on the use of multivariate normal components because of their computa-

tional convenience. They can be easily �tted iteratively by maximum likelihood (ML)

via the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin (1977),

McLachlan and Krishnan (1997)), as the iterates on the M-step are given in closed form.

Also, in cluster analysis where a mixture model-based approach is widely adopted, the

clusters in the data are often essentially elliptical in shape, so that it is reasonable to

consider �tting mixtures of elliptically symmetric component densities. Within this class

of component densities, the multivariate normal density is a convenient choice given its

above-mentioned computational tractability.

However, for a set of data containing a group, or groups, of observations with longer

than normal tails or atypical observations, the use of normal components may unduly

a�ect the �t of the mixture model. So a more robust approach by modelling the data

by a mixture of t distributions is provided. The use of the ECM algorithm to �t this t

mixture model is described in McLachlan and Peel(1998).

We let y1; : : : ; yn
denote an observed p-dimensional sample of size n. With a mixture

model-based approach to drawing inferences from these data, each data point is assumed

to be a realization of the random p-dimensional vector Y with the g-component mixture

probability density function (p.d.f.),

f(y; 	) =
gX

i=1

�ici(y; �i) (1)

where the mixing proportions �i are nonnegative and sum to one and	 = (�1; : : : ; �g�1;�
T )T

where �i denotes the unknown parameters of the distribution ci. In the case of multi-

variate normal mixture models the ci(y; �i) are replaced by �(y; �
i
; �i) denoting the

multivariate normal p.d.f. with mean (vector) �
i
and covariance matrix �i. Hence the

� contains the elements of the �
i
and the distinct elements of �i (i = 1; : : : ; g).

Often, in order to reduce the number of unknown parameters, the component-covariance

matrices are restricted to being equal, or even diagonal as in the AutoClass program of

Cheeseman and Stutz (1996). Less restrictive constraints can be imposed by a reparam-

eterization of the component-covariance matrices in terms of their eigenvalue decompo-
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sitions as, for example, in Ban�eld and Raftery (1993). In the latest version of AutoClass

(http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/autoclass-c-program.html), the

covariance matrices are unrestricted

In other software for the �tting of mixturemodels, there are MCLUST and EMCLUST

which are a suite of S-PLUS functions for hierarchical clustering EM, and BIC, respec-

tively based on parameterized Gaussian mixture models; see Ban�eld and Raftery (1993),

Byers and Raftery (1998), Campbell et al. (1998), DasGupta and Raftery (1998), and

Fraley and Raftery (1998). MCLUST (http://stat.washington.edu/fraley/software.shtml)

and EMCLUST (http://stat.washington.edu/fraley/software.shtml) are written in FOR-

TRAN with an interface to the S-PLUS commercial package.

Some packages for the �tting of �nite mixtures have been reviewed recently by

Haughton (1997). Also, Wallace and Dowe (1994) have considered the application of

their SNOB (http://www.cs.monash.edu.au/ dld/Snob.html) program to mixture mod-

elling using the minimummessage length principle of Wallace and Boulton (1968). More

recently, Hunt and Jorgensen (1997) have developed the MULTIMIX program for the

�tting of mixture models to data sets that contain categorical and continuous variables

and that may have missing values.

Under the assumption that y1; : : : ; yn
are independent realizations of the feature

vector Y , the log likelihood function for 	 is given by

log L(	) =
nX

j=1

log
gX

i=1

�i�(yj
; �

i
; �i): (2)

With the maximum likelihood approach to the estimation of 	, an estimate is provided

by an appropriate root of the likelihood equation,

@ logL(	)=@	 = 0: (3)

In this paper, we describe an algorithm called EMMIX that has been developed using the

EM algorithm to �nd solutions of (3) corresponding to local maxima. In the appendix of

their monograph, McLachlan and Basford (1988) gave the listing of FORTRAN programs

that they had written for the maximum likelihood �tting of multivariate normal mixture
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models under a variety of experimental conditions. Over the years, these programs

have undergone continued re�nement and development, leading to an interim version

known as the NMM algorithm (McLachlan and Peel, 1996). Since then, there has been

much further development, culminating in the present version of the algorithm known as

EMMIX. The option in EMMIX that uses hierarchical-based methods for the provision

of an initial classi�cation of the data uses the the program HACLUS written by Dr I. De

Lacy.

For the mixture programs of McLachlan and Basford (1988), an initial speci�cation

had to be given by the user either for the parameter vector 	 or for the classi�cation of

the data with respect to the components of the normal mixture model. With the EMMIX

algorithm, the user does not have to provide this speci�cation. In the absence of a user-

provided speci�cation, the EMMIX algorithm can be run for a speci�ed number of random

starts and/or for starts corresponding to classi�cations of the data by speci�ed clustering

procedures from a wide class that includes k-means and commonly used hierarchical

methods.

Another major option of the EMMIX algorithm allows the user to automatically

carry out a test for the smallest number of components compatible with the data. This

likelihood-based test uses the resampling approach of McLachlan (1987) to assess the

associated P -value. This option is based on the MMRESAMP subroutine of McLachlan

et al. (1995).

The EMMIX algorithm also has several other options which are outlined in the user's

guide.

2 APPLICATION OF EM ALGORITHM

It is straightforward to �nd solutions of (3) using the EM algorithm of Dempster et

al. (1977). For the purpose of the application of the EM algorithm, the observed-
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data vector y
obs

= (yT

1 ; : : : ; y
T

n
)T is regarded as being incomplete. The component-

label variables zij are consequently introduced, where zij is de�ned to be one or zero

according to if y
j
did or did not arise from the i th component of the mixture model,

(i = 1; : : : ; g ; j = 1; : : : ; n). This complete-data framework in which each observation

is conceptualised as having arisen from one of the components of the mixture is directly

applicable in those situations where Y can be physically identi�ed as having come from

a population which is a mixture of g groups. On putting zj = (z1j; : : : ; zgj)
T , the

complete-data vector xc is therefore given by

xc = (xT

1 ; : : : ; x
T

n
)T ;

where x1 = (yT

1 ; z
T

1 )
T ; : : : ; xn = (yT

n
; zT

n
)T are taken to be independent and identically

distributed with z1; : : : ; zn being independent realizations from a multinomial distribu-

tion consisting of one draw on g categories with respective probabilities �1; : : : ; �g. That

is,

z1; : : : ; zn

iid

� Multg(1; �);

where � = (�1; : : : ; �g)
T . For this speci�cation, the complete-data log likelihood is

log Lc(	) =
gX

i=1

nX
j=1

zij logf�i�(yj
;�

i
;�i)g: (4)

The EM algorithm is easy to program and proceeds iteratively in two steps, E (for

expectation) and M (for maximization); see McLachlan and Krishnan (1997) for a recent

account of the EM algorithm in a general context. On the (K+1) th iteration, the E-step

requires the calculation of

Q(	 ; 	(k)) = E
	(k)flogLc(	) j y

obs
g;

the conditional expectation of the complete-data log likelihood logLc(	), given the ob-

served data y
obs
, using the current �t 	(k) for 	. Since logLc(	) is a linear function of

the unobservable component-label variables zij, the E-step is e�ected simply by replacing

zij by its conditional expectation given y
j
, using 	(k) for 	. That is, zij is replaced by

�i(yj
; 	(k)) = E

	(k)fZij j yj
g
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= pr
	

(k)fZij = 1 j y
j
g

=
�i�(yj

; �
i
;�i)P

g

h=1 �h�(yj
; �

h
;�h)

(i = 1; : : : ; g ; j = 1; : : : ; n);

where �i(yj
; 	(k)) is the current estimate of the posterior probability that the j th entity

with feature vector y
j
belongs to the ith component (i = 1; : : : ; g ; j = 1; : : : ; n).

On the M-step on the (k + 1) th iteration, the intent is to choose the value of 	,

say 	(k+1), that maximizes Q(	; 	(k)). It follows that on the M-step of the (k + 1)

th iteration, the current �t for the mixing proportions, the component means, and the

covariance matrices is given explicitly by

�
(k+1)
i

=
nX

j=1

�i(yj
; 	(k))=n;

�
(k+1)
i

=
nX

j=1

�i(yj
; 	(k))y

j
=

nX
i=1

�i(	
(k));

and

�
(k+1)
i

=
nX

j=1

�i(yj
; 	(k))(y

j
� �

(k+1)
i

)(y
j
��

(k+1)
i

)T=
nX

i=1

�i(yj
; 	(k)) (5)

for i = 1; : : : ; g >. A nice feature of the EM algorithm is that the mixture likelihood

L(	) can never be decreased after the EM sequence. Hence

L(	(k+1)) � L(	(k));

which implies that L(	(k)) converges to some L� for a sequence of likelihood values

bounded above. The E and M-steps are alternated repeatedly until the likelihood (or the

parameter estimates) change by an arbitrarily small amount in the case of convergence.

Let 	̂ be the chosen solution of the likelihood equation. The likelihood function L(	)

tends to have multiple local maxima for normal mixture models. In this case of unre-

stricted component covariance matrices, L(	) is unbounded, as each data point gives

rise to a singularity on the edge of the parameter space; see, for example, McLachlan

and Basford (1988, Chapter 2). In practice, however, consideration has to be given to

the problem of relatively large local maxima that occur as a consequence of a �tted
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component having a very small (but nonzero) variance for univariate data or general-

ized variance (the determinant of the covariance matrix) for multivariate data. Such a

component corresponds to a cluster containing a few data points either relatively close

together or almost lying in a lower dimensional subspace in the case of multivariate data.

There is thus a need to monitor the relative size of the �tted mixing proportions and of

the component variances for univariate observations and of the generalized component

variances for multivariate data in an attempt to identify these spurious local maximizers.

There is also a need to monitor the Euclidean distances between the �tted component

means to see if the implied clusters represent a real separation between the means or

whether they arise because one or more of the clusters fall almost in a subspace of the

original feature space.

3 MIXTURES OF t-DISTRIBUTIONS

As mentioned in Section 1 for many applied problems, the tails of the normal distribu-

tion are often shorter than required. Also, the estimates of the component means and

covariance matrices can be a�ected by observations that are atypical of the components

in the normal mixture model being �tted. EMMIX provides a more robust approach

by modelling the data by a mixture of t distributions. The use of the ECM algorithm

to �t this t mixture model is described and examples of its use are given in McLachlan

and Peel (1998). With this t mixture model-based approach, the normal distribution for

each component in the mixture is embedded in a wider class of elliptically symmetric

distributions with an additional parameter called the degrees of freedom �. As � tends

to in�nity, the t distribution approaches the normal distribution. Hence this parameter �

may be viewed as a robustness tuning parameter. EMMIX has the option to �x the com-

ponent � parameters in advance or infer their values from the data for each component

using the ECM algorithm.
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4 SPECIFICATION OF INITIAL VALUES

It follows from the previous section that care must be taken in the choice of the root of

the likelihood equation in the case of unrestricted covariance matrices where L(	) is un-

bounded. In order to �t a mixture model using the EM algorithm, an initial value has to

be speci�ed for the vector	 of unknown parameters for use on the E-step on the �rst iter-

ation of the EM algorithm. Equivalently, initial values must be speci�ed for the posterior

probabilities of component membership of the mixture, �1(yj
; 	(0)); : : : ; �g(yj

; 	(0)),

for each y
j
(j = 1; : : : ; n) for use on commencing the EM algorithm on the M-step the

�rst time through. The latter posterior probabilities can be speci�ed as zero-one values,

corresponding to an outright classi�cation of the data with respect to the g components

of the mixture. In this case, it su�ces to specify the initial partition of the data. In a

cluster analysis context it is usually more appropriate to do this rather than specifying

an initial value for 	.

5 EMMIX ALGORITHM

We now give a general description of an algorithm called EMMIX, which automatically

provides a selection of starting values for this purpose if not provided by the user. More

precise details on the EMMIX algorithm, including its implementation, are given in the

\User's Guide to EMMIX".

The EMMIX algorithm automatically provides starting values for the application of

the EM algorithm by considering a selection obtained from three sources:

(a) random starts,

(b) hierarchical clustering-based starts, and

(c) k-means clustering-based starts
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Concerning (a) for randomly selected starts, we have an additional option whereby the

user can �rst subsample the data before using a random start based on the subsample

each time. This is to limit the e�ect of the central limit theorem which would have the

randomly selected starts being similar for each component in large samples.

Concerning (b), the user has the option of using in either standardized or unstan-

dardized form, the results from seven hierarchical methods (nearest neighbour, farthest

neighbour, group average, median, centroid, exible sorting, and Ward's method). There

are several algorithm parameters that the user can optionally specify; alternatively, de-

fault values are used. The program �ts the normal mixture model for each of the initial

grouping speci�ed from the three sources (a) to (c). All these computations are auto-

matically carried out by the program. The user only has to provide the data set the

restrictions on the component-covariance matrices (equal, unequal, or diagonal), the ex-

tent of the selection of the initial groupings to be used to determine starting values, and

the number of components that are to be �tted. Summary information is automatically

given as output for the �nal �t. However, it is not suggested that the clustering of a

data set should be based solely on a single solution of the likelihood equation, but rather

on the various solutions considered collectively. The default �nal �t is taken to be the

one corresponding to the largest of the local maxima located. However, the summary

information can be recovered for any distinct �t.

As well as the options pertaining to the automatic provision of starting values covered

above, several other options are available, including the provision of standard errors for

the �tted parameters in the mixture model, and the bootstrapping of the likelihood ratio

statistic � for testing g = g0 versus g = g0 + 1 components in the mixture model, where

the value g0 is speci�ed by the user. With the latter option, the bootstrap samples are

generated parametrically from the g0-component normal mixture model with	 set equal

to the �t 	̂g0 for 	 under the null hypothesis of g0 components.
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6 EXAMPLE

To illustrate the use of the EMMIX algorithm, we consider the a simulated bivariate

sample generated from a normal mixture model with parameters

�1 =

�
0; 0

�
T

;�2 =

�
4; 0

�
T

;�3 =

�
�4; 0

�
T

�1 =

0
B@ 1

0 1

1
CA ;�2 =

0
B@ 1

�0:4 3

1
CA ;�3 =

0
B@ 2

0:3 0:5

1
CA

and mixing proportions �1 = �2 = �3 = 0:33

A plot of the sample with the true allocation shown is given in Figure 1.

−10 −8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Figure 1: Plot of the simulated sample with the true allocation shown

We now cluster these data, ignoring the known classi�cation of the data, by �tting

a mixture of three normal components with 10 random starts (using 70 percent sub-

sampling of the data), 10 k-means starts and the default 6 hierarchical methods (with

and without restrictions on the component-covariance matrices). The resulting allocation

when �tting unconstrained covariance matrices is shown in Figure 2.
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Figure 2: Plot of the allocation found by EMMIX with arbitrary covariance matrices for

the simulated sample

When �tting unconstrained covariance matrices EMMIX misallocated eight points

(5.3 %). The misallocation occurs on the boundary between the component denoted by

crosses and the component denoted by circles with EMMIX misallocating seven of the

crosses group as circles and one of the circle points as a cross.

Similarly, the allocation produced when �tting equal covariance matrices is given in

Figure 3. Fitting equal covariance matrices in this example results, as would be expected,

in a much larger number of misallocations.

If the number of components is not speci�ed, EMMIX can �t a range of values for

the number of components utilizing the bootstrap procedure. The resulting output from

EMMIX (�tting unconstrained covariance matrices) is given below in Table 1. The results

produced by EMMIX shown in Table 1 concur with the true number of components, three.
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Figure 3: Plot of the allocation found by EMMIX with equal covariance matrices for the

simulated sample

NG Log Lik �2 log � AIC BIC AWE P -VAL

1 -636.76 - 1283.53 1298.58 1333.64 -

2 -612.31 48.92 1246.61 1279.73 1356.85 0.01

3 -588.21 48.19 1210.42 1261.60 1380.78 0.01

4 -580.79 14.84 1207.58 1276.82 1438.07 0.12

Table 1: Analysis to determine the number of groups for the simulated example
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