
JSS Journal of Statistical Software
June 2008, Volume 26, Issue 1. http://www.jstatsoft.org/

An Implementation of Bayesian Adaptive

Regression Splines (BARS) in C with S and R
Wrappers

Garrick Wallstrom
University of Pittsburgh

Jeffrey Liebner
Carnegie Mellon University

Robert E. Kass
Carnegie Mellon University

Abstract

BARS (DiMatteo, Genovese, and Kass 2001) uses the powerful reversible-jump MCMC
engine to perform spline-based generalized nonparametric regression. It has been shown
to work well in terms of having small mean-squared error in many examples (smaller than
known competitors), as well as producing visually-appealing fits that are smooth (filter-
ing out high-frequency noise) while adapting to sudden changes (retaining high-frequency
signal). However, BARS is computationally intensive. The original implementation in S
was too slow to be practical in certain situations, and was found to handle some data
sets incorrectly. We have implemented BARS in C for the normal and Poisson cases, the
latter being important in neurophysiological and other point-process applications. The
C implementation includes all needed subroutines for fitting Poisson regression, manipu-
lating B-splines (using code created by Bates and Venables), and finding starting values
for Poisson regression (using code for density estimation created by Kooperberg). The
code utilizes only freely-available external libraries (LAPACK and BLAS) and is otherwise
self-contained. We have also provided wrappers so that BARS can be used easily within
S or R.

Keywords: curve-fitting, free-knot splines, nonparametric regression, peri-stimulus time his-
togram, Poisson process.

1. Introduction

Figure 1 displays a normalized histogram (called a peri-stimulus time histogram, or PSTH,
in the neuroscience literature) of neuronal spiking events across time. This histogram may
be considered an estimate of a Poisson process intensity function. Overlaid on the histogram
is a Gaussian kernel density estimate (the dotted wiggly line) with bandwidth selected by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 An Implementation of Bayesian Adaptive Regression Splines (BARS)

−200 0 200 400 600 800

Time (ms)

fir
in

g
ra

te
 (

sp
ik

es
/s

)

0
35

71
10

6

Figure 1: Histogram and fits using a Gaussian kernel density estimator (dotted line), logspline
(thin line), and BARS (thick line). Units are in spiking events per second, the usual units
for intensity functions based on neuronal spiking events. The data come from a neuron in
inferotemporal cortex recorded during 16 replications (in physiological jargon, 16 trials) of an
experiment described by Baker et al. (2002).

unbiased cross-validation (Venables and Ripley 2002), which smooths the histogram. From
a neurophysiological point of view, it is reasonable to expect the intensity function to vary
slowly throughout much of its domain, but perhaps rapidly in a relative short interval. In
this situation, the kernel density estimate oversmooths the rapid jump in the intensity, while
undersmoothing the portion involving slow variation. It would be preferable to use a method
of estimating the intensity function that adapts to functional variation across time.

For a Poisson process, when the events are put into small time bins, as in Figure 1, the data
form a sequence of Poisson-distributed counts and estimation of the Poisson process inten-
sity function becomes a Poisson regression problem. This problem motivated development
of BARS (Bayesian adaptive regression splines, DiMatteo et al. 2001), which uses regression
splines with knot sets determined adaptively via Markov chain Monte Carlo (MCMC). A

Journal of Statistical Software 3

substantial literature has documented the effectiveness of spline-based nonparametric regres-
sion and its generalizations, with the knots being determined empirically. See Hansen and
Kooperberg (2002) and the accompanying discussion. The fits by BARS (represented by
the thick smooth line) and another popular free-knot spline approach (thin line), logspline
(Stone, Hansen, Kooperberg, and Truong 1997), are displayed in Figure 1 and represent
marked improvements over the Gaussian kernel density estimate. DiMatteo et al. (2001)
showed in several examples that BARS could perform dramatically better than two closely-
related methods, which themselves were better in many examples than competitors such as
wavelet-based methods.

BARS has been used in variety of applications in neurophysiology, imaging, genetics, and
EEG analysis (see DiMatteo et al. 2001; Kass, Ventura, and Cai 2003; Kass and Wallstrom
2002; Zhang, Roeder, Wallstrom, and Devlin 2003; Wallstrom, Kass, Miller, Cohn, and Fox
2004). Furthermore, preliminary results have indicated that, with reasonable sample sizes,
posterior credible regions produced by BARS have very close to the correct frequentist cov-
erage probabilities. For example, simulating from a curve based on the firing-rate function
displayed in Figure 1, the coverage of the 95% posterior credible region for location of the
peak was 95.9%, with two-digit accuracy (simulation SE = .005, based on 7,600 simulated
data sets).

The original implementation of DiMatteo et al. (2001) was in S (Insightful Corp. 2003). It
was very slow, and also suffered from bugs that caused occasional very poor fits. We wished to
improve the implementation. In addition, in order to study frequentist coverage probabilities
we had to use a parallel array of multiple processors, and therefore needed self-contained
code. This article discusses a relatively fast, self-contained, and, we believe, careful BARS
implementation in C with S and R wrappers. We give an overview of BARS in Section 2 and
an overview of the code in Section 3. Section 4 describes the S and R wrappers and Section 5
gives pseudo-code for the C implementation.

2. Overview of BARS

Consider the problem of making inferences about a function f(t), where t lies in an interval
[A,B], based on data y = y1, . . . , yn obtained at t = t1, . . . , tn, with each Yj assumed to depend
probabilistically on f(tj) (and, following the usual convention, yj represents the observed value
of the random variable Yj). To solve this problem BARS fits the spline-based generalized
nonparametric regression model for data Yj depending on a variable t,

Yj ∼ P(yj |θj , ζ)
θj = f(tj) (1)

with f being a linear combination of splines having unknown sets of knot locations. Model
(1) includes a vector of nuisance parameters ζ to indicate generality, though in the Poisson
case there are no nuisance parameters. Writing f(t) in terms of basis functions bξ,h(t) as
f(t) =

∑
h bξ,h(t)βξ,h the function evaluations f(t1), . . . , f(tn) may be collected into a vector

(f(t1), . . . , f(tn))> = Xξβξ, where Xξ is the design matrix and βξ is the coefficient vector.
For a given knot set ξ = (ξ1, . . . , ξk) model (1) poses a relatively easy estimation problem; for
exponential-family responses (such as Poisson) it becomes a generalized linear model. Select-
ing the interval [A,B] can be difficult in some problems due to spline boundary conditions

4 An Implementation of Bayesian Adaptive Regression Splines (BARS)

(see Hansen and Kooperberg 2002, and the accompanying discussion), but in many problems
such as the neuronal spiking problem, it is rarely an issue because data are often available
outside of the time interval of interest, [A,B]. The hard part of the problem is determining
the knot set ξ, and using the data to do so provides the ability to fit a wide range of functions
(as reviewed by Hansen and Kooperberg 2002). BARS is an MCMC-based algorithm that
samples from a suitable approximate posterior distribution on the knot set ξ. This, in turn,
produces samples from the posterior on the space of splines. In practice, cubic splines and
the natural spline basis have been used in most applications. BARS could be viewed as a
powerful engine for searching for an “optimal” knot set, but because it generates a posterior
on the space of splines it produces an improved spline estimate based on model averaging
(e.g., Kass and Raftery 1995) and it also provides uncertainty assessments.

2.1. MCMC in BARS

Key features of the MCMC implementation of BARS include (i) a reversible-jump chain on
ξ after integrating the marginal density

P(y|ξ) =
∫

P(y|βξ, ξ, ζ)π(βξ, ζ|ξ)dβξdζ (2)

(where y = (y1, . . . , yn)), the integration being performed exactly for normal data and approx-
imately, by Laplace’s method, otherwise, (ii) continuous proposals for ξ, and (iii) a locality
heuristic for the proposals that attempts to place potential new knots near existing knots.
For notational convenience here we are supressing the dependence of the knot set ξ on the
number of knots k but BARS explores the space of generalized regression models defined by
ξ and k and the prior on k can, in some cases, control the algorithm in important ways (see
DiMatteo et al. 2001; Hansen and Kooperberg 2002; Kass and Wallstrom 2002).
The essential idea of using reversible-jump MCMC to select knots was suggested by Denison,
Mallick, and Smith (1998), following the lead of Green (1995), who discussed the special
case of change-point problems. However, aspects of BARS outlined in (i)–(iii) distinguish
it from (and improve upon) the method of Denison et al. (1998) (see Kass and Wallstrom
2002). The first implementation feature, item (i) above, introduces an analytical step within
the MCMC partly to simplify the problem of satisfying detailed balance and partly for the
sake of MCMC efficiency (which is generally increased when parameters are integrated; see
Liu, Wong, and Kong 1994). In addition, BARS takes advantage of the high accuracy of
Laplace’s method in this context. In doing so the “unit-information” prior discussed by Kass
and Wasserman (1995) and Pauler (1998) has been used (as π in (2)), and this gives the
interpretation that the algorithm is essentially using BIC to define a Markov chain on the
knot sets. The importance of performing the integral (2), at least approximately, has been
stressed by Kass and Wallstrom (2002). Continuous proposals and the locality heuristic (items
(ii) and (iii)) together allow knots to be placed close to one another, which is advantageous
when there is a sudden jump in the function.

For each draw ξ(g) from the posterior distribution of ξ, a draw β
(g)
ξ is obtained from the

conditional posterior of βξ, conditionally on ξ(g). The conditional posterior of βξ often may
be assumed normal, but in some cases the normal approximation is not very good. DiMatteo
et al. (2001) described an importance reweighting scheme to improve upon the normal ap-
proximation. In the code discussed here, if the normal approximation seems poor, we instead
use a conditional Metropolis update.

Journal of Statistical Software 5

From β
(g)
ξ we obtain fitted values f (g)(t̃) =

∑
bξ,h(t̃)β(g)

ξ,h for selected t̃ and these, in turn, may
be used to produce a draw φ(g) from the posterior distribution of any characteristic φ = φ(f)
(such as the value at which the maximum of f(t) occurs). Thus, the key output of BARS is
the set of vectors f̃ (g) = (f (g)(t̃1), f (g)(t̃2), . . . , f (g)(t̃p)) for MCMC iterates g = 1, . . . , G, each
f̃ (g) being a vector of fits along a grid t̃1, t̃2, . . . , t̃p that suitably covers the interval [A,B].
The user may sample from the posterior distribution of any functional φ simply by evaluating
φ(g) = φ(f̃ (g)). For instance, a sample from the posterior distribution of the location of the
maximum of f(t) is obtained by finding the location of the maximum of f̃ (g) for each g. This
latter computation is performed in a suitable post-processing environment such as S or R.
MCMC convergence may be assessed by standard methods (Gelman, Carlin, Stern, and Rubin
2004, Section 11.6) though this remains a topic of general research interest (Fan, Brooks, and
Gelman 2006).

2.2. Normal and Poisson implementations of BARS

We have implemented two versions of BARS. One implementation, barsN uses a normal
model in (1). The second, barsP uses a Poisson model. Our choices were based on the general
interest in ordinary curve-fitting (the normal case) and our deep and continuing interest in
fitting neuronal data (the Poisson case).

The two implementations differ not only through the change of likelihood, and the resulting
Laplace approximation to (2) implemented with BIC for the Poisson case, but also in the
selection of starting values for the MCMC algorithm. Starting values are very important:
poor choices of initial knot sets result in extremely long burn-in periods to achieve apparent
stationarity. In the Poisson case we have taken advantage of the closely-related algorithm
logspline (see Hansen and Kooperberg 2002) and have incorporated Charles Kooperberg’s
C implementation of it for density estimation.

Our ability to use Kooperberg’s implementation for density estimation rests on the duality of
fitting Poisson process intensity functions and fitting probability densities: the inhomogeneous
Poisson likelihood for an intensity function λ = λ(t) based on a sequence of event times
t1, t2, . . . , tn in an interval (0, T] is

L(λ) = P(t1, . . . , tn)

= e−
∫ >
0
λ(u)du

n∏
j=1

λ(tj).

Here the number of events N is a Poisson random variable with expectation
∫>
0 λ(u)du.

Conditionally on the number of events N = n the probability density becomes

P(t1, . . . , tN |N = n) =
n∏
j=1

λ(tj).

If we set

f(t) =
λ(t)∫>

0 λ(u)du

then it becomes clear that estimation of λ(t) amounts to estimation of the probability density
f(t), together with estimation of

∫
λ(u)du. We use N = n as an estimate of

∫
λ(u)du, and

6 An Implementation of Bayesian Adaptive Regression Splines (BARS)

Figure 2: Diagram of our normal and Poisson BARS implementations. User-defined param-
eters and data are input and used to create the initial knot set. In the Poisson case, logspline
may be used to create the initial knot set. The MCMC runs starting from the initial knot set
and outputs sampled parameter values, function estimates and confidence intervals.

apply logspline to estimate f(t). logspline returns a set of knots for a cubic spline, and these
are used as initial values for BARS in the Poisson case.

logspline is a carefully-implemented version of forward knot addition followed by backward
elimination of knots. In the normal case we have simply begun with a large set of knots
(defaulted to equally-spaced in the current version) and then performed backward elimination
using BIC, until BIC fails to increase as knots are eliminated. Because logspline is itself an
effective algorithm, we believe the Poisson version of our code is likely to be more efficient
than the normal version in the sense that short MCMC run lengths can be used with Poisson.
We have set the defaults for Poisson at 500 burn-in iterations and 2,000 run iterations, while
for the normal these have been set to 5,000 and 20,000.

We describe below the code and wrappers for the Poisson versions. The normal versions omit
statements involving logspline, and they also omit the regression step used to approximate
the integral in (2). In describing the Poisson regressions we take the Poisson parameter to
be µ. Thus, at time points t1, . . . , tn we have corresponding mean values µ1, . . . , µn. (In the
neuronal setting with m repeated trials, for the histogram bin centered at tj , the expected
number of spiking events is µj = mwλ(tj) where w is the bin width in seconds and λ(t) is in
units of spiking events per second.)

3. Overview of code

Our normal and Poisson BARS implementations proceed through the following general steps
(see Figure 3):

1. Read user-defined parameters.

Journal of Statistical Software 7

2. Read data, and normalize function argument (e.g., time) to interval (0, 1).

3. Find initial knot set.

4. Run MCMC. For g = 1, . . . , Gb, where Gb is the number of burn-in iterations, do steps
(a) and (b) only; subsequently do all of (a)–(e):

(a) Take knot step: addition, deletion, or relocation. This produces ξ(g).

(b) Evaluate integral in (2), exactly in normal case, approximately in Poisson case.

(c) Generate β(g).

(d) Using β(g), obtain fits and also BIC, loglikelihood, maximum, location of the max-
imum, and number of interior knots.

(e) Update modal knot set (if appropriate).

5. Obtain mean and modal estimates of function values, both on a grid and at all observed
argument values, and of the maximum and location of maximum.

6. Obtain confidence intervals for the maximum and location of maximum.

7. Write the results.

We next elaboarate on each of these steps. At the end of this section we discuss briefly the
additional publicly-available subroutines that are used by BARS.

3.1. User-defined parameters

The user may set various parameters by specifying their values in the optional parameters
file. The following parameters are allowed.

burn-in_iterations: The number of burn-in MCMC iterations. Default value = 0.

sample_iterations: The number of sample MCMC iterations. Default value = 2000.

Use_Logspline: true or false to indicate whether Logspline is used for the initial knots. If
Logspline is not used, evenly spaced knots are used. Default value = true.

initial_number_of_knots: The number of initial interior knots used. This only has an
affect if Logspline is not used. Default value = 3.

beta_iterations: Number of iterations for the independence chain on beta for a particular
set of knots. It only runs a chain if the initial beta variate is suspect. In this case, the
independence chain is run starting from the mle and only the last variate is used. If no beta
candidates were accepted, no beta is used although the knot set is not rejected. Default value
= 3.

beta_threshhold: Threshhold for determining whether the initial beta variate is suspect. It
is suspect if the log acceptance probability is less than the threshhold. Default value = -10.0.

prior_form: This is the prior on the number of knots k. Possible values: Uniform, Poisson,
User (for user-defined). Default value = Uniform. Uniform refers to a uniform distribution
on the interval (L,U). For User, see discussion following list of parameters.

Uniform_parameter_L: Default value = 1.

Uniform_parameter_U: Default value = MAXKNOTS = 60.

8 An Implementation of Bayesian Adaptive Regression Splines (BARS)

Poisson_parameter_lambda: Default value = 6.0.

For k ∼ Uniform(L, . . . , U)

� SET prior_form = Uniform

� SET Uniform_parameter_L = L

� SET Uniform_parameter_U = U

For k ∼ Poisson(M)

� SET prior_form = Poisson

� SET Poisson_parameter_lambda = M

proposal_parameter_tau: Parameter τ that controls the spread for the knot proposal dis-
tribution. A candidate knot is generated by first selecting a current knot t, 0 < t < 1, and
then selecting candidate knot ∼ beta(tτ, (1− t)τ). Default value = 50.

reversible_jump_constant_c: Parameter that controls the probability of birth and death
candidates. It may be at most 0.5. Larger values increase the probability for birth death
candidates. Smaller values increase the probability for knot relocation. Default value = 0.40.

confidence_level: The confidence level for parameter intervals. Default value = 0.95.

number_of_grid_points: The number of evenly spaced points for the grid along which fitted
values will be obtained. Default value = 500.

verbose: true or false to indicate verbose output. Default value = false.

User-defined prior on number of knots

The prior on the number of knots k is defaulted to a uniform distribution. However, as
discussed by DiMatteo et al. (2001), Hansen and Kooperberg (2002), Kass and Wallstrom
(2002), this prior can serve usefully to control fitting. A user may specify the prior by
specifying its pdf values on a set of positive integers. This is done in a file. For example, the
file

2 0.05
3 0.15
4 0.30
5 0.30
6 0.10
7 0.10

indicates that P(k = 2) = 0.05, . . . ,P(k = 7) = 0.10. All zero probabilities that appear
between the smallest k having non-zero probability and the largest k having non-zero prob-
ability are changed to an ε > 0. The probabilities are then scaled to sum to one. Note
that very low prior probabilites may make it difficult for the chain to explore some posterior
regions that have high posterior probability. For example, consider P(k = 2) = P(k = 4) =
0.499999,P(k = 3) = 0.000002. The resulting chain would generally get stuck in either the
k = 2 region of the posterior, or the k = 4 region of the posterior.

Journal of Statistical Software 9

3.2. Read data

The data take the form of (x, y) pairs where x = t in the notation of Section 2.

3.3. Find initial knot set

By default, as discussed in Section 2, in the Poisson case the initial knot set is found using
logspline. In the normal case evenly-spaced knots are placed and then backward elimination
is used. Currently, an option to use evenly-spaced knots is also included for the Poisson case.
(A planned improvement is to use every k-th value of tj in the data for both cases.)

3.4. Run MCMC

(a) It is important to recognize that the Markov chain is on the knot sets ξ (after exact or
approximate integration of (2)). As described by DiMatteo et al. (2001), the algorithm
randomly selects as a proposal (in the Metropolis sense) either a new knot (a “birth”
step), removal of a knot (a “death” step), or a relocation of a knot. Birth and relocation
steps begin by randomly selecting a knot, with equal probabilities, from among all
knots in the current knot set. If the proposal involves a birth step, then a location
for the potential new knot is randomly selected by first randomly selecting an existing
knot and then drawing from a beta distribution centered at that knot. This beta
distribution is typically quite tight around its center (with spread controlled by an
optional user-defined parameter τ) in order to propose knots that are close to existing
knots (as mentioned in Section 2). The same beta distribution is used to propose a knot
relocation (the distribution being centered on the knot to be potentially relocated). As
usual, the proposal to add, delete, or relocate is evaluated, and possibly accepted, via
the Metropolis-Hastings ratio.

(b) Approximation of the integral in (2), in the Poisson case, is accomplished via BIC.
This is obtained from the Poisson regression based on the proposed set of knots. This
regression also produces the MLE and observed information matrix, needed in (c).

(c) In the normal case, β(g)
ξ is produced by a draw from the relevant multivariate normal

distribution of the posterior of βξ conditionally on ξ = ξ(g), obtained analytically. In
the Poisson case, for sufficiently large samples, the normal approximation to the poste-
rior based on the MLE and observed information may be used. The algorithm always
attempts to draw β

(g)
ξ from this approximating normal distribution. However, if the

acceptance ratio is extremely small, a short MCMC run is used instead. We have found
this to be quite important because in many of our applications a Poisson mean at some
time t may be very small and thus may produce a highly skewed posterior distribution.

(d) After β(g)
ξ is drawn from the conditional posterior, fits may be obtained. In our appli-

cations we are often interested in maxima and their locations. Therefore, by default,
we compute these.

(e) If BIC for the newly-obtained, current ξ(g) is larger than BIC for all preceding knot
sets then the current ξ(g) is retained as the current modal knot set. The MLE β̂

(g)
ξ (in

10 An Implementation of Bayesian Adaptive Regression Splines (BARS)

the normal case, the least-squares estimate) is also retained so that modal fits can be
produced for the final modal knot set.

3.5. Obtain estimates

Ater MCMC terminates, the iterations are used to find posterior mean and modal fits. The
fits are obtained both at all tj values and on a user-specified grid. In addition, the mean and
modal values of the function maximum and its location are computed.

3.6. Obtain posterior intervals

Based on the set of draws from the posteriors that are used to form estimates, quantiles are
computed via partial sorting. By default the .025 and .975 quantiles form the 95% posterior
(“credible”) intervals. Currently, confidence intervals are only obtained for the function max-
imum and location of the maximum. Other intervals may be obtained easily from the draws
from the posterior in the output.

3.7. Write results

Results are written into a series of files:
sampled_knots_file: The name of the output file for the sampled knot locations. Format is
[iteration number] [number of interior knots] [knots. . .] Note that the number of entries per
line will vary. Use none to indicate no file. Default value = none.
sampled_mu_file: The name of the output file for sampled fitted values (µ) at the observed
argument points t1, . . . , tn. Use none to indicate no file. Default value = samp_mu.
sampled_mu-grid_file: The name of the output file for sampled fitted values (µ) on the
evenly spaced grid points. Use none to indicate no file. Default value = none.
sampled_params_file: The name of the output file for sampled values of various parameters.
The parameters given are iteration number, BIC, log likelihood, location of peak, height at
peak, number of interior knots. Use none to indicate no file. Default value = samp_params.
summary_mu_file: The name of the output file for summary fitted values (µ) at the observed
argument points t1, . . . , tn. Three rows are given with the t values, posterior mean, and
posterior mode, respectively. Use none to indicate no file. Default value = summ_mu.
summary_mu-grid_file: The name of the output file for summary fitted values (µ) on the
evenly spaced grid points. Three rows are given with the t values, posterior mean, and
posterior mode, respectively. Use none to indicate no file. Default value = none.
summary_params_file: The name of the output file for summary values of certain parameters.
The first row is for the location of the peak, and the second is for the height, and the third is for
the number of interior knots. The first two columns are quantiles giving a confidence interval
for the specified confidence level (see parameter confidence_level). The third column is the
posterior mean, and the fourth is the posterior mode. Use none to indicate no file. Default
value = summ_params.

3.8. External subroutines for BARS

In addition to incorporating the logspline code, we have used routines for manipulating B-

Journal of Statistical Software 11

splines written by Bates and Venables (included in the release of R, see R Development Core
Team 2006) and for random number generation obtained from Ranlib (Brown and Lovato
1996). These are part of the BARS code.

BARS also calls linear algebra subroutines from LAPACK and BLAS. These are available at
http://www.netlib.org/lapack/ and http://www.netlib.org/blas/, respectively. They
must be installed prior to compiling BARS. Information about these packages may be found in
Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling,
McKenney, and Sorensen (1999); Dongarra, Croz, Hammarling, and Duff (1990b,a).

4. R and S wrappers

Prior to using this wrapper, one must build a chapter using the file barsP.c. The shared
library must be made available with the dyn.open("S.so") command. Also, the barsP.c
program must be properly compiled, with the compiled program saved as barsP.out.

Note that due to the large amount of output generated by the program, it is desirable to save
the results of the program into a variable, for example:

out_barsP.fun(x, y,)

The wrapper performs the operation by writing the data and settings into the files bars_points
and bars_params, respectively.

Following is the complete function call, including a description of its input and output.

barsP.fun(x, y, initial, iknots, prior, priorparam, burnin, sims, tau, c,
fits, peak, conf, trials, bins)

� Required Input

– Variables
x: a vector of the independent variable, in increasing order
y: a vector of the dependent variable, in the form of count data

� Optional Input

– Initial knots settings
initial: logspline, or even or equal for evenly spaced initial knots. Default
value = logspline.
iknots: the initial number of knots for the spline if using evenly spaced knots.
Default value = 3.

– Settings on prior for knots
prior: the type of prior being used for the knots. The only acceptable answers
are Poisson, uniform, and user. Default value = uniform.
priorparam: the parameter for the prior

* if using Poisson, the choice for lambda = mean
* if using uniform, a vector of length 2 which includes the minimum number of

knots followed by the maximum number of knots. Default value = c(1,60).

http://www.netlib.org/lapack/
http://www.netlib.org/blas/

12 An Implementation of Bayesian Adaptive Regression Splines (BARS)

* if using user, a matrix with 2 columns. The first column should be the number
of knots and the second column should be the probability of obtaining this
number of knots.

– MCMC settings
burnin: the desired length of the burn-in for the MCMC chain. Default value =
200.
sims: the number of simulations desired for the MCMC chain. Default value =
2000.
tau: parameter τ that controls the spread for the knot proposal distribution.
Default value = 50.0.
c: parameter that controls the probability of birth and death candidates. Default
value = 0.4.

– Output settings
fits: if T, the program will return the fitted values for each x-value for each run
of the simulation. Default value = T. Please note that if the number of data points
and/or simulations is large, there may be a lengthy delay as the necessary data is
read.
peak: if T, the program will return the location and height of the highest point on
the fitted curve. Default value = F.
conf: for use with peak. Sets the probability for the credible intervals for the
location and height of the peak. Default value = 0.95 for 95% credible intervals.

– Other settings
trials: the number of trials that are concatenated in the data. Default value =
1.
bins: the number of bins the x-axis is divided into - used to handle unbinned data
and calculate posterior modes. Default value = 150.

� Output

postmeans: vector of the posterior means evaluated at the x values

postmodes: vector of the posterior modes evaluated at the x values

sims: vector of each simulation number, beginning at burnin + 1 and ending at burnin
+ sims

no.knots: vector of the number of knots used at each iteration, excluding burning
iterations

sampknots: matrix containing the position of the knots at each iteration. Length of the
matrix is equal to the number of iterations, excluding burnin iterations, with the width
of the matrix equal to the maximum number of knots at any iteration. NAs are used
to fill in the matrix at iteration numbers that have less than the maximum number of
knots.

sampBICs: vector of the calculated BIC at each iteration, excluding burning iterations

sampllikes: vector of the calculated loglikelihood at each iteration, excluding burning
iterations

Journal of Statistical Software 13

� Optional Output

– Optional output if fits = T

sampfits: matrix of fits for each iteration, excluding burning iterations, with the
rows of the matrix corresponding to the individual iteration. The columns represent
the fits at each value of x.

– Optional output if peak = T

samplpeaks: vector of the x location of the highest point in the fitted curve for
each iteration, excluding burning iterations
samphpeaks: vector of the y value (height) of the highest point in the fitted curve
for each iteration, excluding burning iterations
peaklocationquantile: a credible interval for the x location of the highest peak;
width of the interval is dependent upon the setting chosen for conf
peaklocationmean: the mean x location for the highest peak
peaklocationmode: the mode x location for the highest peak
peakheightquantile: a credible interval for the y value (height) of the highest
peak; width of the interval is dependent upon the setting chosen for conf
peakheightmean: the mean y value (height) of the highest peak
peakheightmode: the mode y value (height) of the highest peak

5. Pseudo-code

5.1. Function: BARS for Poisson count data

� Read data: For Poisson count data, the data must take the form of pairs of bin midpoints
and Poisson counts. The number of replicated data sets is also required. In neuron firing
examples, this is the number of trials. In many other examples, the number of replicated
data sets may be set to one.

� Read user parameters: These include parameters that specify the form of the prior,
prior parameters, mcmc parameters, and parameters that specify output variables and
the destination files.

� Normalize data: The bin midpoints are normalized to lie between 0 and 1, inclusive.

� MCMC: See function description below.

� Write summary output of desired parameters.

� return

5.2. Function: MCMC

In the following, a model M∗ contains information for an individual MCMC iteration. In
particular, it contains

14 An Implementation of Bayesian Adaptive Regression Splines (BARS)

- k∗, the number of interior knots

- ξ∗, the set of interior knots

- XD,∗, the design basis, and XG,∗, the grid basis. The design basis is based on the input
bin midpoints. The grid basis is based upon a grid of evenly spaced points, the number
of which is user defined.

- statistical model fitting information, including parameter estimates, error estimates,
and failure to fit.

- β∗ ∼ π(β|k∗, ξ∗,Data)

- µD,∗ = exp (XDβ∗)

- µG,∗ = exp (XGβ∗)

- The BIC and log likelihood for the full model with parameters (k∗, ξ∗, β∗).

� Declare models Mcurr , Mcand , and Mtemp .

� Set initial knots in Mcurr . The initial knots may be user defined, equally spaced, or
obtained via logspline.

� Calculate birth and death probabilities for each possible value of k, using the user-
defined prior, as follows:

if (k >= MAXKNOTS)

birth probability = 0

else

birth probability = cmin (1, π(k + 1)/π(k))

if (k <= 1)

death probability = 0

else

death probability = cmin (1, π(k − 1)/π(k))

comment:

probability of knot relocation is 1− (birth probability + death probability).

� Define µ(0), used to start each iterative fitting process.

� for i← 0 to (n− 1)

µ
(0)
i = max (0.1, yi)

� Form the natural spline design basis for Mcurr → XD,curr

� Fit the Poisson regression model for Mcurr . See function description below.

� if (fit of Mcurr failed)

Journal of Statistical Software 15

Remove knots through backwards elimination until a subset is found such that 1)
the model fit does not fail, 2) the model has the greatest likelihood among the
models with the same number of knots in which the fit does not fail, and 3) the
knot subset has positive prior probability. If all models with a given number of
knots fail to be fit, the model in which X>DWXD has the smallest condition number
is selected, and the procedure continues by trying to remove an additional knot.

If backwards elimination fails to find a valid subset, the procedure tries to fit a
model with the minimum number of knots that have positive prior probability,
with the knots equally spaced. If the model fails to be fit, exit.

Set Mcurr to the resulting model.

maxBIC ← 0

total iterations ← burnin iterations + sampling iterations

for i← 0 to total iterations − 1

u ∼ U(0, 1)

if (u < birth probability)

s ∼ Discrete Uniform(ξcurr)
t ∼ beta(α = sτ, β = (1− s)τ)
ξcand ← ξcurr ∪ {t}
kcand ← kcurr + 1
Form the natural spline design basis for Mcand → XD,cand

Fit the Poisson regression model for Mcand .
if (fit of Mcand failed) accept probability = 0
else

dens ← q(Mcand |Mcurr)kcurr =
∑
r∈ξcurr fbeta(t|α = rτ, β = (1− r)τ)

accept probability = exp(`cand − `curr + log(kcurr)− log(dens)− 0.5 log(n))
comment: `∗ in the above equation is the
profile likelihood, `∗ = supβ `(ξ∗, k∗, β)

else if (1− u < death probability)

t ∼ Discrete Uniform(ξcurr)
ξcand ← ξcurr \ {t}
kcand ← kcurr − 1
Form the natural spline design basis for Mcand → XD,cand

Fit the Poisson regression model for Mcand . See function description below.
if (fit of Mcand failed) accept probability = 0
else

dens ← q(Mcurr |Mcand)kcand =
∑
r∈ξcand

fbeta(t|α = rτ, β = (1− r)τ)
accept probability = exp(`cand − `curr − log(kcand) + log(dens) + 0.5 log(n))

else

s ∼ Discrete Uniform(ξcurr)

16 An Implementation of Bayesian Adaptive Regression Splines (BARS)

t ∼ beta(α = sτ, β = (1− s)τ)
ξcand ← (ξcurr ∪ {t}) \ {s}
kcand ← kcurr

Form the natural spline design basis for Mcand → XD,cand

Fit the Poisson regression model for Mcand

if (fit of Mcand failed) accept probability = 0
else

dens1 ← q(Mcand |Mcurr)kcurr = fbeta(t|α = sτ, β = (1− s)τ)
dens2 ← q(Mcurr |Mcand)kcand = fbeta(s|α = tτ, β = (1− t)τ)
accept probability = exp(`cand − `curr + log(dens1)− log(dens2))

u ∼ U(0, 1)

if (u < accept probability)

comment: Candidate model accepted. Swap Mcurr and Mcand .
Mtemp ←Mcurr

Mcurr ←Mcand

Mcand ←Mtemp

if (i >= burnin iterations)

comment: Beyond the burn-in period.
Generate Random Coefficient Vector forMcurr . See function description below.
Calculate BICcurr and `curr for the full model using
parameter values (kcurr , ξcurr , βcurr).
µD,curr ← exp(XD,currβcurr)
Form the natural spline grid basis for Mcurr → XG,curr

µG,curr ← exp(XG,currβcurr)
comment: Find mode and the mean function evaluated at the mode. In
neuron firing examples, it produces the location of the peak firing rate, and
the peak firing rate.
Use µG,curr to form an interpolating spline.
Locate mode of interpolating spline → (xmode, µcurr (xmode))
Write desired parameters to a file.
Store desired parameters for later use.
comment: update posterior modal values, if appropriate
if ((BICcurr > maxBIC) or (i == burnin iterations))

maxBIC ← BICcurr

parameter modes ← current parameter values

� Use partial sorting to form confidence intervals of desired stored parameters.

� Calculate means of desired stored parameters.

� return

Journal of Statistical Software 17

5.3. Function: Fit Poisson regression model

� input:

X, an n× p design matrix

y, a vector of observed counts

µ(0), a vector of starting values

� output:

β̂, estimated coefficients

U , a p × p upper triangular matrix that contains information on the estimated
covariance matrix of β̂.

error, a boolean indicator of fit failure.

� µ← µ(0)

� j ← 0

� `0 ← 0

� error ← false

� repeat

j ← j + 1

z ← logµ+ (y − µ) /µ.

W ← Diag (µ)

H ←WX. comment: Use known diagonal structure of W

J ← H>X

U ← Upper triangular matrix from the Cholesky decomposition of J = U>U

if Cholesky decomposition fails

error ← true
exit← true

else

β̂ ← Solution to Jβ = H>z. comment: Use Cholesky decomposition of J
if unable to solve equation

error ← true
exit← true

else
η ← Xβ̂

µ← exp (η)
`j ←

∑
i (yiηi − µi)

exit← (((|`j − `j−1| < ε) and (j > 1)) or (j > 20))

18 An Implementation of Bayesian Adaptive Regression Splines (BARS)

� until (exit)

� return

5.4. Function: Generate random coefficient vector

� Generates β from the posterior distribution π(β|k, ξ,Data) or from the

N

(
β̂,
(
X>WX

)−1
)

approximation, as follows. One β is generated from the normal

approximation. If the β appears to not be an outlier under the posterior distribution,
the β variate is accepted and returned. If the β does appear to be an outlier, the routine
takes a user-defined number of Metropolis-Hastings steps and returns the last sampled
β. The β is identified as an outlier if its log Metropolis-Hastings acceptance probability
is below a user-defined threshhold.

� Let π∗ denote the density for the normal approximation. Note that the Cholesky de-
composition of X>WX is already available from the last fitting iteration.

� input:

β̂, the MLE of β.

U , a p × p upper triangular matrix that contains information on the estimated
covariance matrix of β̂.

MHI, the number of Metropolis-Hastings iterations. This is a user-defined pa-
rameter.

MHT , the threshhold used to determine whether (a) the initial β variate from
the normal approximation should be kept as the resulting variate, or (b) MHI
Metropolis-Hastings iterations are used. MHT is compared to the log of the ac-
ceptance probability. MHT is a user-defined parameter.

� output:

error, a boolean indicator of failure

β, the random variate. Only defined if not error.

� βcurr ← β̂

� for i← 0 to MHI − 1

iter ← 0, error ← false, exit← false

repeat

iter ← iter + 1
z ∼ N(0, I)
A← Solution to U>A = z.
error ← (unable to solve equation)
exit← ((not error) or (iter ≥ 20))

Journal of Statistical Software 19

until (exit)

if (error) exit

else

βcand ← β̂ +A

r ← log
(
L(k,ξ,βcand)
L(k,ξ,βcurr)

π(βcand |k,ξ)
π(βcurr |k,ξ)

π∗(βcurr |k,ξ,Data)
π∗(βcand |k,ξ,Data)

)
if ((i = 0) and (r > MHT))

comment: Accept the initial variate. No additional Metropolis-Hastings
steps.
i←MHI

u← r − 1.0
else

u← U(0, 1)
u← log(u)

if (u < r)
comment: Accept the candidate β.
βcurr ← βcand

� beta← βcurr .

� return

Acknowledgments

Support for the current work was provided by NIMH Program Project MH56193. The authors
are grateful for helpful comments from the referees.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum
A, Hammarling S, McKenney A, Sorensen D (1999). LAPACK Users’ Guide. 3rd edition.
Society for Industrial and Applied Mathematics, Philadelphia, PA.

Baker CI, Behrmann M, Olson CR (2002). “Impact of Learning on Representation of Parts
and Wholes in Monkey Inferotemporal Cortex.” Nature Neuroscience, 5(11), 1210–1216.

Brown BW, Lovato J (1996). “Library of C Routines for Random Number Generation.” URL
http://www.stat.umn.edu/HELP/ranlib-docs/ranlib.c.chs.

Denison DGT, Mallick BK, Smith AFM (1998). “Bayesian MARS.” Statistics and Comping,
8, 337–346.

DiMatteo I, Genovese CR, Kass RE (2001). “Bayesian Curve Fitting with Free-Knot Splines.”
Biometrika, 88, 1055–1073.

http://www.stat.umn.edu/HELP/ranlib-docs/ranlib.c.chs

20 An Implementation of Bayesian Adaptive Regression Splines (BARS)

Dongarra JJ, Croz JD, Hammarling S, Duff I (1990a). “Algorithm 679: A Set of Level 3
Basic Linear Algebra Subprograms: Model Implementation and Test Programs.” ACM
Transactions on Mathematical Software, 16(1), 18–28.

Dongarra JJ, Croz JD, Hammarling S, Duff I (1990b). “A Set of Level 3 Basic Linear Algebra
Subprograms.” ACM Transactions on Mathematical Software, 16(1), 1–17.

Fan Y, Brooks P, Gelman A (2006). “Output Assessment for Monte Carlo Simulations via
the Score Statistic.” Journal of Computational and Graphical Statistics, 15, 178–206.

Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman
& Hall/CRC, Boca Raton.

Green PJ (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination.” Biometrika, 82, 711–732.

Hansen MH, Kooperberg C (2002). “Spline Adaptation in Extended Linear Models.”Statistical
Science, 17, 2–51.

Insightful Corp (2003). S-PLUS Version 6.2. Seattle, WA. URL http://www.insightful.
com/.

Kass RE, Raftery AE (1995). “Bayes Factors.”Journal of the American Statistical Association,
90, 773–795.

Kass RE, Ventura V, Cai C (2003). “Statistical Smoothing of Neuronal Data.” Network:
Computation in Neural Systems, 14, 5–15.

Kass RE, Wallstrom G (2002). “Invited Comment on “Spline Adaptation in Extended Linear
Models” by Mark H. Hansen and Charles Kooperberg.” Statistical Science, 17, 24–29.

Kass RE, Wasserman LA (1995). “A Reference Bayesian Test for Nested Hypotheses and its
Relationship to the Schwarz Criterion.” Journal of the American Statistical Association,
90, 928–934.

Liu JS, Wong WH, Kong A (1994). “Covariance Structure of the Gibbs Sampler with Ap-
plications to the Comparisons of Estimators and Augmentation Schemes.” Biometrika, 81,
27–40.

Pauler DK (1998). “The Schwarz Criterion and Related Methods for Normal Linear Models.”
Biometrika, 85, 13–27.

R Development Core Team (2006). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Stone CJ, Hansen M, Kooperberg C, Truong YK (1997). “The Use of Polynomial Splines
and their Tensor Products in Extended Linear Modeling.” The Annals of Statistics, 25,
1371–1470.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York.

http://www.insightful.com/
http://www.insightful.com/
http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 21

Wallstrom GL, Kass RE, Miller A, Cohn JF, Fox NA (2004). “Automatic Correction of Ocular
Artifact in the EEG: A Comparison of Regression-Based and Component-Based Methods.”
International Journal of Psychophysiology, 53, 105–119.

Zhang X, Roeder K, Wallstrom G, Devlin B (2003). “Integration of Association Statistics
over Genomic Regions Using Bayesian Adaptive Regression Splines.” Human Genomics, 1,
20–29.

Affiliation:

Garrick Wallstrom
Department of Biomedical Informatics
University of Pittsburgh
Suite M-183 Parkvale Building
Pittsburgh, PA, 15213-3305, United States of America
E-mail: garrick@cbmi.pitt.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 26, Issue 1 Submitted: 2004-06-25
June 2008 Accepted: 2007-02-20

mailto:garrick@cbmi.pitt.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Overview of BARS
	MCMC in BARS
	Normal and Poisson implementations of BARS

	Overview of code
	User-defined parameters
	Read data
	Find initial knot set
	Run MCMC
	Obtain estimates
	Obtain posterior intervals
	Write results
	External subroutines for BARS

	R and S wrappers
	Pseudo-code
	Function: BARS for Poisson count data
	Function: MCMC
	Function: Fit Poisson regression model
	Function: Generate random coefficient vector

