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Abstract

In this paper, we present a spectral analysis method based upon least square approx-
imation. Our method deals with nonuniform sampling. It provides meaningful phase
information that varies in a predictable way as the samples are shifted in time. We com-
pare least square approximations of real and complex series, analyze their properties for
sample count towards infinity as well as estimator behaviour, and show the equivalence
to the discrete Fourier transform applied onto uniformly sampled data as a special case.
We propose a way to deal with the undesirable side effects of nonuniform sampling in the
presence of constant offsets. By using weighted least square approximation, we introduce
an analogue to the Morlet wavelet transform for nonuniformly sampled data. Asymptoti-
cally fast divide-and-conquer schemes for the computation of the variants of the proposed
method are presented. The usefulness is demonstrated in some relevant applications.

Keywords: spectral analysis, irregularly sampled time series, wavelets, fast algorithms, eco-
nomic time series, geologic time series.

1. Introduction

Despite the vast number of methods for time series analysis, there is still a lack in manage-
able methods dealing with nonuniformly sampled data. In this paper, we present a spectral
analysis method based upon least square approximation, applied to different types of data.
Our method is based upon assumptions similar to those of the well-known Lomb-Scargle
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periodogram (Lomb 1976; Scargle 1976; Press, Teukolsky, Vetterling, and Flannery 1992;
Bretthorst 2000), and deals with nonuniform sampling. Beyond that, it has the advantage of
a meaningful phase that varies in a predictable way as the samples are shifted in time, while
the Lomb-Scargle periodogram was designed to compute the power spectrum. We study es-
timator properties and the convergence of our results for the sample counts going towards
infinity. We compare least square approximations of real and complex series and show the
equivalence to the discrete Fourier transform applied onto uniformly sampled data as a special
case. We analyze how constant offsets affect the obtained spectral coefficients and propose a
way to deal with the undesirable side effects of nonuniform sampling.

We then reanalyze the approach with focus on weighted least square approximation and intro-
duce an analogue to the Morlet wavelet transform (Chui 1992; Daubechies 1987; Holschnei-
der 1995) for nonuniformly sampled data. Next, we construct a family of asymptotically
fast divide-and-conquer schemes for the evaluation of the presented analysis methods. We
demonstrate the functioning of our methods by applying them onto the paleoclimatic CO2

and Deuterium concentrations covering a time span of approx. 420000 years that were ob-
tained from the ice core (Petit JR et al. 1999) extracted from the ice cover of Lake Vos-
tok, Antarctica. The occupation with the nonuniformly sampled data presented here were
the main reason for the work that lead to this publication. The paper and the data are
available from http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/
v399/n6735/abs/399429a0_fs.html. Finally, we apply the methods to tick data obtained
on one day at the London stock exchange. Since the trade occurs at irregular times, one also
has to deal with nonuniformly sampled data.

2. Spectral transforms for unevenly sampled time series

Given a time series x = (x0 x1 . . . xn−1) sampled at nonuniform time instants t = (t0 t1 . . . tn−1),
the approach

xk = (cω sω)
(

cos(ωtk)
sin(ωtk)

)
+ ek, ∀k ∈ {0, . . . , n− 1} (1)

can be used to derive least square trigonometric approximations for a given angular frequency
ω. Here, ek ∈ R is a zero-mean error term. In the following,

∑
always means

∑
k∈K with the

index set K = {0, . . . , n− 1}, and Ωt,ω denotes the matrix

(
cos ωt0 cos ωt1 · · · cos ωtn−1

sin ωt0 sin ωt1 · · · sin ωtn−1

)
.

The coefficients cω and sω can be obtained by multiplying Eq. 1 with the Moore-Penrose
pseudo-inverse (Penrose 1955),

(cω sω) = xΩT
t,ω

(
Ωt,ωΩT

t,ω

)−1
.

Using trigonometric identities, we compute

http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v399/n6735/abs/399429a0_fs.html
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v399/n6735/abs/399429a0_fs.html
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(cω sω) =
∑(

xk

(
cos ωtk
sin ωtk

)T
)( ∑

cos2 ωtk
∑

cosωtk sinωtk∑
cosωtk sinωtk

∑
sin2 ωtk

)−1

= 2
∑(

xk

(
cos ωtk
sin ωtk

)T
) ( n−

∑
cos 2ωtk −

∑
sin 2ωtk

−
∑

sin 2ωtk n+
∑

cos 2ωtk

)
n2 − (

∑
cos 2ωtk)2 − (

∑
sin 2ωtk)2

(2)

and, based on that, we introduce
Pω = c2ω + s2ω , (3)

a value that will be used later in considerations about power spectra.

Lomb (1976) made similar assumptions about the nature of the analyzed data and introduced
a time shift θ of the series that makes the vectors {cos (ω (tk − θ))}k∈K and {sin (ω (tk − θ))}k∈K

orthogonal, dependent on ω:

∑
cos (ω (tk − θ)) sin (ω (tk − θ)) =

1
2

∑
sin 2 (ω (tk − θ))

=
1
2

∑
sin 2ωtk cos 2ωθ − cos 2ωtk sin 2ωθ

= 0∑
sin 2ωtk cos 2ωθ =

∑
cos 2ωtk sin 2ωθ

θ =
1
2ω

arctan
∑

sin 2ωtk∑
cos 2ωtk

=
1
2ω

arg
(∑

e2iωtk
)
. (4)

The representation using arctan is the common way to express θ. Note that we silently
assume it to be equivalent to the representation using arg, i.e. taking into account the signs
of numerator and denominator separately and dealing with 0 in the denominator.

Applying Eq. 2 onto the original time series with changed sample times tk − θ, k ∈ K, yields

(cω sω) =
∑(

xk

(
cos (ω (tk − θ))
sin (ω (tk − θ))

)T
)(

1P
cos2(ω(tk−θ))

0
0 1P

sin2(ω(tk−θ))

)

=
(∑

xk cos (ω (tk − θ))∑
cos2 (ω (tk − θ))

∑
xk sin (ω (tk − θ))∑
sin2 (ω (tk − θ))

)
.

The absolute square value is

|(cω sω)|2 =
(
∑
xk cos (ω (tk − θ)))2

(
∑

cos2 (ω (tk − θ)))2
+

(
∑
xk sin (ω (tk − θ)))2(∑
sin2 (ω (tk − θ))

)2 ,

which, apart from the squared denominators, is equivalent to the Lomb periodogram,
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Figure 1: The solid line shows the absolute square result of Eq. 3 applied to sin(4.8t) +X0,2 ,
sampled at 400 values of t that are uniformly randomly distributed over [0, 2π). X0,2 denotes
a normally distributed random variable with mean 0 and variance 2. The dashed line shows
the Lomb periodogram applied to the same data, scaled with 1

182 . This factor has to be
adapted for different sample counts.

Plomb(ω) =
(
∑
xk cos (ω (tk − θ)))2∑
cos2 (ω (tk − θ))

+
(
∑
xk sin (ω (tk − θ)))2∑
sin2 (ω (tk − θ))

. (5)

Using the mean 〈x〉 and the variance σ2 of {xk}, the Lomb normalized periodogram is defined
as

Plombnorm(ω) =
1

2σ2

(
(
∑

(xk − 〈x〉) cos (ω (tk − θ)))2∑
cos2 (ω (tk − θ))

+
(
∑

(xk − 〈x〉) sin (ω (tk − θ)))2∑
sin2 (ω (tk − θ))

)
.

The replacement of the xk with xk − 〈x〉 is one way to deal with time series with constant
offset, for which we propose an alternative solution below. This replacement is also commonly
used for the unnormalized Lomb periodogram.

The amplitudes of both versions of the Lomb periodogram appear to depend on the sampling
density, as can be seen in in Figure 2.

In the case of a complex time series ξ = {ξk}k∈K and an approximation by complex functions
eiωt, the result is even simpler. We use the matrix Ψt,ω,

Ψt,ω =
(
eiωt0 eiωt1 . . . eiωtn−1

)
to formulate the expression

ξ = ζωΨt,ω + ε (6)
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Figure 2: The solid line shows the Lomb normalized periodogram applied to the CO2 series
from the Vostok data with subtracted mean value. The densely dashed curve shows the
spectrum of the same data set with odd-numbered samples removed, the widely dashed curves
were obtained by doubling each sample. The abscissae show frequencies in 1/Myr.
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Figure 3: The solid line shows the result of Eq. 3 applied to the CO2 series from the Vostok
data with subtracted mean value. As in Figure 2, the dashed curves were obtained from
of the same data set with odd-numbered samples removed and with each sample doubled,
respectively. The abscissae show frequencies in 1/Myr.
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Figure 4: Eq. 3 applied to sin 39t+sin(39+2π)t randomly sampled over [0, 1] with increasing
density (100, 400, 2000 and 10000 points, curve plot density increasing with sample density).

analogously to Eq. 1 with a complex coefficient ζω and a vector ε of complex zero average
error terms.
The pseudo-inverse solution yields in this case

ζω = ξΨ∗
t,ω

(
Ψt,ωΨ∗

t,ω

)−1 =
1
n

∑
ξke

−iωtk . (7)

Using <z = 1
2 (z + z) and =z = 1

2i (z − z), we rewrite the real approximation of Eq. 2 in
terms of the complex approximation. Here, ζω denotes the complex approximation of the real
series {xk}k∈K , ι2ω denotes the complex approximation at frequency 2ω of the unit time series
{1}k∈K over {tk}k∈K , and <c and =c mean real and imaginary parts of a complex number c,
respectively. We then obtain

cω + isω =
2

1− |ι2ω|2
(<ζω −=ζω)

(
1−<ι2ω =ι2ω

=ι2ω 1 + <ι2ω

)(
1
i

)
=

2
(
ζω − ι2ωζω

)
1− |ι2ω|2

. (8)

In the uniform case of tk = k∆t, ∆t 6= 0, k ∈ K = {0, . . . , n − 1} and ω = lπ
n∆t , l ∈ K \ {0},

the sums
∑

cos 2ωtk and
∑

sin 2ωtk vanish in the real approximation given by Eq. (2), and
the result is equivalent to the complex conjugate of one spectral coefficient of the discrete
Fourier transform. For ω = 0, the average cω = 〈x〉 is obtained. Each term of the sum in
Eq. 6 can be written as a matrix multiplication,

(cω sω)
(

cosωtk sinωtk
− sinωtk cosωtk

)
=

(
<xk =xk

)
. (9)
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Approximating such a uniform real-valued series with the complex approximation of Eq. 7
leaves the imaginary part undetermined, whereas the strictly real approximation of Eq. 2 can
be interpreted as a complex equation with imaginary part set to zero, =xk = 0. Eq. 2 can be
used to approximate both time series <xk and =xk of Eq. 9, whereby =xk = 0, as mentioned
before, which obviously leads to cω = sω = 0. The complex approach of Eq. 9 chooses the
average between the results from Eq. 2 and cω = sω = 0, which is 1

2(cω sω). This explains
the factor 2 in Eq. 2.

In the general case of nonuniformly sampled time series, one usually estimates power spectra
by means of periodograms, as for example the frequently used Lomb-Scargle periodogram
(Lomb 1976; Scargle 1976; Press et al. 1992). When however phase information is desired,
e.g. for the reconstruction of time series out of spectral coefficients and for comparison of
signals, Eq. (2) does the job. In the sequel, we also use it for the extension of wavelet analysis
onto nonuniform time series.

The amplitude of our result is invariant with respect to time shift, whereas the phase is
covariant, as can be verified easily. By introducing a time shift ∆t, we have

Ωt+∆t,ω =
(

cos ω (t0 + ∆t) cos ω (t1 + ∆t) · · · cos ω (tn−1 + ∆t)
sin ω (t0 + ∆t) sin ω (t1 + ∆t) · · · sin ω (tn−1 + ∆t)

)
=

(
cos ω∆t − sin ω∆t
sin ω∆t cos ω∆t

)
Ωt,ω

= Rω∆tΩt,ω . (10)

The pseudo-inverse of Ωt+∆t,ω becomes then

(Rω∆tΩt,ω)∗ (Rω∆tΩt,ω(Rω∆tΩt,ω)∗)−1 = Ω∗t,ω
(
Ωt,ωΩ∗t,ω

)−1 RT
ω∆t

and the coefficients after time shift

(cω sω)′ = (cω sω) RT
ω∆t.

Obviously, for the complex approximation (Eq. 7) the time shift yields

ζ ′ω = ζωe
iω∆t .

Both the real and the complex approximation’s amplitudes are thus shift invariant, and a
meaningful phase is obtained. The well-known advantage of periodograms applied to nonuni-
formly sampled time series is also given here, namely their insensitivity to aliasing phenomena
when the differences between the ti obey a normal distribution.

We note in passing that the reconstruction of a signal from the spectral analysis of a time
series requires a full matrix inverse as a consequence of the nonuniform sampling.

3. Convergence

We base our following considerations on a fixed real infinite sequence {tk}k∈N0
with
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ϕ(t) = lim
n→∞

lim
ε→+0

1
nε

∣∣∣{tk ∣∣∣t− ε

2
≤ tk < t+

ε

2

}∣∣∣
a generalized function describing the empirical density that the tk obey, and a real func-
tion x(t) where x(t)ϕ(t) is absolutely integrable. For sequences with noncontinuous em-
pirical density, e.g. tk = kmodm for a fixed m ∈ N, ϕ(t) may become infinite for some
values of t, a case which is handled by the theory of generalized functions or distribu-
tions. In most cases it suffices however to consider the limits of ordinary functions, e.g.

ϕ(t) = 1
m lim

σ→0

1√
πσ

∑m−1
h=0 e

−( t−h
σ )2

for the previously mentioned series.

Under these circumstances, we can write

lim
n→∞

1
n

n−1∑
k=0

x(tk) =
∫ ∞

−∞
ϕ(t)x(t)dt . (11)

We next consider a complex function ξ(t), where ξ(t)ϕ(t) is absolutely integrable, and a
measurement error ρk obeying an independent complex symmetric distribution with zero
mean. The values ξ (tk) are identified with the ξk. The complex approximation of Eq. 7
applied to ξ(tk) + ρk becomes then

lim
n→∞

ζω = lim
n→∞

1
n

∑
(ξ(tk) + ρk) e−iωtk

= lim
n→∞

1
n

∑
ξ(tk)e−iωtk + lim

n→∞

1
n

∑
ρke

−iωtk

=
∫ ∞

−∞
ξ(t)ϕ(t)e−iωtdt

= Ft (ξ(t)ϕ(t)) ,

where (Ftf(t)) (ω) denotes the Fourier transform of f(t) with respect to the variable t at
frequency ω. We note that when Ftξ(t) exists, the complex approximation converges to
Ftξ(t) ∗ Ftϕ(t). The nonconstant empirical sample density ϕ(t) thus makes the complex
approximation result a biased spectral estimator. The bias converges to 0 as Ftϕ(t) approaches
δ0,t, i.e. components of ϕ(t) with non-zero frequency vanish. We note that

lim
n→∞

Var
1
n

∑
ρke

−iωtk = lim
n→∞

E

(
1
n2

∑
ρke

−iωtk
∑

ρke−iωtk

)

= lim
n→∞

E

 1
n2

n−1∑
k=0

|ρk|2 + 2
n−1∑
k=0

k−1∑
j=0

<
(
ρkρje

−iω(tk−tj)
)(12)

= lim
n→∞

1
n

Var ρk = 0,

which means that the complex approximation is a consistent estimator.

The rewritten real approximation in Eq. 8 becomes
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lim
n→∞

cω + isω = lim
n→∞

2
(
ζω − ι2ωζω

)
1− |ι2ω|2

=
2
(
Ftx(t)ϕ(t)− (Ftϕ(t)) (2ω) (Ftx(t)ϕ(t))

)
1− |Ftϕ(t)(2ω)|2

. (13)

We consider ω 6= 0. As Ftϕ(t) approaches δ0,t, (Ftϕ(t)) (2ω) vanishes, leaving a result that,
except for the factor 2 explained above, is equivalent to the conjugate of the complex ap-
proximation. Under the assumed circumstances, the real approximation thus converges to
something different from the complex approximation. If ϕ is symmetric, then Ftϕ(t) is real,
and the real and imaginary parts of Ftx(t)ϕ(t) are scaled individually. In the general case, the
real approximation converges to a complex linear combination of the complex approximation’s
limit and its complex conjugate.

Since the real approximation is based on the complex approximation, it is, for Ftϕ(t) → δ0,t,
an unbiased estimator. Assuming a real symmetric distribution for the error term ρk in Eq. 12,
we also obtain zero variance for ζω which means that the real approximation is a consistent
estimator as well.

Concluding, we can state that when the Fourier transform of the randomly sampled signal
exists, i.e. the signal is a superposition of sinusoids, both the complex and the real approxi-
mation converge and provide consistent and for Ftϕ(t) → δ0,t unbiased estimators.

In order to study the convergence of the Lomb periodogram, we first introduce

u = lim
n→∞

e−iωθ = lim
n→∞

e−
i
2

arg
P

e2iωtk

= e−
i
2

arg(Ftϕ(t))(2ω) .

Rewriting Eq. 5 and applying Eq. 11, we obtain

lim
n→∞

Plomb(ω) = lim
n→∞

((
1
n

∑
xk cos (ω (tk − θ))

)2
1
n

(
1
n

∑
cos2 (ω (tk − θ))

) +

(
1
n

∑
xk sin (ω (tk − θ))

)2
1
n

(
1
n

∑
sin2 (ω (tk − θ))

) )

= lim
n→∞

( (
1
n

∑
xk<

(
e−iωθeiωtk

))2
1
n

(
1
2n

∑
(1 + < (e−i2ωθei2ωtk))

) +

(
1
n

∑
xk=

(
e−iωθeiωtk

))2
1
n

(
1
2n

∑
(1−< (e−i2ωθei2ωtk))

))

= lim
n→∞

2n

( (
1
n

∑
xk<

(
ueiωtk

))2(
1
n

∑
(1 + < (u2ei2ωtk))

) +

(
1
n

∑
xk=

(
ueiωtk

))2(
1
n

∑
(1−< (u2ei2ωtk))

))

= lim
n→∞

2n

(
(<Ft (uϕ(t)x(t)))2

1 + (Ft (u2ϕ(t))) (2ω)
+

(=Ft (uϕ(t)x(t)))2

1− (Ft (u2ϕ(t))) (2ω)

)
= ∞

unless Ft (uϕ(t)x(t)) = 0.
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4. Wavelet transforms

We now combine the approximations derived above with a weighted least square approxi-
mation to formulate a windowed transform. In our case, a weighted least square term that
should be minimized with respect to (cω sω) reads

∑
β2

k

(
(cω sω)

(
cos ωtk
sin ωtk

)
− xk

)2

=
∑(

(cω sω)
(
βk cos ωtk
βk sin ωtk

)
− βkxk

)2

, (14)

where β2
k ≡ w(tk) is an appropriate weight function.

We obtain the following pseudo-inverse solution for Eq. 14:

(cω sω) = 2
∑(

β2
kxk

(
cos ωtk
sin ωtk

)T
)
·( ∑

β2
k −

∑
β2

k cos 2ωtk −
∑
β2

k sin 2ωtk
−
∑
β2

k sin 2ωtk
∑
β2

k +
∑
β2

k cos 2ωtk

)
(
∑
β2

k)2 − (
∑
β2

k cos 2ωtk)2 − (
∑
β2

k sin 2ωtk)2
. (15)

The complex version of this is again much simpler,

ζω =
∑
β2

k e
−iωtk ξk∑
β2

k

(16)

=
∑
w(ωtk) e−iωtk ξk∑

w(ωtk))
.

For continuous functions as well as for evenly sampled data, the Morlet wavelet transform is
an instance of a weighted Fourier spectrum, whereby the window width scales with ω. It uses
the Gaussian e−(σωt)2with an additional scaling parameter σ as weight function.

We may now define Morlet-like wavelet transforms for unevenly sampled data by using the
windowed approximations from Eq. (15) and Eq. (16). The convolution 1

a

∫
ψ∗( b−τ

a )f(τ)dτ
uses the mother wavelet ψ(t), which we choose to be ψ(t) = w(σt)e−iωt in accordance with
our approach. It remains to introduce a time shift. The complex case then becomes,

ζt,ω =
∑
w(σ ω (tk − t)) e−iω(tk−t) ξk∑

w(σ ω (tk − t)))
. (17)

In order to accelerate the computation, we use a window function with compact support in
time that does not employ transcendental functions,

w(t) =
{

(1− |t|)3 + 3|t|(1− |t|)2 = 1− 3|t|2 + 2|t|3 , t ∈ [−1 . . . 1]
0 otherwise

,

depicted in Figure 5.
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Figure 5: Shown are (a) w(t) (solid) compared with the Hanning window (fine-dashed) and
the appropriately scaled Morlet wavelet window e−πt2 (dashed), and (b) their logarithmic
power spectra, measured in dB. The Hanning window and w(t) nearly coincide in (a).

This window function has a shape that is very similar to the popular Hanning window (see
Figure 5)

h(t) =
{

(1 + cos(πt))/2 , |t| ≤ 1
0 otherwise

. (18)

Its Fourier transform is

ŵ(ω) = 12
2− 2 cos(ω)− ω sin(ω)

ω4
,

and it produces comparable sideband ripples (see Figure 5). The first sideband ripple is even
lower than the Hanning window’s one and not substantially worse than the sideband falloff
of the Gaussian’s spectrum. All three power spectra are shown in Figure 5. An appropriate
choice for the value of σ is 0.05. This means that 2

σ radians or 1
πσ periods of e−iωt fit into the

whole support of the weight function.

In order to estimate the spectral phase differences between two complex time series ξk, tk, k ∈
0, . . . ,K − 1 and ηl, ul, l ∈ 0, . . . , L− 1, we use the complex conjugate product of their ap-
proximations according to Eq. 17,

∑K−1
k=0 w(σω(tk − t)) e−iω(tk−t) ξk∑K−1

k=0 w(σω(tk − t))

∑L−1
l=0 w(σω(ul − t)) eiω(ul−t) ηl∑L−1

l=0 w(σω(ul − t))
=∑K−1

k=0 w(σω(tk − t)) e−iωtk ξk∑K−1
k=0 w(σω(tk − t))

∑L−1
l=0 w(σω(ul − t)) eiωul ηl∑L−1

l=0 w(σω(ul − t))
. (19)

Since e−iωtk ξk and eiωul ηl do not vary with t, they can be precomputed, which accelerates
the computation in comparison to Eq. 17 when the result is computed with increasingly fine
time resolution.
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5. Fast approximation

We use the power series approximation of eit to formulate a divide-and-conquer scheme for
the evaluation of Eq. 7 consisting of 4 fundamental steps described below. A fast algorithm
for the real approximation that makes use of the complex approximation is given thereafter.

5.1. Complex approximation

Subdivision

In a first step, the index set K = {0, . . . , n− 1} is subdivided into subsets Kh with associated
τh such that for a given highest analysis frequency ωmax, when e−iωmax(tk−τh) is approximated
by a power series, the error is sufficiently small.

The sampling times for k ∈ Kh obey −∆τ ≤ tk − τh < ∆τ , which is chosen as ∆τ = c
ωmax

,
i.e. a constant multiple of the period length defined by ωmax (Floating point processors often
use c = π

2 for computing the sine and cosine functions). The initial τ0 is chosen such that

−∆τ ≤ t0 − τ0, and τh+1 = 2∆τ + τh. The subdivision yields H =
⌈

tn−1−t0
2∆τ

⌉
subsets.

Precomputation

Next, for each Kh, the vector sh of the P + 1 first terms of the power series expansion of
1
n

∑
k∈Kh

xke
−i(tk−τh) is precomputed as

sh = {sh,p}0≤p≤P =

∑
k∈Kh

xk (−iµ (tk − τh))p

p!


0≤p≤P

.

The factor µ plays a role in the improvement of numeric accuracy. For now, we can assume
µ = 1.

Summation for a given ω

Using the sh, we now compute the spectral coefficients for 1
2ωmax < ω ≤ ωmax.

1
n

n−1∑
k=0

xke
−iωtk =

1
n

H−1∑
h=0

e−iωτh
∑

k∈Kh

xke
−iω(tk−τh)

=
1
n

H−1∑
h=0

e−iωτh
∑

k∈Kh

∞∑
p=0

(
ω

µ

)p xk (−iµ (tk − τh))p

p!

≈ 1
n

H−1∑
h=0

e−iωτh

P∑
p=0

(
ω

µ

)p ∑
k∈Kh

xk (−iµ (tk − τh))p

p!

=
1
n

H−1∑
h=0

e−iωτh

P∑
p=0

(
ω

µ

)p

sh,p.
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Using the fact that the τh are evenly spaced, the e−iωτh do not have to be calculated explicitly
but can be obtained from e−iωτ0 by repetitive multiplication of e−2iω∆τ .

Merging of s2h and s2h+1 into s′h

For the upper limit of the next frequency interval ω′max := 1
2ωmax, the power series approxi-

mation has the required exactness over an interval of double length. It follows that the s2h

and s2h+1 can be combined to s′h, using the offset τ ′h := 1
2 (τ2h + τ2h+1) and size ∆τ ′ := 2∆τ

belonging to the index set K ′
h with −∆τ ′ ≤ tk − τ ′h < ∆τ ′ for all k ∈ K ′

h. The index h now
runs from 0 to H ′ :=

⌈
H
2

⌉
. The vectors of power series expansion terms s2h and s2h+1 are

combined into s′h using reexpansion:

s′h =

∑
k∈K′

h

xk (−iµ (tk − τ ′h))p

p!


0≤p<P

=

 ∑
k∈K2h

xk (−iµ (tk − τ2h + τ2h − τ ′h))p

p!


0≤p<P

+

 ∑
k∈K2h+1

xk (−iµ (tk − τ2h+1 + τ2h+1 − τ ′h))p

p!


0≤p<P

=

 ∑
k∈K2h

xk

p∑
q=0

(
p
q

)
(−iµ (tk − τ2h))q (−iµ (τ2h − τ ′h))p−q

p!


0≤p<P

+

 ∑
k∈K2h+1

xk

p∑
q=0

(
p
q

)
(−iµ (tk − τ2h+1))

q (−iµ (τ2h+1 − τ ′h))p−q

p!


0≤p<P

=


p∑

q=0

(−iµ (τ2h − τ ′h))p−q

(p− q)!

∑
k∈K2h

xk
(−iµ (tk − τ2h))q

q!


0≤p<P

+


p∑

q=0

(−iµ (τ2h+1 − τ ′h))p−q

(p− q)!

∑
k∈K2h+1

xk
(−iµ (tk − τ2h+1))

q

q!


0≤p<P

=


p∑

q=0

s2h,q
(−iµ (τ2h − τ ′h))p−q

(p− q)!
+

p∑
q=0

s2h+1,q
(−iµ (τ2h+1 − τ ′h))p−q

(p− q)!


0≤p<P

=

{
p∑

r=0

s2h,p−r
(−iµ (τ2h − τ ′h))r

r!
+

p∑
r=0

s2h+1,p−r
(−iµ (τ2h+1 − τ ′h))r

r!

}
0≤p<P

. (20)

With the introduction of ∆τ = τ2h+1 − τ ′h = − (τ2h − τ ′h), this can be further simplified:

s′h =

{
p∑

r=0

s2h,p−r
(−iµ (−∆τ))r

r!
+

p∑
r=0

s2h+1,p−r
(−iµ∆τ)r

r!

}
0≤p<P
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=

{
p∑

r=0

((−1)rs2h,p−r + s2h+1,p−r) (−iµ∆τ)r

r!

}
0≤p<P

(21)

=

{
p∑

r=0

(s2h,p−r + (−1)rs2h+1,p−r) (iµ∆τ)r

r!

}
0≤p<P

(22)

=


b p

2c∑
q=0

(s2h,p−2q + s2h+1,p−2q) (−1)q (µ∆τ)2q

(2q)!
+

i

b p−1
2 c∑

q=0

(s2h,p−2q−1 − s2h+1,p−2q−1) (−1)q (µ∆τ)2q+1

(2q + 1)!


0≤p<P

(23)

This process is repeated until either ω(d+1)
max = 1

2ω
(d)
max passes the desired minimal analysis

frequency ω0, or the merging of adjacent subsets leaves just one subset behind (which means
that at frequencies below the ω(d)

max where this occurs, the time range of the time series covers
merely a fraction of a full period of e−iωt, which is of questionable value, except for ω = 0).
When the number of subsets in one level is odd, the last remaining vector s(d)

H(d) is merged
with an empty one.

5.2. Real approximation

Based on the scheme for complex approximation and the complex representation of the real
approximation in Eq. 8, a computation scheme for the real approximation can be constructed,

cω + isω =
2
(
ζω − ι2ωζω

)
1− |ι2ω|2

.

As in Eq. 7, ζω denotes the complex approximation result for the considered time series,
whereas ι2ω denotes the complex approximation at frequency 2ω of the unit time series (1 . . . 1)
over (t0 . . . tn−1) that can be computed in a separate subdivision scheme with a few obvious
simplifications stemming from the fact that the sample values equal 1.

We note that in the real case, the sh,p are real when p is even and imaginary otherwise. In
Eq. 23, it can be seen that most of the computation steps for the merging process can be
performed with purely real arithmetic, which further speeds up the computation.

5.3. Complexity considerations

We analyze the application of the fast scheme onto logarithmic and linear ranges of frequencies.
In the logarithmic case, the algorithm provides the highest acceleration compared to the
straighforward implementation of 7. Assuming that noct octaves of ncoeff spectral coefficients
per octave shall be computed, the following steps, each shown with their complexity, have to
be performed:

• Subdivision and precomputation: O(nP ),
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• Summation for ncoeff spectral coefficients in each of the noct octaves with ω(d+1)
max < ω ≤

ω
(d)
max, 0 ≤ d < noct: O

(
ncoeffP

H
2d

)
,

• Merging of the sh and sh+1: O
(
P 2 H

2d

)
.

Summing everything up and applying the sum of geometric series, we obtain a total complexity
of

O = O

(
nP +

noct−1∑
d=0

(ncoeff + 1)P 2H

2d

)
= O (P (n+ ncoeffHP )) .

When a linear frequency range ωl = lωmax
L , l ∈ {0, . . . , L} is desired, the number of coefficients

that can be computed with subdivision level d is
⌊

L
2d

⌋
−
⌊

L
2d+1

⌋
= O

(
L
2d

)
. For ω = 0, the

coefficient is computed using the 0th term of the sh. Summation of the above and substitution
of geometric series yields

O = O

(
nP +

dmax∑
d=0

(
L

2d
+ 1
)
P 2H

2d

)
= O (P (n+H + LH)) = O (P (n+ LHP )) .

5.4. Weighted complex approximation

Here, we use the Hanning window from Eq. 18. We build upon subdivision and precomputa-
tion steps similar to the ones described above, with

sh = {sh,p}0≤p≤P =

∑
k∈Kh

xk (−i (tk − τh))p

p!


0≤p≤P

and

jh = {jh,q}0≤q≤Q =

∑
k∈Kh

(i (tk − τh))q

q!


0≤q≤Q

,

where Q can be chosen smaller than P .
We then rewrite Eq. 17 as follows,

∑
k∈K

xkw (σω (tk − t)) e−iω(tk−t)

∑
k∈K

w (σω (tk − t))
=

∑
k∈K(t)

xk (1 + cos (σω (tk − t))) e−iω(tk−t)

∑
k∈K(t)

(1 + cos (σω (tk − t)))

≈

∑
h∈H(t)

∑
k∈Kh

xk

(
e−iω(tk−t) + 1

2e
−iω−(tk−t) + 1

2e
−iω+(tk−t)

)
∑

h∈H(t)

∑
k∈Kh

(
1 + 1

2e
iσω(tk−t) + 1

2e
−iσω(tk−t)

)
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≈

∑
h∈H(t)

e−iω(τh−t)
P∑

p=0

ωpsh,p + 1
2e
−iω−(τh−t)

P∑
p=0

ωp
−sh,p + 1

2e
−iω+(τh−t)

P∑
p=0

ωp
+sh,p


∑

h∈H(t)

1 + 1
2e

iσω(τh−t)

Q∑
q=0

(σω)q jh,q + 1
2e
−iσω(τh−t)

Q∑
q=0

(−σω)q jh,q


using the abbreviations ω− = ω(1 − σ) and ω+ = ω(1 + σ). K(t) denotes the range
ka . . . kb of indices of samples that lie within the translated and scaled Hanning window,
i.e. σω (tka − t) < π and σω (tkb

− t) < π. H(t) denotes the range of indices of subdivision
intervals that cover the Hanning window. The factors e−iω−(τh−t), e−iω(τh−t), e−iω+(τh−t) and
eiσω(τh−t) can be multiplied up iteratively from their respective start value for τha . The pair-
wise merging of the sh and jh is performed similarly to the complex approximation. It has
to be noted that the process of covering the periodic extension of the Hanning window used
with precomputed sample ranges introduces small errors since the sample range boundaries
almost never coincide with the window’s boundary.

6. Approximation for time series with constant offset

When analyzing time series with a constant offset, e.g. x + d(1 . . . 1), d ∈ R, using Eq. 2, we
have d(1 . . . 1)ΩT

t

(
ΩtΩT

t

)−1 6= 0 in the general case, due to the nonorthogonality of the row
vectors of Ωt and the unit vector. This leads to increasingly wrong spectral coefficients for
low frequencies.

We therefore compute

(cω sω dω)

 cosωt0 cosωt1 . . . cosωtn−1

sinωt0 sinωt1 . . . sinωtn−1

1 1 . . . 1

 = (x0 x1 . . . xn−1) , (24)

by means of the pseudoinverse,

(cω sω dω) = 2
∑xk

 cosωtk
sinωtk

1

T

 n+

∑
cos 2ωtk

∑
sin 2ωtk 2

∑
cosωtk∑

sin 2ωtk n−
∑

cos 2ωtk 2
∑

sinωtk
2
∑

cosωtk 2
∑

sinωtk 2n

−1

= 2n
(
<ζω −=ζω 〈x〉

)n
 1 + <ι2ω −=ι2ω 2<ιω

−=ι2ω 1−<ι2ω −2=ιω
2<ιω −2=ιω 2

−1

(25)

=
(
<ζω −=ζω 〈x〉

)
0BB@

2−4(=ιω)2−2<ι2ω 2=ι2ω − 4<ιω=ιω 2<ιω(<ι2ω−1)+2=ι2ω=ιω

2=ι2ω−4<ιω=ιω 2−4(<ιω)2+2<ι2ω 2=ιω(<ι2ω+1)−2=ι2ω<ιω

2<ιω(<ι2ω−1)+2=ι2ω=ιω 2=ιω(<ι2ω+1)−2=ι2ω<ιω 1−|ι2ω |2

1CCA
1−|ι2ω |2−2|ιω |2+2<ι2ω((<ιω)2−(=ιω)2)+4<ιω=ιω=ι2ω

.
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Figure 6: The absolute value from Eq. 25 applied to the Vostok CO2series (solid) compared
with the absolute value from Eq. 2 applied to the CO2 series (densely dashed) and to the CO2

series with subtracted mean value (widely dashed, nearly coincident with the solid curve).

using the symbols ζω and ιω as above to denote complex approximations for the time series
and the unit series. The ζω, ιω and ι2ω can be computed in divide-and-conquer schemes,
whereby the results for ιω can be reused as ι2ω in subsequent octaves.

When looking at Eqs. 1 and 24, it becomes obvious that at low frequencies, the approximation
becomes problematic. In Figure 7 which displays results down to a frequency corresponding
to a third of one period over the full sample time span of 422000 years, it can be seen that the
low frequency coefficients start to diverge. As a rule of thumb, we note that approximation
of time series over a time span of less than half a period becomes undefined.

Looking for periodic components in a signal, we did some promising experiments with the
simultaneous approximation of sinusoids with m integer multiple frequencies of a given ω0,
using the pseudoinverse solution of

(dω cω sω . . . cmω smω)



1
cosωtk
sinωtk

...
cosmωtk
sinmωtk


k∈K

= x .

It is possible to construct a divide-and-conquer scheme for these approximations as well. It
becomes impracticable however to perform the matrix inversion algebraically.
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Figure 7: Cosine (solid), sine (densely dashed) and constant coefficients (widely dashed) of
Eq. 25 applied to the Vostok CO2 series.

7. Application samples

The software accompanying this paper is written as an R module, and was developed under
Linux. Besides the functions written in native R in order to provide a comprehensive sample,
the real and complex spectral transform algorithms and the weighted transform, as well as
their non-accelerated counterparts have been implemented in C as a loadable library. We give
an overview and a couple of examples using the implemented functions here; please refer to
the online documentation in R for details concerning their application and further examples.

The R package is distributed as a compressed installation directory. Please use the shell
command

tar xzvf nuspectral.tgz; R CMD install nuspectral

to install the package into the appropriate directories of your R installation. You may have
to login as super-user first before performing the installation.

After having started R, please use

library("nuspectral")

to load the library. For the function names mentioned below and the data sets provided with
the package, help pages are available that can be viewed using the R help command, e.g.

help("fastnureal")

The following functions, each operating on the time series defined by the abscissa vector X
and the ordinate vector Y , are provided:
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• lombcoeff(X, Y, o) computes a coefficient of the Lomb periodogram for the given
circular frequency.

• lombnormcoeff(X, Y, o) computes a coefficient of the Lomb normalized periodogram
for the given circular frequency.

• nurealcoeff(X, Y, omegamax, ncoeff, noctave)nurealcoeff

• nuwaveletcoeff(X, Y, t, o, wgt = cubicwgt, wgtrad = 1)computes a coefficient
of the nonuniform wavelet transform in Eq. 17 at the given time and circular frequency.
The weight function is by default the cubic polynomial weight function shown in Fig-
ure 5, and the radius beyond which the weight function is truncated to 0 is by default
1.

• nucorrcoeff(X1, Y1, X2, Y2, t, o, wgt = cubicwgt, wgtrad = 1) computes a co-
efficient of the wavelet correlation of the time series given by abscissa vectors X1 and
X2 and ordinate vectors Y1 and Y2 respectively.

The following functions have been implemented in C.

• nucomplex(X, Y, omegamax, ncoeff, noctave)computes the logarithmically scaled
complex spectral approximation of Eq. 7 for the given maximum circular frequency,
number of coefficients and coefficients per octave.

• fastnucomplex(X, Y, omegamax, ncoeff, noctave)is the accelerated version of the
above according to section 5.1.

• nureal(X, Y, omegamax, ncoeff, noctave)computes the logarithmically scaled real
spectral approximation of Eq. 3 for the given maximum circular frequency, number of
coefficients and coefficients per octave.

• fastnureal(X, Y, omegamax, ncoeff, noctave) is the accelerated version of the
above according to section 5.2.

• nurealwavelet(X, Y, omegamax, ncoeff, noctave, tmin, tmax, tsubdiv, sigma=0.1)
computes the wavelet spectrum of Eq. 17 for real Y, the given maximum circular fre-
quency, number of coefficients, coefficients per octave, time interval and time subdivi-
sion.

• fastnurealwavelet(X, Y, omegamax, ncoeff, noctave, tmin, tmax, tsubdiv, sigma=0.1)
computes the accelerated wavelet spectrum using the Hanning window according to sec-
tion 5.4.

The data we will be using stem from

• the Vostok Lake ice drilling core (Petit JR et al. 1999); the ice column extracted from a
more than 3 km deep hole drilled into the antarctic ice over the huge frozen lake near the
Russian Vostok research station provides invaluable information about climate, chemical
composition of the atmosphere and other factors within the last 422000 years. The time
series are all nonuniform, and almost none of the sample times of different series match.
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• tick data from the 11. July 2001 at the London stock exchange. Given are the rates of all
stocks sampled at the transaction times. Since the rates change upon trade transactions
that occur more or less randomly, these time series are also sampled nonuniformly.

Distributed in R format with the package are the Vostok data series

• co2 – the CO2 content of the ice.

• ch4 – the Methane content of the ice.

• deut – the Deuterium content of the ice; the ratio of Deuterium to total Hydrogen is a
proxy for the atmospheric temperature.

• o18 – the 18O (a heavy Oxygen isotope) content of the air enclosed in the ice, a proxy
for the solar irradiation.

• dust – the dust content of the ice.

The stock data example has been downloaded from the internet, and has not been included
into the R package because of copyright issues.

The wavelet transform diagrams below haven’t been generated with R. Some exemplary in-
vocations of R functions that perform the equivalent transformations are presented, however,
in the respective figure captions.

8. Summary

We have presented a way to compute spectra for nonuniformly sampled data based on least
square approximation and the Moore-Penrose pseudoinverse, both for real and complex ap-
proximations. The presented methods are shift-covariant in time and provide phase informa-
tion. We have analyzed the correspondence of our methods with the discrete Fourier transform
and the impact of constant signal offsets onto the spectral coefficients, and studied estimator
properties and the convergence of our results for the sample counts going towards infinity. We
further have introduced weighted versions of these spectral transforms that provide wavelet
transforms for nonuniformly sampled data.

As a most remarkable result, we have presented asymptotically fast algorithms for the com-
putation of the real and complex spectral analysis, which makes our methods comparably
as powerful as the fast Fourier transform. These fast and robust methods to evaluate the
spectral signal in time series open up new possibilities for real-time applications of increasing
importance in many fields, e.g. in medicine, physiology as well as video and audio process-
ing. The methods have also been applied in an interactive work of art where the user can
explore animated 3D renderings in image and sound of a spectral analysis of the Vostok data.
Our methods also promise to be useful for reconstruction and interpolation of missing and
distorted data. The potentiality of our methods has been hinted by the presented relevant
applications.

Future work will include an improvement of the numerical basis of our fast algorithms, and
the development of other fast algorithms based on the presented scheme.



Journal of Statistical Software 21

-400000 -300000 -200000 -100000 0
yr

200

220

240

260

280

300

ppmV

-400000 -350000 -300000 -250000 -200000 -150000 -100000 -50000
yr

5000

10000

20000

50000

100000

period yr

Figure 8: The Vostok CO2 series and the absolute square value of Eq. 17 applied to it and
displayed as intensity. The prominent peak at a period of approx. 100000 years appears to
have a diminishing frequency. The R table whose absolute square value has been visualized
was obtained with
nurealwavelet(co2[[2]],co2[[4]],0.0015,100,20,0,420000,10000)
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Figure 9: The Vostok Deuterium series and the absolute square value of Eq. 17 applied to it.
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Figure 10: The absolute value and the phase of Eq. 19 applied to the Vostok CO2 and
Deuterium series, showing an interdependence of the two values over time and frequency.
Medium gray encodes in-phase, white and black encode opposite phase, light gray indicates
that the CO2 value is ahead of the Deuterium value. Further studies of results of this kind
could provide a deeper understanding of climatic mechanisms. The R table whose absolute
square value and phase have been visualized was obtained with
nurealwavelet(co2[[2]],co2[[4]],0.0015,100,20,0,420000,10000) *
Conj(nurealwavelet(deut[[2]],deut[[4]],0.0015,100,20,0,420000,10000))
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Figure 11: Tick data for British Telecom on 11/07/2001 at the London stock exchange and
the absolute value of Eq. 17 applied to it. The abscissa values are in seconds past midnight.
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Figure 12: Tick data for British Airways on 11/07/2001 at the London stock exchange and
the absolute value of Eq. 17 applied to it. The abscissa values are in seconds past midnight.
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Figure 13: Absolute value and phase of Eq. 19 applied to the tick data of British Airways
and British Telecom as shown above.
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Figure 14: A screen shot from “Algorithmic Echolocation”, an interactive installation by
two of the authors (R.Guardans and A.Mathias) and others, shown at the exhibition cycle
Banquete (2003; Palacio de la Virreina, Barcelona; ZKM, Karlsruhe; Medialab, Madrid). The
installation allows the visitor to navigate through the Vostok data material (here the CO2

data set) in a way that is inspired by a sound sampler, using loops and variable playback
speed. The data is analyzed using Eq. 17, and the absolute values are displayed as elevation
and the phase as vector field. Further, an animated graphic representation of the equation
acting on the data is shown. Beyond graphics, the original data and the spectral analysis
result are used to directly control sound parameters of a software synthesizer, a process called
audification.



26 Algorithms for Spectral Analysis of Irregularly Sampled Time Series

Acknowledgements

We are grateful for stimulating discussions with Kurt Bräuer, Sebastian Fischer, Frank
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