
JSS Journal of Statistical Software
April 2009, Volume 30, Code Snippet 1. http://www.jstatsoft.org/

xsample(): An R Function for Sampling Linear

Inverse Problems

Karel Van den Meersche
NIOO-CEME Yerseke

Karline Soetaert
NIOO-CEME Yerseke

Dick Van Oevelen
NIOO-CEME Yerseke

Abstract

An R function is implemented that uses Markov chain Monte Carlo (MCMC) algo-
rithms to uniformly sample the feasible region of constrained linear problems. Two ex-
isting hit-and-run sampling algorithms are implemented, together with a new algorithm
where an MCMC step reflects on the inequality constraints. The new algorithm is more
robust compared to the hit-and-run methods, at a small cost of increased calculation time.

Keywords: linear modeling, underdetermined systems, Markov chain, R.

1. Introduction

In linear programming and system theory, a linear model is conventionally written in matrix
notation as1 Ax = b + ε, with x a vector of unknowns, and ε an error vector. Additional
equality and inequality constraints can be present, leading to a general formulation:


Ax = b + ε

Ex = f
Gx ≥ h

(1)

This kind of problems are usually overdetermined, meaning that there is no solution for which
ε = 0. They can then be solved with quadratic programming (Lawson and Hanson 1995)
techniques, in which case a norm of the error term ε = Ax− b is minimized, for example

1Notations: Vectors and matrices are in bold; scalars in normal font. Vectors are indicated with a small
letter; matrices with capital letter. Indices between brackets indicate elements of vectors (as in a(i)) or matrices
(as in A(i,j)). Rows or columns of matrices are indicated as A(i,) (rows) or A(,j) (columns). Indices without
brackets (q1, q2) indicate vectors that are subsequent in a random walk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 xsample(): An R Function for Sampling Linear Inverse Problems

the sum of squares
∑
ε2. This is a constrained linear regression problem: parameters x are

subject to the constraints Ex = F and Gx ≥ h.
In many real-life applications with a general lack of data, the linear model (1) is underdeter-
mined. Some examples include metabolic flux analysis in systems biology (Edwards, Covert,
and Palsson 2002), food web modeling (Vezina and Platt 1988), biogeochemical modeling of
the oceans, and the identification of food sources in a grazer’s diet using stable isotope data
(Phillips and Gregg 2003). Applications in other fields may be found as well.
We define the feasible region of linear problem (1), L, as the part of the parameter space that
contains all solutions of the reduced problem{

Ex = f
Gx ≥ h

(2)

Algorithms that sample the feasible region of an underdetermined linear problem in a uniform
way, have already been described in the literature (Smith 1984). Here we introduce an R
function that includes these algorithms in addition to an algorithm developed by the authors,
that is more stable in high-dimensional situations. The implemented function returns a sample
set that is uniformly distributed over the feasible region of equation set (2) when A and b
are lacking.
The model can also contain a number of linear equations Ax = b + ε with an error ε in the
data vector b. In that case, the generated sample set is restricted to the feasible region defined
by (2), but is not uniformly distributed.
When equation (1) is underdetermined, there exist solutions for which ε = 0, i.e. the model
Ax can fit the data b exactly. Here, we assume that ε is normally distributed, i.e. ε ∼ N(0, s).
In the absence of inequality conditions, it is straightforward to construct a series of samples x
for which Ax− b = ε has the proposed distribution. However, when x is subject to inequality
constraints (Gx ≥ h), ε cannot be normally distributed.
Instead, a truncated normal distribution is proposed for x:

p(x) ∝ e−
1
2

(Ax−b)>W2(Ax−b) if x ∈ L ; p(x) = 0 if x /∈ L (3)

where the weight matrix W = diag(s−1). This formulation penalizes samples x when
||Ax− b|| increases, and leads to a normal distribution of Ax− b ∼ N(0, s) when there
are no constraints.
Equation (1) is overdetermined when there is no exact fit Ax = b. ε then represents a model
error term rather than uncertainties in the data:

p(x) ∝ e−
1
2
σ−2(Ax−b)>W2(Ax−b) if x ∈ L ; p(x) = 0 if x /∈ L (4)

Here the model standard deviation σ is a scalar parameter that is estimated together with the
other parameters x (Gelman, Carlin, Stern, and Rubin 2004). In the absence of inequality
constraints, the mean estimate of σ equals the standard deviation of the residuals of a weighted
linear regression.
The R (R Development Core Team 2008) function xsample() is currently part of the limSolve
package (Soetaert, Van den Meersche, and van Oevelen 2009), available under the GPL (Gen-
eral Public License) from the Comprehensive R Archive Network at http://CRAN.R-project.

http://CRAN.R-project.org/

Journal of Statistical Software – Code Snippets 3

org/. limSolve contains several tools for linear inverse modeling. Function xsample() takes
the matrices A, E, G and the vectors b, f , h as input, together with a vector of standard de-
viations for b and a number of technical input parameters. In the next sections, the function
and contained algorithms are explained, and some examples are provided.

2. Method

The xsample() function aims to produce a sample set of vectors x that fulfill a number of
equality constraints, and are confined by a number of inequality constraints. They are either
uniformly distributed within their feasible region, or their distribution depends on the value
of linear combinations Ax. This is done in two steps: (1) eliminate the equality constraints
Ex = f and (2) perform a random walk on the reduced problem.

2.1. Step 1: Eliminate equality constraints

The elements x(i) of x are not linearly independent; they are coupled through the equations
in Ex = f . They are first linearly transformed to a vector q for which all elements q(i) are
linearly independent. If solutions exist for the equations in (2) and a vector x0 is a particular
solution of Ex = f , then all solutions x can be written as:

x = x0 + Zq (5)

Z is an orthonormal matrix, obtained from the QR-decomposition or singular value decom-
position of E (Press, Teukolsky, Vetterling, and Flannery 1992), and serves as a basis for the
null space of E: Z>Z = I and EZ = 0.

There are no equality constraints for the elements in q. Thus, the problem is reduced to:

{
A′q− b′ = ε

G′q− h′ ≥ 0
(6)

with A′ = AZ, b′ = Ap− b, G′ = GZ and h′ = Gx0 − h. In xsample(), a particular solu-
tion x0 of Ex = f can either be provided as one of the input parameters or be calculated by
xsample() as a particular solution using the Least Squares with Equalities and Inequalities
(LSEI) algorithm (Haskell and Hanson 1981), available in the limSolve package as lsei().

Because p meets the inequality constraints Gp ≥ h, there is already one trivial solution of
q: the null vector 0. From this point, new points are sequentially sampled.

We want to know which distribution of q is necessary to obtain the targeted distribution of
the sample set x. If a vector x(q) is a function of q, the PDF (probability density function)
of q is a product of the PDF of x and the Jacobian determinant:

p(q) = p(x)||∂x
∂q
|| (7)

In this case, as Z is orthonormal, the Jacobian is ||∂x∂q || = |Z| = 1. Therefore p(x) = p(q).
This means that if q is sampled uniformly, then x is too.

http://CRAN.R-project.org/
http://CRAN.R-project.org/

4 xsample(): An R Function for Sampling Linear Inverse Problems

2.2. Step 2: Random walk

Markov chain Monte Carlo (MCMC)

What’s left to do, is to properly sample q. This can be done numerically using an MCMC
random walk. Especially for high-dimensional problems, this is more efficient than a grid-
based approach. The Metropolis algorithm (Roberts 1996) produces a series of samples whose
distribution approaches an underlying target distribution. In xsample(), new samples q2

are drawn randomly from a jump distribution with PDF j(.|q1) that only depends on the
previously accepted point q1. The new sample point q2 is either accepted or rejected based
on the following criterion:

if r ≤ p(q2)
p(q1)

accept q2 else keep q1 (8)

with 0 < r ≤ 1 and p(·) the PDF of the target distribution. The only prerequisite for the
sample distribution to converge to the target distribution with PDF p(·), is that the jump
distribution from which a new sample is drawn, is symmetrical in the following sense: the
probability to jump from q1 to q2, j(q2|q1), has to be the same as the probability to jump
from q2 to q1, j(q1|q2). Three different jump distributions are implemented and are discussed
further below.

In absence of matrix A and vector b, the target distribution of q is uniform and thus:

if G′q2 ≥ h (
p(q2)
p(q1)

= 1 ⇒ accept q2 (9)

else p(q2) = 0 ⇒ reject q2

If A and b are present, combining equations (4), (6) and (7):

if G′q ≥ h p(q) ∝ e−
1
2
σ−2(A′q−b′)>W 2(A′q−b′) (10)

else p(q) = 0

The expression for fixed standard deviations is easily obtained from (3) by setting σ = 1
and W = diag(s−1). Otherwise, σ is estimated from fitting of the unconstrained model
Ax− b ∼ N(0, σ).

Sampling the feasible region

New samples in the MCMC are taken from a symmetric jump distribution. A major challenge
is to only sample points that fulfill the inequality constraints. Three algorithms that ensure
this, are discussed in the next paragraphs. As a consequence, the sample set of vectors q
and the derived sample set of vector x, has a distribution that is bounded by the inequality
constraints.

In a euclidean space, every inequality constraint defines a boundary of the feasible subspace.
Each boundary can be considered a multidimensional plane (a hyperplane). One side of
the hyperplane is the feasible range, where the inequality is fulfilled. The other side of the
hyperplane is non-feasible. The hyperplanes are defined by the following set of equations:

G′(,i)q− h′(i) = 0 ∀i (11)

Journal of Statistical Software – Code Snippets 5

Three jump algorithms for selecting new points q2 were implemented: Two hit-and-run algo-
rithms (Smith 1984): the random directions and coordinates directions algorithms and a novel
mirror algorithm that uses the inequality bounds as reflective planes. All three algorithms
produce sample points that fulfill all inequality constraints, and they fulfill the symmetry
prerequisite for the Metropolis algorithm.

Random directions algorithm (rda)

The random directions algorithm (Smith 1984) consists of two steps: first a random direction
is selected by drawing and normalizing a randomly distributed vector. Starting point and di-
rection define a line in solution space. Then the intersections of this line with the hyperplanes
defined by the inequality constraints are determined. A new point is then sampled uniformly
along the line segment that fulfills all inequalities.

Coordinates directions algorithm (cda)

The only difference with the random directions algorithm, is that the coordinates directions
algorithm (Smith 1984) starts with selecting a direction along one of the coordinate axes.
This leads to a simpler formulation of the algorithm.

The mirror algorithm

The mirror algorithm was inspired by the reflections in mirrors and uses the inequality con-
straints as reflecting planes. New samples are taken from a normal jump distribution with q1

as average and a fixed standard deviation, called the jump length. With an increasing number
of inequality constraints, more and more samples from an unmodified normal distribution will
be situated outside of the feasible region and have to be rejected based on criterion (8). While
this is a correct approach and the sample distribution will also converge to the targeted distri-
bution, it is inefficient because many points are rejected. We propose an alternative sampling
routine that uses the inequalities to ensure that every newly sampled point is situated in the
feasible region.

If q1 is a point for which the inequality constraints are fulfilled, a new point q2 can be sampled
in the following way: first q2−0 is sampled from a normal distribution in the unrestricted
space, ignoring all inequality constraints:

q2−0 = q1 + η (12)

with η drawn from a normal distribution with mean 0 and a fixed standard deviation. If q2−0

is in the feasible range (all inequalities are met), q2−0 is accepted as a sample point q2 and
evaluated in the Metropolis algorithm (8).

If some inequalities are violated (Figure 1), then the new point q2−0 is mirrored consecutively
in the hyperplanes representing the unmet inequalities: the line segment q1 → q2−0 crosses
these hyperplanes. For each hyperplane, a scalar α(i) can be calculated for which

(G′)(,i)(q1 + α(i)η) + h′(i) = 0 (13)

with η = q2−0 − q1. The hyperplane with the smallest non-negative α(i), call it α(s), is the
hyperplane that is crossed first by the line segment. q2−0 is mirrored around this hyperplane.

6 xsample(): An R Function for Sampling Linear Inverse Problems

q2-0

q2-1

q2

q1+α(s)η

g (
2
)q
-h

(2
)≥

 0

g(1)q+h(1)≥ 0

q1

Figure 1: MCMC jump with inequality constraints functioning as mirrors. See text for
explanation.

If the new point (q2−1 in Figure 1) still has unmet inequalities, a new set of α(i)’s is calculated
from the line segment between the new point and the intersection of the previous line segment
and the first hyperplane, i.e., q1+α(s)η. q2−1 is again reflected in the hyperplane with smallest
non-negative α(i). This is repeated until all inequalities are met. The resulting point q2 is in
the feasible subspace and is accepted as a new sample point.

In most cases, the directional algorithms and the mirror algorithm converge to the same
distributional result. However, we found that especially in high-dimensional problems, the
mirror algorithm is still able to move away from the initial particular solution when the
directional algorithms fail to do so. One possible explanation for this can be found in the
initialisation of the MCMC with LSEI. LSEI often returns a solution in a corner of the feasible
region, at the intersection of inequality constraints. In some circomstances, the line segment
used by a random directions algorithm has then length zero and the algorithm fails to move
away from the initial point.

In the mirror algorithm, η is drawn from a normal distribution with zero mean and a set
of fixed standard deviations, which we call the jump lengths of the Markov chain. These
jump lengths have a significant influence on the efficiency of the mirror algorithm, as they
define the distance covered within the solution space in one iteration, but also the number of
reflections in the solution boundaries. They can be set manually with the parameter jmp in
xsample(). When sampling the feasible region uniformly, a suitable jump length is often in
the same order of magnitude as the ranges of the unknowns.

Journal of Statistical Software – Code Snippets 7

0 200 400 600 800 1000

iterations

x i

Figure 2: A good random walk of a parameter xi, using xsample() with 1000 iterations.

When the default parameter setting jmp = NULL is used, a jump length is calculated internally,
which gives quick and suitable results in most cases. Sometimes, these internally calculated
jump lengths are too large, and the calculation time is too long. One can then turn to
manually setting small jump lengths and gradually increasing them, until all elements in x
are properly sampled. This can be checked by looking at the trace of the elements x(i), which
need to have an obviously random pattern, as illustrated in Figure 2.

Note that the hit-and-run algorithms rda and cda only work if G and H define a bounded
feasible region. In an open or half open space, these algorithms will generate error messages
because they draw from a uniform distribution confined by this feasible region.The mirror
algorithm is not affected by this problem because new samples are drawn from a normal
distribution instead of a uniform distribution.

3. Using the xsample() function in R

The default input for the xsample() function in R is:

xsample(A = NULL, B = NULL, E = NULL, F = NULL, G = NULL, H = NULL,
sdB = 1, iter = 3000, outputlength = iter, burninlength = NULL,
type = "mirror", jmp = NULL, tol = sqrt(.Machine$double.eps),
x0 = NULL, fulloutput = FALSE, test = TRUE)

with the following arguments:

� A and B: a numeric matrix and a vector that contain the coefficients of the equations
used to penalize the samples according to a normal distribution: Ax = b + ε.

8 xsample(): An R Function for Sampling Linear Inverse Problems

� E and F: a numeric matrix and a vector that contain the coefficients of the equality
constraints, Ex = f .

� G and H: a numeric matrix and a vector containing the coefficients of the inequality
constraints, Gx ≥ h.

� sdB: a vector with fixed standard deviations of b.

� iter: the number of iterations.

� outputlength: the number of samples of x in the output; this value is smaller than or
equal to iter.

� burninlength: the number of initial iterations that are not included in the output.

� type: the algorithm used to sample new points: one of: "mirror", (mirroring algo-
rithm), "rda" (random directions algorithm) or "cda" (coordinates directions algo-
rithm)

� jmp: jump length of the transformed variables q: x = x0 + Zq (only if type
== "mirror"); if not provided, a reasonable jump length is calculated internally.

� tol: tolerance for equality and inequality constraints.

� x0: initial (particular) solution x0 for the equality and inequality constraints.

� fulloutput: if TRUE, the transformed variables q are included in the output.

� test: if TRUE, xsample() will test for hidden equalities (i.e. equalities that are imple-
mented as a set of two inequalities). This may be necessary for large problems, but
slows down execution a bit.

The returned value of xsample() is a list containing:

� X: a numerical matrix with outputlength rows containing the samples.

� acceptedratio: ratio of acceptance (i.e. the ratio of the accepted runs in the MCMC
over the total number of iterations).

� Q: only returned if fulloutput = TRUE: a numerical matrix with outputlength rows
containing the transformed samples q.

� p: only returned if fulloutput = TRUE: probability vector for all samples (one value
for each row of X)

� jmp: the jump length used for the random walk. Can be used to check the automatically
generated jump length.

4. Applications of xsample() and interpretations of the results

xsample() is primarily aimed at underdetermined systems. It samples their solution space
and in addition, attempts to account for error in the data vector b. However, it also works

Journal of Statistical Software – Code Snippets 9

if the input is overdetermined. A model error can then be estimated from the difference
between model and data as well. In this section, we illustrate two underdetermined scenarios
for which xsample() may be used: underdetermined problems with A = B = NULL, underde-
termined problems with A and B not NULL. We also briefly discuss the use of xsample() for
overdetermined problems.

4.1. A = NULL and B = NULL: The mink diet composition

The most straightforward application of xsample() is to uniformly sample underdetermined
systems with a set of equality constraints (E,F) and inequality constraints (G,H), and no
input A or B. The first example is a low-dimensional, underdetermined problem estimating
the relative proportion of food sources of a predator based on stable isotope data.

The mink data set, from Ben-David, Hanley, Klein, and Schell (1997) is a small data set used
in the program Isosource, which estimates the contributions of food sources to the diet of a
consumer, based on stable isotope compositions (Phillips and Gregg 2003). Isosource searches
all possible compositions with a grid-based approach and retains those compositions that are
sufficiently close to the equality constraints imposed by the isotopic data. Our method obtains
similar results, but obtains exact solutions instead of approximations. It also searches the
solution space in a more direct and efficient way.

Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in a predator, the Canadian Mink,

●

●

●

●

●

●

●

−24 −22 −20 −18 −16 −14

10
11

12
13

14
15

δδ13C

δδ15
N

fish

mussels

crabs

shrimp

rodents

amphipods

ducks

●

MINK

Figure 3: Isotopic composition of Canadian mink and seven candidate food sources.

10 xsample(): An R Function for Sampling Linear Inverse Problems

and seven candidate food sources are provided (Figure 3). The data are given without error
estimate, and are considered exact. As the isotopic composition of the predator is a simple
weighted average of the compositions of its food sources, and the fractions sum to one, there
are three equality constraints. Also, all fractions have to be positive, which gives seven
inequality constraints. In matrix notation this can be written as:

δ
15N1 · · · δ15N7

δ13C1 · · · δ13C7

1 · · · 1

 ·

α1

...
α7

 =

δ
15NMink

δ13CMink

1


I · α ≥ 0 ; α = (α1, ..., α7)

(14)

Filling in the numbers, this results into:



 14.7 9.7 11.2 12.0 10.1 14.0 14.9
−14.2 −18.5 −15.3 −16.9 −24.6 −18.7 −21.3

1 1 1 1 1 1 1

 ·



αfish

αmussels

αcrabs

αshrimp

αrodents

αamphipods

αducks


=

 13.2
−15.1

1



α ≥ 0 ; α = (αfish, ..., αducks)
(15)

The problem has three equations with seven unknowns and is thus underdetermined. The
first two equations from (15) are implemented in limSolve as dataset Minkdiet. A set of
samples that are uniformly distributed over the solution space defined by (15), are generated
in R as follows:

R> xs <- xsample(E = rbind(Minkdiet$Prey, rep(1,7)),

+ F = c(Minkdiet$Mink,1), G = diag(7), H = rep(0,7), iter = 3000)

R> pairs(xs$X)

The results using the mirror algorithm are shown in Figure 4. With only 3000 jumps, the
solution space is sampled thoroughly and the conclusion is that fish and crab are the most
probable food sources for the mink. These results match the results presented by Phillips and
Gregg (2003), but are obtained in a more straightforward manner.

When the only information we have on a set of parameters are a number of linear relationships
and parameter ranges, as in this example, then to our best knowledge, every parameter set
that fulfills these relationships has equal probability of occurring. The samples produced by
xsample() are distributed uniformly over the feasible region of these parameters. They can
be used to estimate value ranges, quantiles and means of the expected parameter values.

In the diagonal of Figure 4, histograms of the parameter values are shown. While the probabil-
ity of each parameter set is equal, this is obviously not the case for the marginal distributions
of the individual parameters.

Journal of Statistical Software – Code Snippets 11

 fish

0

0.1

0.25

0.35

0

0.1

0

0.02

0

0.05

0

0.04

0.5 0.6

 mussels

0 0.1

 crabs

0.25 0.35

 shrimp

0 0.1

 rodents

0 0.02

 amphipods

0 0.05

 ducks

0 0.04

αα

αα

Figure 4: 3000 MCMC samples of the solution space of the mink diet problem: The lower
half of the figure contains pairwise scatter plots of the fractions of the different food sources
contributing to the diet. In the diagonal are density plots of the marginal distributions of
these fractions.

4.2. An underdetermined problem with A and B not NULL

In the Mink example, all data were treated as exact values without uncertainties. As a result,
the feasible region was sampled uniformly. xsample() allows for introducing some uncertainty
in the equations via the parameters A, B and sdB (corresponding to A, b and s, respectively).
The implications were already discussed in the introduction. We illustrate the effect of this
in a very simple problem: consider two positive fluxes x(1) and x(2). If the sum of two fluxes

12 xsample(): An R Function for Sampling Linear Inverse Problems

x(1)

x (
2)

0 2 4

0
2

4

x(1)
x (

2)

0 2 4

0
2

4 2 3 4 5

histogram of u=x(1) ++ x(2)

Figure 5: Illustration of the effect of equations Ax− b = ε on the sample distribution: two
parameters with a fixed sum (left panel) versus two parameters with sum subject to variation
(right panel). Histograms of the marginal distributions are plotted in the margins. See text
for details.

is considered exactly 3.5, then the xsample() input becomes:


E =

[
1 1

]
; F =

[
3.5

]
G =

[
1 0
0 1

]
; H =

[
0
0

]
(16)

and the solution is trivial: the estimates of x(1) and x(2) each have a uniform distribution
between 0 and 3.5, while their sum is constant. The result is shown in the left panel of
Figure 5.

Now consider a normal distribution for the sum of x: u = x(1) + x(2) ∼ N(3.5, 5). As argued
in the introduction, this is not possible because u ≥ 0, and expression (3) is used instead:

p(x) ∝ e−
1
2

(
x(1)+x(2)−3.5

0.5
)2 if x ≥ 0 (17)

The probability outside the feasible region (x(1) < 0 or x(2) < 0), is still assumed zero.

The xsample() input then becomes:


A =

[
1 1

]
; B =

[
3.5

]
; sdB =

[
0.5

]
G =

[
1 0
0 1

]
; H =

[
0
0

]
(18)

The results are illustrated in the right panel of Figure 5. Although p(x) is highest when
x(1) + x(2) = 3.5, this is not the case for the distribution of the sum itself. Because of the
shape of the feasible region, there are more feasible vectors x for larger values of u = x(1)+x(2)

(Figure 5), causing the distribution of u to be skewed towards these larger values.

Journal of Statistical Software – Code Snippets 13

Generally, the shape of the feasible region will influence the distribution of Ax in a complex
way which makes it difficult to produce a sample set x for which Ax has a predictable
distribution.

4.3. Applying xsample() on overdetermined systems

In case the problem is overdetermined, a set of samples can also be generated from bootstrap-
ping a constrained linear regression, e.g., using orlm() from the R package ic.infer (Groemping
2008). The results will however be different: samples that are located outside of the feasible
region in the unconstrained model, are mapped on the borders of the feasible region. This is
consistent with formulations of the underlying distribution of the parameters in a constrained
linear regression (Shapiro 1988).

In contrast, xsample() will ignore the points outside of the feasible region and thus lead
to a truncated normal distribution. The distribution of the samples can therefore not be
interpreted as a probability distribution of the parameter estimate in a constrained linear
regression. One should always be aware of these differences.

5. Concluding remarks

The xsample() algorithm successfully and efficiently produces a sample set that is uniformly
distributed over the feasible region of an underdetermined linear problem. The sample set can
also be non-uniformly distributed around an extra set of linear equations, and has a truncated
normal distribution when the problem is overdetermined.

Quick convergence of the sample set to the target distribution (3) or (4) is one of the ad-
vantages of the algorithm. Convergence can be tested using tools for output analysis and
diagnosis of MCMC, such as the R package coda (Plummer, Best, Cowles, and Vines 2009).

Calculation times are in most cases in the order of seconds to minutes on a modern pc. This
makes the function an attractive alternative to linear or quadratic programming, offering
a more complete answer to underdetermined linear problems and complementing the more
traditional approaches.

Acknowledgments

We like to thank Prof. Dr. Carlo Heip and Prof. Dr. Jack Middelburg for guidance and for
providing research facilities, and an anonymous reviewer for providing feedback. We also like
to thank Dr. Dave Callaghan for proofreading and useful suggestions. This research was sup-
ported by a grant from the Flemish Fund for Scientific Research (FWO), extra funding from
Ghent University and by the HERMES project, EC contract no GOCE-CT-2005-511234,
funded by the European Commission’s Sixth Framework Program under the priority ’Sus-
tainable Development, Global Change and Ecosystems’. This is contribution 4516 from the
Netherlands Institute of Ecology.

14 xsample(): An R Function for Sampling Linear Inverse Problems

References

Ben-David M, Hanley TA, Klein DR, Schell DM (1997). “Seasonal Changes in Diets of Coastal
and Riverine Mink: The Role of Spawning Pacific Salmon.” Canadian Journal of Zoology,
75, 803–811.

Edwards JS, Covert M, Palsson B (2002). “Metabolic Modeling of Microbes: The Flux Balance
Approach.” Environmental Microbiology, 4(3), 133–140.

Gelman A, Carlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis. 2nd edition.
Chapman & Hall, London.

Groemping U (2008). ic.infer: Inequality Constrained Inference in Linear Normal Situations.
R package version 1.0-6, URL http://CRAN.R-project.org/package=ic.infer.

Haskell KH, Hanson RJ (1981). “An Algorithm for Linear Least-Squares Problems with
Equality and Non-Negativity Constraints.” Mathematical Programming, 21(1), 98–118.

Lawson CL, Hanson RJ (1995). Solving Least Squares Problems. 3rd edition. SIAM.

Phillips DL, Gregg JW (2003). “Source Partitioning Using Stable Isotopes: Coping with Too
Many Sources.” Oecologia, 136(2), 261–269.

Plummer M, Best N, Cowles K, Vines K (2009). coda: Output Analysis and Diagnostics for
MCMC. R package version 0.13-4, URL http://CRAN.R-project.org/package=coda.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in Fortran:
The Art of Scientific Computing. Cambridge University Press.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Roberts GO (1996). “Markov Chain Concepts Related to Sampling Algorithms.” In WR Gilks,
S Richardson, DJ Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 45–58.
Chapman and Hall.

Shapiro A (1988). “Towards a Unified Theory of Inequality Constrained Testing in Multivari-
ate Analysis.” International Statistical Review, 56(1), 49–62.

Smith RL (1984). “Efficient Monte-Carlo Procedures for Generating Points Uniformly Dis-
tributed over Bounded Regions.” Operations Research, 32(6), 1296–1308.

Soetaert K, Van den Meersche K, van Oevelen D (2009). limSolve: Solving Linear Inverse
Models. R package version 1.5, URL http://CRAN.R-project.org/package=limSolve.

Vezina AF, Platt T (1988). “Food Web Dynamics in the Ocean 1. Best-Estimates of Flow
Networks Using Inverse Methods.” Marine Ecology-Progress Series, 42(3), 269–287.

http://CRAN.R-project.org/package=ic.infer
http://CRAN.R-project.org/package=coda
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=limSolve

Journal of Statistical Software – Code Snippets 15

Affiliation:

Karel Van den Meersche
Centre for Estuarine and Marine Ecology (CEME)
Netherlands Institute for Ecology (NIOO)
4401 NT Yerseke, The Netherlands
E-mail: k.vdmeersche@nioo.knaw.nl
URL: http://www.nioo.knaw.nl/users/kvdmeersche/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 30, Code Snippet 1 Submitted: 2008-05-26
April 2009 Accepted: 2009-03-31

mailto:k.vdmeersche@nioo.knaw.nl
http://www.nioo.knaw.nl/users/kvdmeersche/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Method
	Step 1: Eliminate equality constraints
	Step 2: Random walk
	Markov chain Monte Carlo (MCMC)
	Sampling the feasible region
	Random directions algorithm (rda)
	Coordinates directions algorithm (cda)
	The mirror algorithm

	Using the xsample function in R
	Applications of xsample() and interpretations of the results
	A = NULL and B = NULL: The mink diet composition
	An underdetermined problem with A and B not NULL
	Applying xsample() on overdetermined systems

	Concluding remarks

