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Abstract

Barry and Hartigan (1993) propose a Bayesian analysis for change point problems.
We provide a brief summary of selected work on change point problems, both preceding
and following Barry and Hartigan. We outline Barry and Hartigan’s approach and offer
a new R package, pkgbcp (Erdman and Emerson 2007), implementing their analysis. We
discuss two frequentist alternatives to the Bayesian analysis, the recursive circular binary
segmentation algorithm (Olshen and Venkatraman 2004) and the dynamic programming
algorithm of (Bai and Perron 2003). We illustrate the application of bcp with economic
and microarray data from the literature.
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1. Introduction

During the Great Depression, farmers were interested in estimating spatial changes in insect
populations threatening crops – a change point problem. Although they discovered that
the insect populations didn’t change significantly within fields (Finney 1946), change point
methods have since been applied to problems in economics, gynecology, and survival analysis,
for example. More recently, certain types of microarray data are suitable for change point
analysis.

Circular binary segmentation (CBS, Olshen and Venkatraman 2004), a modification of binary
segmentation (Sen and Srivastava 1975), is a popular, recursive change point algorithm. Al-
though it was designed for the analysis of microarray data, it is generally applicable to any
change point problem. Both procedures assume normality, estimating locations of change
points using a likelihood ratio statistic. The R implementation of CBS is available on Bio-
conductor (Gentleman et al. 2004). Another popular algorithm, breakpoints (BP, Bai and
Perron 2003), is available in the R package strucchange (Zeileis et al. 2002, 2003). For a
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given number of change points, breakpoints() uses least squares regression to estimate the
locations of the changes. The function then selects an optimal model (choosing the number
of change points) using the Bayesian information criterion (BIC) by default. We implement
a Bayesian alternative to these procedures in the R package bcp – the approach of Barry and
Hartigan (1993) based on a product partition model.
Section 2 summarizes the work of Bai and Perron (2003), Olshen and Venkatraman (2004), and
Barry and Hartigan (1993), and describes a numerical challenge posed by the implementation
of Barry and Hartigan’s procedure (BH). Section 3 describes the bcp package and illustrates
its usage in a simulation study and applied to microarray and economic data. We conclude
by discussing the strengths and weaknesses of these three procedures and directions for future
work.

2. Methods

This paper offers a new R implementation of the Bayesian change point procedure proposed by
Barry and Hartigan (1993). While frequentist procedures for change point analysis estimate
specific locations of change points, the Bayesian procedure offers a probability distribution
– the probability of a change point at each location in a sequence. To assist the reader,
we begin by discussing two frequentist alternatives, of Bai and Perron (2003), and Olshen
and Venkatraman (2004). We then describe the Bayesian approach and address a numerical
challenge proposed by the implementation of BH. We use the notation of the authors whenever
possible.

2.1. Bai and Perron’s dynamic programming algorithm

Bai and Perron’s method uses a dynamic programming algorithm to identify optimal parti-
tions with varying numbers of segments. They provide options for both the minimum segment
length, h, and the maximum number of breaks, m. For each possible number of breaks k ≤
m, they obtain the optimal break point locations by minimizing the within-segment sums of
squares. The R implementation of BP reports the partition achieving the lowest BIC by de-
fault; users may also compute the log likelihood and Akaike information criterion (AIC) of
partitions using the logLik() and AIC() functions.
We use Bai and Perron’s pure structural change model for simple change point examples and
simulations in Section 3.3. Readers interested in the more general framework of Bai and
Perron’s method (a structural change model with covariates) are encouraged to see Bai and
Perron (2003).

2.2. Recursive binary and circular binary segmentation

Both binary segmentation and circular binary segmentation consider observations, X1, ..., Xn,
ordered in time or space. Let Si = X1 + · · · + Xi, for 1 ≤ i ≤ n, denote the partial sums
of the observations. By assuming the data are assumed normally distributed with a known
variance, binary segmentation uses the likelihood ratio statistic for testing the null hypothesis
of no change point against the alternative of exactly one change point at an unknown location
i (Sen and Srivastava 1975). The likelihood ratio statistic is given by ZB = max|Zi|, where

Zi = 1/i+ 1/(n− i)1/2Si/i− (Sn − Si)/(n− i), (1)
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for 1 ≤ i < n. The null hypothesis is rejected if this statistic exceeds the upper αth quantile
of the null distribution of ZB, in which case the location of the change point is estimated as
that i for which ZB = |Zi| (Olshen and Venkatraman 2004). The test is applied recursively
until no changes are detected in any of the segments of the partition.

Because the binary segmentation algorithm is based on a test to detect a single change, it
may have trouble detecting a small segment buried in the middle of a large segment (Olshen
and Venkatraman 2004). Olshen and Venkatraman proposed the circular binary segmentation
algorithm to address this problem. Using CBS, each segment under consideration is connected
at the two ends, forming a circle. The likelihood ratio statistic for testing the hypothesis that
the arc extending from i+ 1 to j and its complement have different means is given by

Zij =
(Sj − Si)/(j − i)− (Sn − Sj + Si)/(n− j + i)

[1/(j − i) + 1/(n− j + i)]1/2
, (2)

for 1 ≤ i < j ≤ n. This modification of binary segmentation is based on the statistic ZC =
max|Zij |, for 1 ≤ i < j ≤ n, and rejects the null hypothesis if this statistic exceeds an
appropriate threshold based on the null distribution of ZC . Note that this procedure allows
either a single change (j = n) or two changes (j < n). If the null hypothesis is rejected, the
change points are estimated to be i and j such that ZC = |Zij | and, again, the procedure
is applied recursively to the resulting sub-segments until no additional changes are detected.
Unlike BP, there is no guarantee that Binary or circular binary segmentation achieves the
optimal change point locations for the recommended number of changes.

2.3. Barry and Hartigan

As in CBS, Barry and Hartigan assume that the observations are independent N(µi, σ2), and
that the probability of a change point at a position i is p, independently at each i. However,
the assumption of independent observations could be weakened “because all that is required
is that, given the partition and the parameters, observations in different blocks are mutually
independent” (Barry and Hartigan 1993, p. 310). The prior distribution of µij (the mean of
the block beginning at position i+ 1 and ending at position j) is chosen as N(µ0, σ

2
0/(j− i)).

This choice of prior allows “weak signals provided that there are sufficient data to estimate
them” (Barry and Hartigan 1993, p. 311). Although an exact implementation of Barry and
Hartigan’s Bayes procedure is possible, the calculations are O(n3); we implement an MCMC
approximation that is O(n2). The reader is encouraged to refer to Barry and Hartigan (1993)
for the full theoretical framework, and our presentation will conform to their notation.

The algorithm uses a partition ρ = (U1, U2, ..., Un), where Ui = 1 indicates a change point at
position i + 1; we initialize Ui to 0 for all i < n, with Un ≡ 1. In each step of the Markov
chain, at each position i, a value of Ui is drawn from the conditional distribution of Ui given
the data and the current partition. Following Barry and Hartigan, we let b denote the number
of blocks obtained if Ui = 0, conditional on Uj , for i 6= j. The transition probability, p, for
the conditional probability of a change point at the position i+ 1, may be obtained from the
simplified ratio presented in Barry and Hartigan:

pi
1− pi

=
P (Ui = 1|X, Uj , j 6= i)
P (Ui = 0|X, Uj , j 6= i)

(3)
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=
[
∫ γ
0 p

b(1− p)n−b−1 dp]

[∫ λ

0

wb/2

(W1 +B1w)(n−1)/2
dw

]

[
∫ γ
0 p

b−1(1− p)n−b dp]
[∫ λ

0

w(b−1)/2

(W0 +B0w)(n−1)/2
dw

] (4)

where W0, B0,W1 and B1 are the within and between block sums of squares obtained when
Ui = 0 and Ui = 1 respectively, and X is the data. The tuning parameters γ and λ may
take values in [0, 1], chosen so that this method “is effective in situations where there aren’t
too many changes (γ small), and where the changes that do occur are of a reasonable size
(λ small)” (Barry and Hartigan 1993, p. 312). After each iteration, the posterior means are
updated conditional on the current partition. A direct implementation of the BH MCMC
algorithm is numerically unstable for long sequences because the integrands of

∫ λ

0

wb/2

(W1 +B1w)(n−1)/2
dw

and ∫ λ

0

w(b−1)/2

(W0 +B0w)(n−1)/2
dw

either diverge or go to 0 for long sequences. Fortunately, these integrals can be simplified as
incomplete beta integrals. The odds of a change point at a particular position in the partition
(given the data and the current partition) may be re-expressed as

pi
1− pi

=
P (Ui = 1|X, Uj , j 6= i)
P (Ui = 0|X, Uj , j 6= i)

=
(
W0

W1

)n−b−2
2

·
(
B0

B1

) b+1
2

·
√
W1

B1
·

∫ B1λ/W1
1+B1λ/W1

0
p(b+2)/2(1− p)(n−b−3)/2 dp∫ B0λ/W0

1+B0λ/W0

0
p(b+1)/2(1− p)(n−b−2)/2 dp

·

∫ γ

0
pb(1− p)n−b−1 dp∫ γ

0
pb−1(1− p)n−b dp

.

This expression consists of numerically stable terms, allowing application of the BH proce-
dure to sequences of any length. The MCMC implementation of BH estimates the posterior
distributions of the change points and the means, µij .

3. Package bcp: Examples and simulations

Package bcp contains the main bcp() function, five methods (summary(), print(), plot(),
fitted(), and residuals()), and two datasets. The function bcp() performs the BH anal-
ysis, taking six arguments:

• x: a numerical vector of data.

• p0 and w0: optional values for Barry and Haritgan’s hyperparameters γ and λ; these
default to the value 0.2, which has been found to work well (see Yao (1984) and Barry
and Hartigan (1993)).
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• burnin: optional number of “burn-in” iterations that are excluded from the estimation
of the posterior means and probabilities of changes. The chain settles very quickly in
practice, and the default is 50.

• mcmc: optional number of iterations used in the estimation of the posterior means; the
default is 500.

• return.mcmc: if TRUE, returns the partition and the associated conditional posterior
means for each iteration; the default is set to FALSE and returns a summary of the
chain.

After completing the analysis, bcp() returns an object of class “bcp” containing the following
components:

• data: a copy of the data.

• mcmc.means: if return.mcmc=TRUE, contains the posterior means conditional on the
current partition at the end of every iteration, otherwise mcmc.means is NA.

• mcmc.rhos: if return.mcmc=TRUE, contains the partition after each iteration, otherwise
mcmc.rhos is NA.

• blocks: a vector of the number of blocks after each iteration.

• posterior.mean: a vector containing the posterior means.

• posterior.var: a vector containing the “naive” posterior variance for each postition,
over the mcmc iterations.

• posterior.prob: a vector containing the posterior probability of a change point at each
position.

• p0, w0, burnin, mcmc and return.mcmc: contain the specified values.

Package bcp contains five methods and two datasets::

• Methods:

– The plot() method provides two plots summarizing the analysis. The first figure,
“Posterior Means”, displays the data along with the posterior mean of each position.
The second figure, “Posterior Probability of a Change”, shows the proportion of
iterations resulting in a change point at each position.

– The summary() and print() methods, modeled after the the summary() method
for “mcmc” objects (Plummer et al. 2007), print a table of the posterior probability
of a change in mean, along with the posterior mean and standard deviation for each
position. After removing the burnin iterations, the mcmc.means component of a
“bcp”object may be converted into an“mcmc”object to view a full “mcmc”summary,
and to perform convergence tests. An example of this conversion is given in the
bcp package documentation (Erdman and Emerson 2007).

– The fitted() method returns the vector of posterior means.
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– The residuals() method returns the data minus the posterior means.

• Data:

– Coriell: two array Comparative Genomic Hybridization (CGH) studies of Coriell
cell lines, also appears in the DNAcopy package (Venkatraman and Olshen 2006)
that performs CBS, taken originally from Snijders et al. (2001).

– RealInt: US interest rate data, considered by Bai and Perron (2003) and Garcia
and Perron (1996), also appears in the strucchange package that performs BP
(Zeileis et al. 2002, 2003).

We consider these examples from the literature in Sections 3.1 and 3.2, and conclude with a
simulation study mirroring the one presented in Barry and Hartigan (1993). In all cases, we
allow the BP algorithm to consider all possible partitions (the default is a minimum segment
length of 15), and we use the hyperparameters recommended by Barry and Hartigan; we do
not “tune” any of the parameters for the examples or simulations.

3.1. Example: Coriell cell lines

The CGH studies of the Coriell cell lines were used by Venkatraman and Olshen (2006) to
demonstrate CBS in DNAcopy, and by Fridlyand et al. (2004) to demonstrate their hidden
markov model approach. CGH was developed as a method for detecting and mapping chro-
mosomal aberrations in the genome (Kallioniemi et al. 1992). The procedure begins by dying
tumor and normal tissue with different fluorochromes (usually red and green). If there have
been no chromosomal aberrations in the tumor DNA, the mixture of the two samples will emit
a yellow fluorescence. However, if there have been amplifications or deletions in the tumor
sample, the mixture will emit a red or green fluorescence depending on the color with which
the normal tissue was dyed. The fluorescence is then translated into DNA copy number.
Fridlyand et al. (2004) describes the Coriell copy number data as consisting “of 15 fibroblast
cell lines containing cytogenetically mapped partial or whole-chromosome aneuploidy, and
each array contained 2276 mapped BACs spotted in triplicate.” UCSF SPOT software (Jain
et al. 2002) was used to calculate the log2ratio ratios of the red-green signal intensities for
each spot on the arrays, and to perform local background correction. A commercial program,
SPROC, was used to map the data to its location in the genome, and as a filter to remove
measurements based on a number of criteria including low reference/signal intensity (Snijders
et al. 2001). Finally, the data were edited to remove measurements for which only one of the
triplicates remained after the SPROC filter and/or the standard deviation of the triplicates
was > 0.2 (Snijders et al. 2001).
When applied to chromosome 11 of Coriell.05296, for example, BP and CBS tend to agree
on the location of the changes in copy number (and thus give identical copy number estimates).
BH gives similar estimates when there are long blocks of roughly equal copy number, but gives
very different estimates when there are shorter blocks and/or “outliers”. Figure 1 shows that
the BH estimates match the BP and CBS estimates well, except in the middle “block” where
BH detects more activity. Short-lived changes, like those in the middle block, can be due to
cross-hybridization, false signals (a speck on the array), or a true signal (a deletion perhaps
on a single strand of the DNA). Because these clones were spotted in triplicate, a false signal
is unlikely. The Bayesian approach clearly acknowledges this area of uncertainty, while the
frequentist procedures only identify the two major breaks.
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Figure 1: BH, BP, and CBS estimates on Coriell chromosome 11 (data from Snijders et al.
2001). The black lines represent BH, and the red lines represent CBS and BP. In the bottom
plot, the black lines represent Barry and Hartigan’s posterior probabilities of changes, and
the red vertical lines represent the change point locations of CBS and BP.

R> data("coriell")

R> chrom11 <- as.vector(na.omit(coriell$Coriell.05296[coriell$Chromosome==11]))

R> n <- length(chrom11)

R> bcp.11 <- bcp(chrom11)

R> cbs <- segment(CNA(chrom11, rep(1, n), 1:n), verbose = 0)

R> cbs.11 <- rep(unlist(cbs$output[6]), unlist(cbs$output[5]))

R> bp.11 <- breakpoints(chrom11 ~ 1, h = 2)$breakpoints

3.2. Example: Interest rate time series

The RealInt dataset may be found in the strucchange package (Zeileis et al. 2002, 2003) and
was examined in Bai and Perron (2003) and Garcia and Perron (1996). Garcia and Perron
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Figure 2: BH, BP, and CBS estimates on US ex-post real interest rate 1961–1986. The black
lines represent BH, the blue lines represent BP, and the red lines represent CBS. In the bottom
plot, the black lines represent Barry and Hartigan’s posterior probabilities of changes, and the
red and blue vertical lines represent the change point locations of CBS and BP respectively.

use the data “to assess if the ex-ante real interest rate is constant, at least over some long
enough periods, or if it exhibits nonstationary behavior” (Garcia and Perron 1996, p. 111).
RealInt contains 103 quarterly observations of the US ex-post real interest rate from 1961(1)
to 1986(3). Figure 2 shows that BH and BP give similar estimates, detecting changes in
1972(3), 1979(4), 1981(2). Although BH is less sure of the change identified by BP around
the fourth quarter of 1982, there is still a notable spike in the posterior probability of this
change. CBS also identifies the first interest rate shift at the end of 1972, but splits BH and
BP’s third block (from 1979(4) - 1981(2)), giving a 3-block model.

Garcia and Perron note that “although some of the local optima seem to correspond to
important economic events such as the change in the Federal Reserve operating procedures
between the end of 1979 and 1982 or the rise in inflation in 1973, the global minimum does not
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have any ready economic interpretation” (Garcia and Perron 1996, p. 119). The authors use
the Markov switching model of Hamilton (1989) and identify mean interest rate shifts in the
beginning of 1973 and in mid-1981. Bai and Perron (2003) apply breakpoints() to RealInt
with parameters m=5 and h=15 (i.e., they require at least 15 observations per segment, and
restrict their search to partitions with 5 or less shifts). They apply a sequential supF test
of k vs. k + 1 breaks, and select the model with changes in 1966(4), 1972(3), and 1980(3).
Because Bai and Perron tuned the parameters to suit their interpretation of the problem,
their published result differs slightly from the one presented here.

R> data("RealInt")

R> n <- length(RealInt)

R> bcp.ri <- bcp(as.vector(RealInt), p0 = 0.1)

R> bp.ri <- breakpoints(RealInt ~ 1, h = 2)$breakpoints

R> cbs <- segment(CNA(RealInt, rep(1, n), 1:n), verbose = 0)

R> cbs.ri <- rep(unlist(cbs$output[6]), unlist(cbs$output[5]))

3.3. A simulation study

We consider the same 20 “scenes” used by Barry and Hartigan (a scene is a partition together
with a set of means for the segments of the partition). For each scene, 60 observations are
randomly drawn from one or more normal distributions with specified mean(s) and variance 1.
We follow Barry and Hartigan’s notation in describing the scenes. For example, the sequence
100 151 202 151 denotes a scene with four blocks of lengths 10, 15, 20, and 15 drawn from
N(0, 1), N(1, 1), N(2, 1), and N(1, 1) respectively. For each of the 20 scenes, we simulate 1000
data sets, and apply CBS, BP, and BH to each of them. The differences in mean squared error
and their standard errors are presented in Table 1. Specifically, for each data set, we calculate
the mean squared errors for each method – the mean of the squared differences between the
pointwise estimates and the true means. Thus, for each scene, we obtain 1000 MSEs for each
method. Lastly, we calculate the mean and standard errors of the differences in these MSEs
between methods, using BH as the baseline.

Table 1 shows that the BH algorithm outperforms CBS and BP in MSE in most of the scenes.
These differences in MSE are especially pronounced when there are shorter blocks and/or
outliers. For example, in Figure 3 scene 20, both CBS and BP fail to detect any of the
regular, smaller changes, and BH performs significantly better than both methods. Also, in
scene 18 with relatively large, short-lived changes, BH performs much better than CBS. In
scenes 2 and 7, having two and three blocks respectively, CBS only does slightly better in
MSE than BH, and BH does only slightly better than BP. In Figure 3 we see that all three
methods do a reasonably good job at estimating the true block means for these scenes.

4. Conclusion

The current version, 1.8.4, of bcp (which uses R and C) is available for the R system for
statistical computing (R Development Core Team 2007) from the Comprehensive R Archive
Network at http://CRAN.R-project.org/. This implementation (performing the default
550 iterations) runs in approximately 0.75 seconds for a sequence of length 100 on a PC with
Windows XP, a Pentium D Processor (2.99 GHz) and 3.50GB of RAM, compared with 0.06

http://CRAN.R-project.org/
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Scene Mean(MSE(BH) Mean(MSE(BH)
- MSE(CBS)) - MSE(BP))

1 600 0.03051.5 0.01101.7

2 400 203 0.00881.7 −0.01062.1

3 400 202 0.01182.4 −0.00842.3

4 300 301 −0.09102.9 −0.03322.3

5 300 300.5 −0.01731.4 −0.03611.6

6 580 23 −0.19372.6 0.01082.4

7 150 302 150 0.01162.6 −0.01292.7

8 100 401 100 −0.08081.9 −0.08462.1

9 300 202 100 0.02082.9 −0.01143.0

10 40 15 550 −0.25503.5 −0.22923.5

11 101 150 202 151 −0.12133.3 −0.09232.6

12 101 102 101 300 −0.08993.1 −0.07562.3

13 252 10 145 203 −0.04814.2 −0.02172.7

14 153 50 55 353 −0.14506.2 −0.00143.1

15 50 52 400 52 50 −0.26553.7 −0.13033.7

16 120 121 120 121 120 −0.08381.7 −0.11052.1

17 120 121 122 123 124 −0.26154.6 −0.13092.6

18 143 55 10 12 45 92 153 114 −0.78822.4 −0.21217.0

19 21 140 151 154 51 15 50 31 −0.26744.5 −0.24034.4

20 60 62 60 62 60 62 60 62 60 62 −0.51914.7 −0.42005.8

Table 1: Comparisons of BH with CBS and BP for 20 scenes. The superscript is the standard
error of the difference in MSE multiplied by 1000.
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Figure 3: Fitted values for selected scenes. The black lines are the true means, red lines
represent CBS, blue lines represent BP, green lines represent BH, and the circles represent
one example of simulated data.
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seconds for CBS and 3.62 seconds for BP. Our MCMC of the BH procedure is of O(n2) in
speed and O(n) in memory. A future version of bcp may be of O(n) in speed. The analysis
of microarray data with, for example, 10,000 measurements currently takes approximately 45
minutes. When allowed to look over all partitions, the least squares calculations of the BP
dynamic programming algorithm are of order O(n3) in speed and O(n2) in memory. Thus,
the unconstrained BP procedure is not feasible for large sample sizes. The CBS algorithm is
of O(n) in both speed and memory, and takes approximately 10 minutes for a sequence of
length 10,000.
BH and CBS have a clear speed and memory advantages over BP which is of essential im-
portance with large data sets. For smaller data sets without memory constraints, however,
the BP dynamic programming algorithm is guaranteed to find the optimal least squares so-
lution, while the recursive CBS algorithm is not. Furthermore, a C implementation of the
dynamic programming algorithm (designed for the analysis of microarray data, but generally
applicable) is available in the tilingArray package (Huber and Toedling 2006). For small data
sets it is faster than BH, CBS, and the R implementation of BP, but for large data sets,
the memory requirements limit its application to problems with frequent change points and
blocks of limited length.
Other differences between the procedures are worth noting. Unlike BH and CBS, BP does
not assume constant variance. However, a standalone C++ implementation of an extension
of BH (allowing for changes in variance) is provided by Loschi and Cruz (2005). A future
version of bcp may also allow changes in variance, although simultaneously allowing large
numbers of change points seems undesirable for most applications. BP provides the flexibility
to specify a minimum segment length and/or the maximum number of breaks, but does not
allow for single-observation segments (the algorithm requires at least two observations for
the least squares calculations). Thus, the procedure will not correctly adapt to the presence
of isolated outliers, or true, single-observation blocks. Although CBS and BH do not allow
setting the number of breaks or a minimum segment length, BH provides a hyperparameter,
p0, that may be tuned to encourage shorter or longer segments, at the discretion of the user.
As demonstrated in the simulations of Section 3.3, CBS performs best when there are longer
segments. Finally, we note that both BP and CBS estimate location(s) of the change point(s);
this will appeal to many users. However, the BH Bayesian procedure estimates the probability
of a change point at each location, providing a more informative summary reflecting the degree
of uncertainty in the change points. We expect this feature to be useful in practice.
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