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Analyzing Temperature Effects on Mortality

Within the R Environment: The Constrained

Segmented Distributed Lag Parameterization
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Abstract

Here we present and discuss the R package modTempEff including a set of functions
aimed at modelling temperature effects on mortality with time series data. The functions
fit a particular log linear model which allows to capture the two main features of mortality-
temperature relationships: nonlinearity and distributed lag effect. Penalized splines and
segmented regression constitute the core of the modelling framework. We briefly review
the model and illustrate the functions throughout a simulated dataset.
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1. Introduction

Health effects of air temperature are well-known. Some epidemiologic evidence may be found
in Braga, Zanobetti, and Schwartz (2001) and Basu and Samet (2002) among the others.
Temperature effects have been studied since a long time but in the last decades quantifying
temperature effects has become quite important owing to greenhouse effect and consequent
climatic changes (e.g., McGeehin and Mirabelli 2001).

The relationship between mortality and temperature is found to be V-shaped in the most
of areas around the world: mortality reaches its minimum at some optimal value and in-
creases as temperature gets colder or hotter. The temperature value where mortality reaches
its minimum is sometimes referred as minimum mortality temperature and represents the
threshold value beyond which mortality increases. Moreover it has been ascertained that the
effect is not limited to the same day-exposure t, say, but it is extended to several next days
t + 1, t + 2, . . . An in-depth analysis of temperature effects on mortality requires to account
for the prolonged effects (the so-called distributed lag effect) and for nonlinearity (Armstrong
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2 Temperature Effects on Mortality via Constrained Segmented Distributed Lag Models

2006).

Muggeo (2008a) presents a unified framework to model the temperature effects on mortality.
Let E[Yt] = µt be the expected number of deaths for day t = 1, 2, . . . , T , zt the temperature
value, and x>t the vector of additional confounding explanatory variables, such as days of
week, holidays, influenza epidemics, for instance. The proposed model assumes Yt ∼ Pois(µt)
and

logµt = x>t δ +
L1∑

l1=0

β1l1(zt−l1 − ψ1)− +
L2∑

l2=0

β2l2(zt−l2 − ψ2)+. (1)

where (z − ψ1)− = (z − ψ)I(z < ψ) and (z − ψ2)+ = (z − ψ2)I(z > ψ2) are two linear spline
functions which allow to model the effects of low and high temperatures, respectively below
the cold threshold ψ1 and above the heat threshold ψ2; L1 and L2 are the two maximum lag
values selected to assess the delayed effects of cold and heat (typically 15 to 60); x>t δ contains
typical confounders sketched above; finally β1l1 and β2l2 describe the effect of temperature on
the response.

More specifically, β2 = (β20, β21, . . . , β2l2 , . . . , β2L2)> expresses the lag-specific log-relative
risks for unit increase in temperature greater than the heat threshold ψ2, namely the risk
coming from 0, 1, . . . , l2, . . . , L2 days before. Similarly β1 = (β10, β11, . . . , β1l1 , . . . , β1L1)>

reflects the lag specific risks of cold understood as temperature below the relevant threshold
ψ1. In short, β1 and β2 represent the distributed lag (DL) curve of cold and heat. Model (1)
may be simplified by assuming a common threshold for cold and heat, ψ1 = ψ2, i.e.,

logµt = x>t δ +
L1∑

l1=0

β1l1(zt−l1 − ψ)− +
L2∑

l2=0

β2l2(zt−l2 − ψ)+. (2)

Regardless the number of thresholds notice that lag-varying risks are allowed, while the break-
points of the segmented relationship, i.e., the thresholds, are constrained to be the same across
the lags; for this reason, we call the parameterization in models (1) and (2) the constrained
segmented distributed lag parameterization, hereafter CSDL.

To obtain plausible and reasonable findings, the model also assumes that the DL curves
are smooth functions. At this aim, the beta parameters are expressed by means of linear
combinations of B-spline bases,

β1 = Cb1 β2 = Hb2 (3)

where C = [C1, . . . , CP1 ] and H = [H1, . . . ,HP2 ] are the two B-spline bases respectively of
rank equal to P1 and P2 with relevant coefficients b1 and b2 (Eilers and Marx 1996; Wood
2006). To complete specification of the DL curves, a penalty term is imposed on the DL
coefficients. The overall penalty J(λ) is

J(λ) = λ1b
>
1 D

>
1 D1b1 + λ2b

>
2 D

>
2 D2b2 + ω1b

>
1 C
>Υ1Cb1 + ω2b

>
2 H

>Υ2Hb2. (4)

whereD1 andD2 are difference matrices (Eilers and Marx 1996), Υ1 and Υ2 are two diagonal
known weight matrices (Muggeo 2008a). Therefore the DL coefficients are doubly penalised: a
standard difference penalty (b>1 D

>
1 D1b1 and b>2 D

>
2 D2b2) on the spline coefficients to ensure

smoothness over the whole lag range in the spirit of classical P-splines (Eilers and Marx 1996),
and an additional varying ridge penalty affecting late DL coefficients to favour the DL curves
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approaching to zero at longer lags. Therefore the penalised log-likelihood may be written as
`(δ, b1, b2)− J(λ) where `(·) is the Poisson log-likelihood.

The smoothing parameter λ = (λ1, λ2, ω1, ω2)> affects the estimate of all the model param-
eter, especially β1 and β2, by regulating the smoothness of the DL curves via the spline
coefficients b1 and b2. To obtain values of the smoothing parameter λ = (λ1, λ2, ω1, ω2)>, a
reasonable approach is to minimise an empirical version of the expected mean square error:
for known scale parameter (and specifically equal to one in the Poisson case) we consider the
so-called un-biased risk estimator (or scaled AIC) given by (Wood 2006)

UBRE =
1
n
{Dev + 2edf − n}

in which Dev = 2
∑
yi log(yi/µ̂i) is the usual model deviance, and edf are the effective degrees

of freedom computed as trace of the hat matrix. Additional measures are available, including
the well-known AIC (Akaike information criterion) and BIC (Bayesian information criterion).
Selection of λ may be carried out efficiently by the method proposed in Wood (2004) and
implemented in his mgcv package by the function gam.fit().

The estimation procedure which allows to bypass the problems related to the non-regularity
of the segmented models (1) or (2) extends the previous work of Muggeo (2003) implemented
in the R package segmented (Muggeo 2009), and it is described elsewhere (Muggeo 2008a).
Details are omitted, but it is important to emphasise that estimation is performed iteratively
in terms of the spline coefficients (rather than the DL coefficients) maximising a log-likelihood
penalised for the (4), and supplying starting values only for the thresholds.

Poor clear-cut segmented relationships, due to short time series and/or a lot of zeroes in the
observed counts and/or and many outliers, can make model estimation difficult; problematic
convergence may suggest that the model being fitted is not supported by data (see model o2 in
the section 3). However limited experience on some datasets, shows that these computational
troubles are quite unlike in typical time series and the model is successfully fitted most of
times. At the convergence estimates of the thresholds and their standard errors are readily
available from the model output, while the DL curves are easily obtained using the B-spline
bases. For instance, for the cold DL curve we get

β̂1 = Cb̂1 ĈOV(β̂1) = CĈOV(b̂1)C>,

and in the same way it is possible to obtain the estimates for the heat curve.

2. Overview of the package

The R package modTempEff includes functions to fit the constrained segmented distributed lag
model to epidemiological time series of temperature and mortality. The package is written
in R code (R Development Core Team 2009), and it is available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=modTempEff. The package
depends on the packages mgcv and splines, and it includes the following functions:

� tempeff(formula, data, fcontrol, etastart, drop.L, ...). This is the main
function aimed at estimating the model.

http://CRAN.R-project.org/package=modTempEff
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� csdl(z, psi, L, ridge, ndx, DL, diff.varying). This function is employed within
the formula of tempeff() to set the temperature variable and the arguments necessary
to fit a CSDL parameterization.

� seas(x, ndx). This function allows to include in the linear predictor a nonparametric
term for the long term trend and seasonality.

� fit.control(tol, display, it.max, GLM, maxit.inner). Auxiliary function rele-
vant to the fitting process.

� print(x, digits, ...), summary(object, spar, digits, ...), and coef(object,
which, L, ...). Methods to visualize and to extract the most relevant information of
the fit.

� anova(object, ..., dispersion, test). Method to perform model comparisons.

� plot(x, which, var.bayes, add, delta.rr, level, ...). Method to plot the es-
timated DL curves for cold and heat.

tempeff() is used to specify the model: formula is the standard formula of the regression
equation including confounders (e.g., days of week, influenza epidemics, ...) entering the model
linearly, the temperature variable having a constrained segmented distributed lag relationship
which has to be specified via the function csdl(), and the nonparametric term for long term
trend and seasonality. data means the possible dataset where the variables are stored, and
the control argument fcontrol refers to the some options of the fitting process returned
fit.control(). Starting values may be supplied in etastart, and drop.L is an integer to
specify whether the first drop.L observations have to be discarded before fitting. drop.L may
be useful when several fitted models have to be compared and the same number of observations
in each model is desirable, as explained below. The three dots ... accept arguments to be
passed to csdl() as discussed below.

Actually tempeff() is based on tempeff.fit() which is not designed to be called from the
user; in turn, tempeff.fit() uses gam.fit() from the mgcv package and splineDesign()
from the splines package, both included in the R base distribution. tempeff() returns objects
of class ‘modTempEff’ for which some methods exist as described below.

The function csdl() is employed to include in the model a variable having a csdl relationship
with the response; this variable, specified via its first argument z, typically represents the
mean or maximum daily temperature or sometimes the ‘apparent’ temperature accounting
for humidity and pressure. The arguments psi and L are mandatory; one or two starting
values have to supplied in psi depending on the number of the breakpoints to be estimated,
while L defines the maximum lags within which to assess the effect of cold and heat, see L1 and
L2 in formulas (1) and (2); Of course, the first max(L1, L2) observations are removed when
a CSDL is included. The optional arguments ndx, DL and diff.varying regulate smoothing
of DL curves. ndx requires two integers (default to round(L/3)) to specify the ‘apparent’
dimension of the B-spline bases for cold and heat (P1 and P2 of formula (3)). The user
may impose a global difference penalty on the spline coefficients (DL = FALSE, default) or
on the DL coefficients themselves (DL = TRUE): empirical evidence has shown that the two
options are unlike to lead different results. The argument diff.varying (default to FALSE)
enables the user to specify a varying difference penalty, in the form

∑
l(βl − βl−1)2δl with
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δl being a monotonic function of lag l which penalises against large values of differences of
DL coefficients. Some simulations have shown this varying difference penalty is substantially
unnecessary and even not advised in practice, provided that a varying ridge penalty is used.
The additional varying ridge penalties are specified via the argument ridge which defaults to
NULL indicating no ridge penalty. Otherwise ridge is a length-two named list of characters
written as a function of l; for instance two quadratic ridge penalties for both cold and heat
may be set via ridge = list(cold = "l^2", heat = "l^2").

The function seas() allows to model the long term trend and seasonality in a non parametric
way: a (usually rich) B-spline of rank ndx is used with a standard second-order difference
penalty to prevent undersmoothing.

fit.control() allows to control the estimating algorithm, for instance via tol to regulate
the tolerance value at which the algorithm stops, display to print the iterative process, and
it.max to set the maximum number of the (outer) iterations of the algorithm. Each outer
iteration comprises a few inner iterations managed by maxit.inner and GLM which defaults
to FALSE. When GLM = TRUE, at each iteration an unpenalised GLM is fitted via glm.fit(),
otherwise gam.fit() from mgcv is used. GLM = TRUE speeds up computations since the
smoothing parameter is estimated only at the final iteration, and therefore it may be helpful
with very large datasets when gam.fit() is unpractical; however some experience suggests
to use GLM = FALSE to prevent premature convergence to non-optimal solutions.

Finally the methods print, summary, coef, anova and plot allows to visualize, extract and
display the most important information of the fit; in particular coef returns L+1 coefficients
of DL curves for cold and/or heat (depending on which), and plot portrays the fitted DL
curves for cold and/or heat effects (depending on which) with pointwise confidence intervals
at level level.

3. Fitting the model in R

We illustrate the aforementioned functions on a simulated dataset, including daily time series
of natural mortality and temperature for five years (T = 1825). We load the package via

R> library("modTempEff")

Loading required package: mgcv
This is mgcv 1.5-6 . For overview type `help("mgcv-package")'.
Loading required package: splines

Notice that modTempEff loads the packages splines and mgcv; the former is employed to build
the B-spline bases of formula (3) via the function splineDesign(), and the latter is requested
to perform ‘selection’ of the smoothing parameter λ and model estimation via the function
gam.fit().

The typical dataset employed in the analysis of temperature (or air pollution) effect on health,
comprises daily times series of the ‘health variable’ (mortality counts, all causes or cause-
specific) and meteorological/environmental variables. The dataset also includes variables
corresponding to day, year, month, and day-of-week. The data being analysed have a similar
appearance
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Figure 1: Daily time series of death counts (left) and mortality-temperature scatterplot
(right).

R> data("dataDeathTemp")

R> head(dataDeathTemp)

dec1 mtemp month year day dweek decNS dec2
1 44 0.3 1 1985 1 2 40 33
2 45 -2.2 1 1985 2 3 41 46
3 45 -1.6 1 1985 3 4 44 34
4 37 -0.5 1 1985 4 5 34 32
5 46 -2.2 1 1985 5 6 45 32
6 44 -4.4 1 1985 6 7 50 38

The variables mtemp and dec1 are basic for our analysis, as they represent the daily time series
of mean temperature and death counts; dec1 is actually simulated using estimates coming
from a real data analysis. month, year, day, and wday are ‘seasonal’ variables respectively
for month (12 level categorical variable), year (5 level categorical variable), day (integer t =
1, 2, . . . , 1825) and day of week (7 level categorical variable). Although additional variables,
such as humidity or pressure, may be present in the dataset in practice, we neglect them for
simplicity; the rationale of discussed methods and relevant code are unchanged.

Figure 1 shows the daily time series of mortality counts and a raw scatterplot of mortality
against temperature. Note the classical seasonal pattern in the daily series and the V-shaped
relationship mortality-temperature. These figures may be obtained easily via

R> layout(matrix(c(1, 1, 2), ncol = 3))

R> with(dataDeathTemp, plot(dec1, xlab = "day", ylab = "no. of deaths"))

R> with(dataDeathTemp, plot(mtemp, dec1, xlab = "temperature",

+ ylab = "no. of deaths"))

The interest centers on the temperature effects controlling for confounders, such as seasonality
and days-of week, to be included in the regression equation. A starting model could consider
the categorical variables year, month and day of week to control for seasonality, while the
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temperature effects could be modeled via equation (2) with maximum lags L1 = L2 = 60; we
assume two B-spline bases of rank given by round(L)/3 (default) and no ridge penalty, i.e.,
the default ridge = NULL; the starting value for the threshold is set to 20 as suggested by
the right plot in Figure 1. The option display = TRUE in fit.control() allows to monitor
the estimation process by printing at each iteration the deviance and the current estimate of
the threshold.

R> o <- tempeff(dec1 ~ day + factor(dweek) + factor(year) + factor(month) +

+ csdl(mtemp, psi = 20, L = c(60, 60)), data = dataDeathTemp,

+ fcontrol = fit.control(display = TRUE))

0 2080.571 ---- without 'csdl' variable
1 1818.663 19.847
2 1818.124 19.844
.....
10 1817.923 19.733
11 1817.918 19.733
12 1817.918 19.732

Convergence is attained in twelve iterations and the fitted model is stored in the object o.

Following a recently consolidated approach in the analysis of mortality time series, we may
improve the fit by including a smoother for seasonality rather than parametric terms for
month, year and day; at this aim, we use penalised splines by modifying properly the formula,

R> o.noRidge <- update(o, . ~ . - day - factor(year) - factor(month) +

+ seas(day, 30), fcontrol = fit.control(display = FALSE))

The smoother used to model the long term trend and seasonality of the observed series is a
‘classical’ P-spline, that is B-splines with a difference penalty on the coefficients. It should
be emphasized that ndx, like ndx argument in csdl(), controls the rank, i.e., the size of
the basis used for the penalized spline; the rank or ‘apparent’ dimension is ndx+3 since
third degree splines are employed, but the ‘actual’ dimension, i.e., the effective degrees of
freedom (edf ), are obtained as trace of the hat matrix, and they are typically much less than
the corresponding basis size. Note that in the analysis of epidemiological time series, P-
splines fitted by direct maximisation of the penalised log-likelihood should be preferred to the
alternative nonparametric smoothers fitted by backfitting. The pitfall with the backfitting
lies on the so-called ‘concurvity’ (i.e., a sort of nonparametric collinearity) which leads to
biased estimates for the model parameters, especially for the cold effect (Ramsay, Burnett,
and Krewski 2003; Muggeo 2004).

A raw inspection of the fitted models via the print method may be useful to assess the
different fits,

R> o

Model Summary (n = 1765):
AIC = 11271.33 BIC = 11486.79 ubre = 0.07457 dev = 1817.918
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Degrees of freedom:
Model Cold Heat Seasonality

edf 39.35 2.92 12.43 NA
rank 70.00 23.00 23.00 NA

R> o.noRidge

Model Summary (n = 1765):
AIC = 11255.99 BIC = 11520.07 ubre = 0.06588 dev = 1784.825
Degrees of freedom:

Model Cold Heat Seasonality
edf 48.22 2.841 12.63 25.75
rank 86.00 23.000 23.00 33.00

The print method returns the usual model residual deviance with the AIC, BIC, UBRE
and also some information on the number of parameters of the model and of any B-spline
employed. The rank is the apparent dimension of the bases, i.e., the number of basis functions
equal to the number of column of the matrix. The effective degrees of freedom (edf ) measure
the actual model dimension which is reduced owing to penalty. Overall, model o (with a
design matrix having 70 columns) uses edf = 39.35, and model o.noRidge (design matrix
having 86 columns) with a nonparametric term for seasonality exploits edf = 48.22. The DL
curves of cold and heat are substantially based on the same edf . AIC and UBRE tend to
prefer o.noRidge with respect to o, but the BIC is better for model o; we can try to improve
the model (such that each likelihood-based criterion is better), by also imposing the fitted
DL curves to follow a more plausible biological pattern. Following arguments reported in
Muggeo (2008a) and briefly sketched above, we could try to include a ridge penalty to allow
the DL curves to approach to zero more rapidly. We set a linear varying ridge penalty on the
DL coefficients i.e., Υ1 = Υ2 = diag(0, 1, 2, 3, . . . , 60) such that the varying ridge wiggliness
measures become

∑60
l1=0 β

2
1l1
l1 and

∑60
l2=0 β

2
2l2
l2, respectively for cold and heat. The argument

ridge of csdl() has to be employed at this aim, and a natural call makes use of csdl(mtemp,
20, c(60, 60), ridge = list(cold = "l", heat = "l")) in the formula of tempeff().

However the ... in tempeff() accept arguments to be passed to csdl(); therefore we can
simply type

R> o.Ridge.l <- update(o.noRidge, ridge = list(cold = "l", heat = "l"))

and note the formula reads correctly as

R> formula(o.Ridge.l)

dec1 ~ factor(dweek) + seas(day, 30) + csdl(mtemp, psi = 20,
L = c(60, 60), ridge = list(cold = "l", heat = "l"))

Each argument given in tempeff() via the ... is passed to csdl() by overwriting its possible
previous value; this feature may be useful for the user interested in fitting and comparing
different models, for instance by replacing the temperature variable (‘apparent’ rather than
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‘ambient’ temperature, say) and/or by modifying the starting values for the breakpoint and/or
the number of lags L.
The effect of the varying ridge penalty is to shrink the late DL coefficients throughout zero.
However the amount of shrinkage depends on the weights (main diagonals of Υ1 and Υ2) and
on the smoothing parameters ω1 and ω2. While smoothing parameters are not modifiable
as they are estimated by data, it is possible to increase weights to strengthen the effect of
shrinkage. Quadratic or cubic weights lead to results similar to ones returned by a linear
ridge (model o.Ridge.l) and relevant results are not shown. On the other hand a varying
ridge penalty with quartic weights, such as

∑60
l1=0 β

2
1l1
l41 and

∑60
l2=0 β

2
2l2
l42, leads to noteworthy

outcome,

R> o.Ridge.l4 <- update(o.noRidge, ridge = list(cold = "l^4", heat = "l^4"))

R> o.Ridge.l4

Model Summary (n = 1765):
AIC = 11249.56 BIC = 11445.93 ubre = 0.06223 dev = 1803.121
Degrees of freedom:

Model Cold Heat Seasonality
edf 35.86 1.064 5.269 22.53
rank 86.00 23.000 23.000 33.00

Now each likelihood-based criterion (including the BIC) is better than the previous ones; we
can use the anova method to compare the different fits using the Mallows’ Cp statistic which
is closely related to AIC,

R> anova(o.noRidge, o.Ridge.l, o.Ridge.l4, test = "Cp")

Analysis of Deviance Table

Model 1: dec1 ~ factor(dweek) + csdl(mtemp, psi = 20, L = c(60, 60)) +
seas(day, 30)

Model 2: dec1 ~ factor(dweek) + seas(day, 30) + csdl(mtemp, psi = 20,
L = c(60, 60), ridge = list(cold = "l", heat = "l"))

Model 3: dec1 ~ factor(dweek) + seas(day, 30) + csdl(mtemp, psi = 20,
L = c(60, 60), ridge = list(cold = "l^4", heat = "l^4"))

Resid. Df Resid. Dev Df Deviance Cp
1 1716.8 1784.8 1881.3
2 1720.0 1791.3 -3.1849 -6.4826 1881.4
3 1729.1 1803.1 -9.1791 -11.8132 1874.8

As expected, the deviance is lower for more complex models (higher edf ), however both AIC
and BIC are lower for the model o.Ridge.l4 which uses less than 12.36 degrees of freedom as
compared with the model with no ridge penalty. In conclusion, P-splines for seasonality and a
quartic ridge penalty for the DL curves should be preferred. Of course, different combinations
of varying ridge penalty patterns might be used for cold and heat, and comparisons could
be made via statistical criteria and/or substantive assessments. We do not include these
comparisons or a discussion in the present paper.
We can have a deeper glance of the ‘selected’ model via summary(),
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R> summary(o.Ridge.l4)

Model: tempeff(formula = dec1 ~ factor(dweek) + csdl(mtemp, psi = 20,
L = c(60, 60)) + seas(day, 30), data = dataDeathTemp,
fcontrol = fit.control(display = FALSE),
ridge = list(cold = "l^4", heat = "l^4"))

Seasonality (smooth): edf = 22.53 (rank = 33 ; log(spar) = 3.146)

Fit summary (model edf = 35.86; n = 1765):
AIC = 11249.56 BIC = 11445.93 ubre = 0.06223 dev = 1803.121

Net effects of mtemp (based on edf = 7.33):
Est SE.freq SE.bayes rank edf L

Cold 0.023091 0.001763 0.003129 23 1.064 60
Heat -0.004343 0.003942 0.005652 23 5.269 60

log(spar) for smooth DL curves:
lambda.Cold lambda.Heat omega.Cold omega.Heat

22.11456 10.03786 1.83512 0.07019

Threshold:
Est SE.freq SE.bayes
19.5 0.668 0.684
V variable(s):

coef tvalue
-0.0001325005 -0.0001984776

Most of the printed information are rather self-explaining, although some points are notewor-
thy. The V variable shows the estimate and relevant t value of a re-parameterization of the
threshold; at the convergence such values should be small. We suggest to warn about fits
with large values of coefficients of the V variable.
The reported net effect of temperature is the sum of the lag specific log relative risks for
cold and heat. Such synthesis measure is aimed at quantifying the overall effect of cold
and heat effects after accounting for possible ‘harvesting’. The harvesting occurs when a
positive association at short lags (positive lag-specific DL coefficients, typically within seven
days) is followed by negative association at longer lags (negative lag-specific DL coefficients)
which should suggest a ‘deficit’ of mortality. From an epidemiological point of view, this
would emphasise that the effect of temperature is ‘only’ to anticipate the deaths by some
days, probably affecting more vulnerable people, elderly or suffering persons (e.g., Hajat,
Armstrong, Gouveia, and Wilkinson 2005). For the estimates of the net effect and of the
threshold, two standard errors are computed. The ‘frequentist’ ones (SE.freq) are based on
a sandwich formula involving penalised and unpenalised information matrix assuming fixed
the smoothing parameter; the ‘bayesian’ standard errors (SE.bayes) also account, to some
extend, for the smoothing parameters and therefore should be preferred as featured by better
coverage properties, see Wood (2006) for details. Threshold estimate is also reported along
with corresponding standard errors (bayesian and frequentist). Note the breakpoint is actually
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Figure 2: Smoothed Distributed Lag curves for cold (top) and heat (bottom) from three
different models. From left to right: only global penalty (o.noRidge), global plus linear ridge
penalty (o.Ridge.l), and global plus quartic ridge penalty (o.Ridge.l4).

estimated, and therefore it is included in the overall df of the CSDL parameterization given by
df(cold) plus df(heat) plus 1 breakpoint (for model o.Ridge.l4 it is 1.064+5.269+1 = 7.33).

Lag-specific log relative risk may be extracted via the ‘coef’ method,

R> coef(o.Ridge.l4, L = 7)

cold heat
lag0 0.00129 0.01041
lag1 0.00125 0.00786
lag2 0.00121 0.00554
lag3 0.00117 0.00357
lag4 0.00112 0.00201
lag5 0.00108 0.00079
lag6 0.00104 -0.00012

where L specifies the number of coefficients to be returned.

It is instructive to compare the fitted DL curves from the three aforementioned models.
Figure 2 emphasises the nice end of the additional varying penalty. Plots on the left side
show the fitted DL curves using only a global difference penalty. This output is substantially
the one of the approach by Zanobetti, Wand, Schwartz, and Ryan (2000), although they deal
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with a linear (non-segmented) relationship using different basis and penalty. Note, however,
the DL estimated curve (and its standard errors) does not approach to zero at late lags. This
implies, for instance, that the estimate of the ‘net’ effect (sum of lag-specific effects) and
corresponding standard error might depend on choice of maximum lag L.

While a simple difference penalty ensures smoothness over the lags, the varying ridge penalty
allows the DL curve estimate to approach to zero. Unlike the only difference penalty, the
additional varying ridge shrink the DL coefficients and their standard errors towards zero.
DL coefficients near to zero at longer lags are biologically plausible since they assume a
vanishing effect as lag increases. Moreover this feature makes choice of maximum lag a minor
issue.

The plots of DL curves are obtained via the plot method

R> par(mfcol = c(2, 3))

R> plot(o.noRidge, new = FALSE)

R> plot(o.Ridge.l, new = FALSE)

R> plot(o.Ridge.l4, new = FALSE)

Notice the argument new = FALSE has been set to display the plot on the current device; oth-
erwise the default value new = TRUE would have opened a new device. Additional arguments
for the plot method can be used to specify which DL has to be drawn (cold, heat or both
of them), the level of the pointwise confidence intervals and which standard errors should be
used (frequentist or bayesian). Note when the ‘modTempEff’ object has been called without
a CSDL term, plot.modTempEff() still works by drawing the fitted nonparametric term for
seasonality, provided that it has been included in the model. This method also works for fits
obtained with fixed (i.e., not estimated) breakpoints via fcontrol = fit.control(it.max
= 0).

We conclude the illustration of the code by fitting model (1), namely two different thresholds
for cold and heat. The only difference concerns the psi argument which now requires two
starting values. Thus,

R> o2 <- tempeff(dec1 ~ day + factor(dweek) + factor(year) + factor(month) +

+ csdl(mtemp, psi = c(10, 20), L = c(60, 60)),

+ data = dataDeathTemp, fcontrol = fit.control(display = TRUE))

0 2080.571 ---- without 'csdl' variable
1 1835.399 11.818 19.137
2 1827.852 12.197 19.830
3 1828.362 13.126 19.485
.....
19 1816.649 18.027 20.326
20 1816.989 19.363 20.398
Warning message:
max number of iterations attained

The algorithm does not converge after 20 iterations; in general, we could also increase the
number of iterations or modify the starting values, but usually this does not change the result,
see Muggeo (2008b) for a discussion about non convergence in segmented regression.
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Broadly speaking, we can interpret such non-convergence as over-fitting, namely the fitted
model is not supported by data and a ‘bath-type’ relationship (see equation (1)) is unlike.
However it is always possible to inspect the fit to have a deeper assessment of the results,

R> summary(o2)

Model: tempeff(formula = dec1 ~ day + factor(dweek) + factor(year) +
factor(month) + csdl(mtemp, psi = c(10, 20), L = c(60, 60)),
data = dataDeathTemp, fcontrol = fit.control(display = TRUE))

Seasonality (smooth): NA

Fit summary (model edf = 40.07; n = 1765):
AIC = 11271.85 BIC = 11491.28 ubre = 0.07486 dev = 1816.989

Net effects of mtemp (based on edf = 17.07):
Est SE.freq SE.bayes rank edf L

Cold 0.036031 0.003646 0.003666 23 2.916 60
Heat -0.008224 0.012516 0.012539 23 12.155 60

log(spar) for smooth DL curves:
lambda.Cold lambda.Heat

20.32 9.74

Threshold:
Est SE.freq SE.bayes

psi1 19.4 1.489 1.497
psi2 20.4 0.663 0.666
V variable(s):

coef1 coef2 tvalue1 tvalue2
1.33571366 0.07128425 0.89700879 0.10748561

There are several indications to discard this two-breakpoints model. First, point estimates
of the threshold are very close each other, with corresponding confidence intervals strongly
overlapped. Second, and more importantly, the AIC, BIC and UBRE are somewhat higher.
Similar convergence problems occur when we try to estimate two breakpoints in the previously
‘selected’ model (o.Ridge.l4) with a nonparametric term for seasonality and an additional
varying ridge penalty to smooth the DL curves.

R> o2.Ridge.l4 <- update(o.Ridge.l4, psi = c(10, 20),

+ fcontrol = fit.control(it.max = 30))

Warning message:
max number of iterations attained

R> o2.Ridge.l4
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Model Summary (n = 1765):
AIC = 11250.39 BIC = 11463.90 ubre = 0.0627 dev = 1797.685
Degrees of freedom:

Model Cold Heat Seasonality
edf 38.99 1.138 5.546 24.31
rank 87.00 23.000 23.000 33.00

Due to the additional breakpoint to be estimated, note the model rank is 87, one more than
the one of o.Ridge.l4; however AIC, BIC and UBRE do not improve.

We do not discuss further the selection between one- or two-breakpoints models, and following
results reported in Tiwari, Cronin, Davis, Feuer, Yu, and Chib (2005), we suggest of using
the BIC; at this aim the anova method includes the option test="BIC",

R> anova(o.Ridge.l4, o2.Ridge.l4, test = "BIC")

Analysis of Deviance Table

Model 1: dec1 ~ factor(dweek) + seas(day, 30) + csdl(mtemp, psi = 20,
L = c(60, 60), ridge = list(cold = "l^4", heat = "l^4"))

Model 2: dec1 ~ factor(dweek) + seas(day, 30) + csdl(mtemp, psi = c(10,
20), L = c(60, 60), ridge = list(cold = "l^4", heat = "l^4"))

Resid. Df Resid. Dev Df Deviance BIC
1 1729.1 1803.1 2071.2
2 1726.0 1797.7 3.1308 5.4357 2089.2

Note the BIC returned by anova.modTempEff is actually computed as Dev +log(n)·edf which
is numerically different from the ones by the print and summary methods, −2`+ log(n) · edf ;
however findings from model comparisons are unchanged.

The dataset shipped with the package also includes two additional simulated response counts:
decNS which is not associated with mtemp, and dec2 which is associated via a CSDL parame-
terization with two breakpoints. The user may try to fit models with these responses and to
assess different results.

4. Conclusion

We have discussed the practical implementation of a log-linear regression model to analyse
the temperature effects on mortality with (daily) time series data. The model is estimated via
penalised log-likelihood by means of the efficient gam.fit() function in the mgcv package.
Estimates of distributed lag effect of the cold and heat, and threshold values are returned,
along with additional linear parameters and a smoothing term to account for long term trend
and seasonality.

There are several sides where the model and the package may be improved, specifically with
regard to the effect of air pollution, e.g., particulate matter or ozone. Currently the pollutant
may enter the model linearly in the formula of tempeff(), however it would be interesting
to model it via an additional distributed lag effect with its proper maximum lag, size of
the spline basis, and smoothing parameter to be estimated from data. Modelling pollutant
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via a separate DL does not pose particular problems and its implementation appears rather
practicable: this feature could be included in the next release of the package. A much more
challenging improvement would be to model the synergic effect of temperature and pollutant
via two bivariate DL curves, cold-by-pollutant and heat-by-pollutant. The idea has been
discussed in Muggeo (2007) assuming a fixed breakpoint ψ, but further investigation is needed
to modify the model framework and the estimating procedure when the breakpoints have to
be estimated. Another possible and non-straightforward extension of the package concerns
the so-called case-crossover studies where each event day is matched to several control days
according to a specified design (e.g., Janes, Sheppard, and Lumley 2005). The constrained
segmented distributed lag parameterization may be still applied in theory, but the regression
model to fit is not longer a log-linear model for count response but a conditional logit model
with a binary response applied to an opportunely augmented dataset. Therefore fitting the
constrained segmented distributed lag parameterization would rely on a different function,
perhaps the clogit() from package survival (Therneau and Lumley 2009). More generally,
the present package may be employed to model data from different fields; if model (1) or (2)
hold and the response variable belongs to exponential family, modTempEff may be customized
by modifying the family argument of the call to gam.fit().

However in its current implementation, at time of writing the model has been successfully em-
ployed in the analysis of temperature and mortality in Santiago and Palermo, two cities with
different climatic conditions (Muggeo and Hajat 2009), and it is hoped that the package may
be helpful for researchers involved in epidemiological studies of mortality and temperature.
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