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Abstract

The GEEQBOX toolbox analyzes correlated data via the method of generalized esti-
mating equations (GEE) and quasi-least squares (QLS), an approach based on GEE that
overcomes some limitations of GEE that have been noted in the literature. GEEQBOX
is currently able to handle correlated data that follows a normal, Bernoulli or Poisson
distribution, and that is assumed to have an AR(1), Markov, tri-diagonal, equicorrelated,
unstructured or working independence correlation structure. This toolbox is for use with
MATLAB.
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1. Introduction

The method of generalized estimating equations (GEE, Liang and Zeger 1986) is widely used
because it allows for straight-forward analysis of correlated outcomes that can be discrete
or continuous. GEE relies on the specification of the correlation structure, which results in
some limitations. For example, Crowder (1995) used simple examples to demonstrate that if
the pattern in the correlations is misspecified, there may be no solution (asymptotically) to
the GEE moment-based estimating equation for the correlation parameter. In practice, this
can result in failure to converge in a GEE analysis. Another limitation is that relatively few
correlation structures have been implemented in the major statistical software packages that
implement GEE. Although a simple structure is often reasonable to describe the expected
pattern of associations, expansion of GEE for implementation of more complex structures
could be beneficial when the correlations are of scientific interest, or a particular pattern is
biologically plausible.
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The method of quasi-least squares (QLS) is a two-stage approach for estimation of the cor-
relation parameter in the framework of GEE that overcomes some of the limitations that
were just described; see Chaganty (1997) for a description of stage one of QLS for data with
an equal number of observations per subject (balanced data), Shults (1996) and Shults and
Chaganty (1998) for stage one for unbalanced data, and Chaganty and Shults (1999) for stage
two of QLS. First, QLS can sometimes yield meaningful results when GEE fails to converge,
or when the estimated correlation matrix is not positive definite for GEE. For example, Shults
et al. (2007) demonstrated that application of a simple (tri-diagonal) correlation structure in
analysis of data from a study of obesity in children with renal disease resulted in a non-positive
definite estimated correlation matrix for GEE; in contrast, the estimated correlation matrix
for QLS (implemented in Stata, StataCorp. 2003) was positive definite. Next, QLS allows for
relatively straightforward implementation of patterned correlation structures. For example,
see Shults and Morrow (2002), Shults et al. (2004), and Shults et al. (2006) for studies whose
analysis benefited from QLS with structures that previously had not been implemented in the
framework of GEE.

In this manuscript, we consider a study that was described in Nunez-Anton and Woodworth
(1994) and Chaganty and Shults (1999). In this trial, profoundly deaf subjects were surgically
implanted with one of two types of hearing aids. Tests designed to measure hearing ability
were then administered to the patients at 1, 9, 18 and 30 months post-implant. Because
measurements from this trial were not equally spaced in time, it would be reasonable to
consider application of a correlation structure that depends on the actual temporal spacing of
measurements, in addition to the usual simple patterns for the correlations that are applied
in a GEE analysis. For this reason, we demonstrate implementation via QLS of the Markov
structure that was described in Naik and Prabhala (2002); the Markov structure assumes that
the correlation between measurements depends on the temporal spacing of measurements and
declines with increasing separation in time, which are both reasonable assumptions for data
from this study.

This article presents the GEEQBOX toolbox for analysis of correlated data with GEE and
QLS using the mathematical software MATLAB (The MathWorks, Inc. 2007). The toolbox
currently allows for:

� three possible data distributions,

� six assumed correlation structures,

� estimation by either GEE or QLS.

This article does not replace the user guide or statistical documentation of QLS that the
reader can find on the internet at http://www.cceb.upenn.edu/~sratclif/QLSproject.
html. Rather, it provides an overview of the features of the GEEQBOX toolbox and some
examples of its use.

The paper is organized as follows. Section 2 provides some notation and a brief description of
the methods of GEE and QLS. Section 3 describes the technical features of the GEEQBOX
toolbox. An example data analysis is shown in Section 4 to demonstrate the implementation
of GEEQBOX. Discussion, including conclusions and plans for continued expansion of the
toolbox, are then provided in Section 5.

http://www.cceb.upenn.edu/~sratclif/QLSproject.html
http://www.cceb.upenn.edu/~sratclif/QLSproject.html
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2. A brief description of QLS and GEE

This section provides some notation; a description of the correlation structures that are im-
plemented in GEEQBOX; and a summary of QLS and GEE. For more detail regarding QLS
and GEE, please see the references that were provided in the introduction. In addition, see
Hardin and Hilbe (2003) for an excellent and comprehensive text on GEE.

2.1. Notation

For analysis of a longitudinal study, we assume that measurements Yi = (yi1, · · · , yini)
>

and associated covariates xij = (xij1, · · · , xijp)> were collected on subject i at times Ti =
(ti1, · · · , tini)

>, for i = 1, · · · ,m. The data are considered balanced and equally spaced when
ni = n ∀ i and |tij − tij−1| = γ ∀ i, and j, respectively. For analysis of a cross-sectional study,
e.g., if one measurement is collected on each of several subjects within multiple clusters, then
Yi = (yi1, · · · , yini)

> represents the ni measurements that were collected within cluster i.

The expected value and variance of measurement yij on subject (or cluster) i are assumed to
equal E(yij) = g−1(x>ijβ) = uij and Var(yij) = φh(uij), respectively, where φ is a known or
unknown scale parameter. We also let Ui(β) represent the ni × 1 vector of expected values
uij on subject i. For longitudinal and cross-sectional studies, observations are assumed to
be independent if they are measured on different subjects or clusters, respectively. However,
within subjects or clusters, they are assumed to be correlated, with a pattern of association
that can be described by a working correlation structure. The working structure for subject
(or cluster) i, denoted by Corr(Yi) = Ri(α), depends on a correlation parameter α that
can be scalar or vector-valued. The covariance matrix of Yi is then given by Cov(Yi) =
φAi

1/2Ri(α)Ai1/2, where Ai = diag(h(ui1), . . . , h(uini)).

Both GEE and QLS are iterative approaches that alternate between (1) updating the estimate
of the regression parameter β by solving the GEE estimating equation for β and (2) updating
the estimate of the correlation parameter α via moment estimation (GEE) or solving an
unbiased estimating equation for α in two stages (QLS).

2.2. Working correlation structures

GEEQBOX currently implements the following structures, with plans to implement additional
structures that will be made available on the web.

� Equicorrelated: This structure assumes that all pairwise correlations within a cluster
are equal, so that Corr(yij , yik) = α. This structure is plausible for cross-sectional stud-
ies, e.g., to describe the pattern of association of weights among litter-mates of baby rats.

� First-order autoregressive AR(1): This structure assumes that the correlation among
repeated measurements on a subject depends on their separation in order of measure-
ment, so that Corr(yij , yik) = αj−k. This structure is plausible for longitudinal studies
in which the collection times of measurements are equally spaced in time, e.g., in a
weight loss intervention that measures weights on subjects at baseline and then at three
and six months post-baseline.
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� Markov: This structure assumes that the correlation among repeated measurements on
a subject depends on their timing of measurement, so that Corr(yij , yik) = α|tij−tik|.
This structure generalizes the AR(1) structure to allow for unequal spacing of mea-
surements. The estimate for α will be within the interval (−1, 1). However, as for
the AR(1) structure, a negative value for α is typically not biologically plausible. GEE-
QBOX therefore uses QLS to obtain an estimate of α ∈ (0, 1). We note that GEEQBOX
does not implement the Markov structure for GEE because it is not straightforward to
obtain a moment estimate for this structure.

� Tri-diagonal: This structure assumes that the correlation among measurements on a
subject is constant for measurements that are separated by one measurement occasion,
so that Corr(yij , yik) = α for |j − k| = 1 and is zero otherwise. The authors are not
aware of many practical applications for this structure, but it was implemented in Liang
and Zeger (1986) and in most standard software packages that implement GEE.

� Unstructured: This structure does not assume any pattern for the intra-subject cor-
relations, so that Corr(Yij , Yik) = αjk. This structure has been implemented in QLS
(Chaganty 1997; Chaganty and Shults 1999) but the algorithms are somewhat complex.
GEEQBOX therefore implements a moment estimate using GEE.

� Working Independent: Another popular structure is the identity matrix. Implemen-
tation of this structure is straightforward because β can then be estimated in a non-
iterative process. However, several authors have shown that incorrect application of the
working independence structure can result in a serious loss in efficiency in estimation of
β (e.g., Sutradhar and Das 2000; Wang and Carey 2004; Shults et al. 2006)

2.3. GEE estimates of the correlation parameter

For GEE, GEEQBOX implements the following moment estimates that are implemented in
PROC GENMOD in SAS (SAS Institute Inc. 2003).
For the equicorrelated structure, the GEE moment estimate is given by:

α̂GEE−EQUI =

∑m
i=1

∑
j 6=k zijzik

(N∗ − p)φ̂GEE

where

N∗ =
m∑
i=1

ni(ni − 1),

φ̂GEE =

∑m
i=1

∑ni
j=1 z

2
ij

N − p
,

N =
∑m

i=1 ni, zij is the Pearson residual for subject i at time tij and p is the dimension of β.
For the AR(1) and tri-diagonal estimates, the GEE moment estimate is:

α̂GEE−TRI = α̂GEE−AR1 =

∑m
i=1

∑ni
j=2 zijzi,j−1

(N∗∗ − p)φ̂GEE
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where N∗∗ =
∑m

i=1(ni − 1).
For the unstructured correlation matrix, GEEQBOX implements the following moment esti-
mate for element j, k of the matrix:

Ri [j, k] =
∑m

i=1 zijzik

(m− p)φ̂GEE

A moment based estimator has not been proposed in the literature for implementation of the
more general Markov correlation for GEE, which provides motivation for implementation of
QLS.

2.4. QLS estimates of the correlation parameter

While GEE typically uses moment estimates for α, QLS estimates α by obtaining a solution
to an unbiased estimating equation in two stages (see Sun et al. 2006, for more details). In
stage one, QLS alternates between updating the estimates of β and solving the stage one
estimating equation for α until convergence.

∂

∂α

{
m∑
i=1

Z>i (β)
{
R−1
i (α)

}
Zi(β)

}
= 0 (1)

where Zi(β) = (zi1, zi2, . . . , zini)ni×1 is the vector of Pearson residuals on subject i.
The solution α̂ to (1) is not consistent. Stage two of QLS therefore obtains a consistent
estimate α̂QLS as the solution to the stage two estimating equation for α.

m∑
i=1

trace

{
∂R−1

i (δ)
∂δ

Ri(α)
}∣∣∣∣∣

δ=α̂

= 0 (2)

The final QLS estimate β̂QLS of β is then obtained by solving the GEE estimating equation for
β evaluated at α̂QLS. For estimating equations that do not have a unique solution, GEEQBOX
uses the bisection method to obtain a solution in the feasible region for α.
For the AR(1) structure and for unbalanced data, Shults and Chaganty (1998) proved that
the feasible stage one estimate α̂ can be expressed as:

α̂QONE =

m∑
i=1

ni∑
j=2

(z2
ij + z2

ij−1)−
√

m∑
i=1

ni∑
j=2

(zij + zij−1)2
m∑
i=1

ni∑
j=2

(zij − zij−1)2

2
m∑
i=1

ni∑
j=2

zijzij−1

(3)

while the stage two estimate α̂QLS−AR1 (Chaganty and Shults 1999) is given by

α̂QLS−AR1 =
2α̂QONE

1 + α̂2
QONE

. (4)

For the Markov structure and unbalanced data, Shults and Chaganty (1998) provided the
QLS stage one estimating equation for α:

m∑
i=1

ni∑
j=2

eijα
eij

[
α2eijzijzi,j−1 − αeij

(
z2
ij + z2

i,j−1

)
+ zijzi,j−1

]
= 0

(1− α2eij )2
(5)
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where eij = |tij − ti,j−1|. Note that GEEQBOX requires that eij ≥ 1 ∀ i and j. The stage two
estimating equation for the Markov structure (Chaganty and Shults 1999) is given by:

m∑
i=1

ni∑
j=2

2eijδ2eij−1 − αeijeij
[
δeij−1 + δ3eij−1

]
(1− δ2eij )2

∣∣∣∣∣∣
δ=α̂

= 0 (6)

For the equicorrelated structure and for unbalanced data, Shults (1996) proved that there will
be a unique feasible solution to the following stage one estimating equation for α:∑

i:ni>1

Z>i Zi −
∑
i:ni>1

1 + α2(ni − 1)
(1 + α(ni − 1))2

(Z>i (β) ei)2 = 0 (7)

where Ini is the identity matrix and ei is a ni × 1 column vector of ones. Shults and Morrow
(2002) obtained the stage two estimate α̂QLS−EQC:

∑
i:ni>1

ni (ni − 1) α̂ (α̂ (ni − 2) + 2)
(1 + α̂(ni − 1))2

/
∑
i:ni>1

ni (ni − 1)
(
1 + α̂2(ni − 1)

)
(1 + α̂(ni − 1))2

(8)

For the tri-diagonal structure and unbalanced data, GEEQBOX obtains solutions to the stage
one and two estimating equations (1) and (2) for the tri-diagonal structure by first constructing
the tri-diagonal matrix Ri(α̂). Next, to evaluate

∂R−1
i (δ)
∂δ

∣∣∣∣
δ=α̂

GEEQBOX implements the following expression:

∂R−1
i (δ)
∂δ

∣∣∣∣
δ=α̂

= −R−1
i (α̂)

∂Ri(δ)
∂δ

∣∣∣∣
δ=α̂

R−1
i (α̂)

where ∂Ri(δ)
∂δ is an ni × ni matrix with ones on the off-diagonal and zero elsewhere, i.e., the

(j, k)th element of ∂Ri(δ)
∂δ is 1 if |j − k| = 1 and is 0 otherwise.

2.5. Testing hypotheses involving the regression parameter

The asymptotic distribution of the QLS estimate β̂QLS is the same as the asymptotic dis-
tribution of the GEE estimate β̂GEE. GEEQBOX therefore provides both model-based and
sandwich-based estimates of the covariance matrix of β̂ (Liang and Zeger 1986). The co-
variance matrix depends on the scalar parameter φ; GEEQBOX implements the estimate
provided in Chaganty and Shults (1999). The model-based estimate of the covariance matrix
is appropriate when the user has a high degree of confidence that the correlation structure
has been correctly specified. It has the following form:

ĈovM (β̂) = φ̂Wm
−1,

where

Wm =
m∑
i=1

X>i Ai
1/2R−1

i (α̂)Ai1/2Xi
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and φ̂ = min
{
φ̂p, φ̂c

}
, for

φ̂p =
1
m

m∑
i=1

Zi(β̂)>Zi(β̂)
ni

and φ̂c =
1
m

m∑
i=1

Zi(β̂)>R−1
i (α̂)Zi(β̂)
ni

.

The robust sandwich covariance matrix has the following form:

ĈovR(β̂) = Wm
−1

{
m∑
i=1

X>i Ai
1/2R−1

i (α̂)Zi(β̂)Z>i (β̂)R−1
i (α̂)Ai1/2Xi

}
Wm

−1. (9)

GEEQBOX provides estimated standard errors, 95% confidence intervals, and p values for the
tests βj = 0 that are based on both the model and sandwich covariance matrices.

3. Some technical features of the GEEQBOX toolbox

The development of the toolbox began in 2005, and is for use with MATLAB. It consists of
two main functions, both of which can be called like any standard function in the MATLAB
environment.

� gee function: calculates estimates using GEE.

� qls function: calculates estimate using QLS.

Both functions require the same inputs and produce the same layout of results. The re-
quired inputs for both functions are an N × 1 vector of repeated measures outcomes, plus
corresponding vectors of subject id’s, measurement times, and a matrix of fixed effects.

3.1. Data representation

Both main functions require the same inputs: id, y, t, and X, in that order. For example,
using the gee function the command would be gee(id, y, t, X).

Each row of X should contain the observation or covariates associated with a single time point
tij . The vectors id and y should contain the associated unique numerical identifier for the
subject and outcome, respectively. Thus, these four inputs should have N (total number of
observations across all subjects) rows.

In addition, the measurements must be sorted so that all measurements from the same subject
(id) are listed on consecutive rows. If id=[1 1 2 2 2 1 1]’, then the program would count
this as 3 subjects since there are 3 changes in id numbers. However, the id’s do not have to
be consecutive numbers. For example, id=[12 12 12 10 10 10 99 99]’ would produce the
same results as id=[1 1 1 2 2 2 3 3]’.

The matrix of covariates, X, should be set-up so that each column contains a separate covariate.
At present, there should be no missing data in X. A constant term is not included by default
in the programs. Thus, in order to include a constant in the model, a column of ones must
be included as a covariate in X. This column of ones should be the final column of X. The
programs will default to calling the beta estimate by the associated column number of X.
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The functions also have a number of optional inputs to control the assumed distribution
of the data and correction structure, as well as naming the fixed effects in the output and
controlling the convergence tolerance and maximum number of iterations. The distribution
can be specified by a single number of letter in the family input variable. The default
distribution is a normal (n or 1) distribution, but Bernoulli (b or 2) or Poisson (p or 3) may
also be specified. The correlation structure is specified in the corr variable. The default
correlation structure is AR(1) (ar1 or 1) for gee and Markov (markov or 2) for qls. Any
of the other correlation structures described in Section 2.2 can also be optionally chosen,
and avilable options are listed in the help file for each function. Thus to specify a Poisson
distribution with an equicorrelated (equi) correlation structure, we would use the command
gee(id, y, t, X, ’p’, ’equi’).
The default output display uses column numbers to label the variables in X. The third optional
input varnames can be used to overwrite these display names. The varnames variable is
structured variable with each item being a string variable. For example, the three columns of
X could be labeled A, B, and C with the commands:

> varnames = $\{$'A', 'B', 'C'$\}$;
> gee(id, y, t, X, 'p', 'equi', varnames);

3.2. Output

Each function produces the same printed results and output variables. The printed results
consist of the initial values used by the algorithms, the estimated covariance parameter (α),
scale parameter (φ), and the covariate parameter estimates (β). In addition, the standard
errors, corresponding z-values, p values and 95% confidence intervals for each βj are also
produced. Two versions of these values are presented; the one based on the robust covari-
ance matrix and the one based on the model-based covariance matrix. The model-based
results should be used when the specified working correlation matrix is known to be correct;
otherwise, the robust results should be used.
Three variables are produced as outputs to the functions. These are the estimated β’s, α,
and a structured variable that contains the entire printed results from the robust estimations
in the cell variable results.robust and the model-based estimation in the cell variable
results.model.

4. Example

Here we present results obtained using GEEQBOX applied to data provided in Table 3 of
Nunez-Anton and Woodworth (1994). This data set contains the following variables: subject
id; group (A or B); month of measurement; and percentage. The variable percent represents
the percent correct scores on a sentence test administered under audition-only conditions to
groups of subjects wearing two different cochlear implants, referred to here as A and B. The
electrode array was surgically implanted 5 to 6 weeks prior to being electrically connected to
the external speech processor. Subjects were profoundly, bilaterally deaf, thus preconnection
baseline values for the sentence test were all zero. At the time of the analysis reported here,
data were available for 23 subjects in group A and 21 subjects in group B, with measurements
scheduled at 1, 9, 18, 30 months after connection.”(Nunez-Anton and Woodworth 1994)
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In the worked examples presented here β = (β1, β2, β3) where β1 is the regression coefficient
associated with month of measurement; β2 is the regression coefficient associated with group
(group = 0 for A; group = 1 for B); and β3 is the regression coefficient associated with cons,
the constant that takes value one. The worked examples below are for the continuous outcome
percentage as well as a binary variable, high, that takes value 1 for values of percentage ≥ 50,
and takes value 0 otherwise. We note that our goal is not to present a complete analysis, but
rather to demonstrate implementation of our toolbox and to highlight some of its features.

The data is contained in the files audio.dat (ASCII file) or audio.mat (MATLAB data file).
The X matrix of interest is set as

> X = [month group cons];

with associated variable names for displaying the results:

> varnames = {'month', 'group', 'cons'};

For the continuous outcome percent, we can fit the model

percent = βX + ε

assuming a normal distribution for Y (identity link) and an equicorrelated correlation structure
via QLS or GEE using the respective commands:

> [betahat, alphahat, results] = qls(id, percent, month, X, 'n', 'equi',
varnames);
> [betahat, alphahat, results] = gee(id, percent, month, X, 'n', 'equi',
varnames);

The resulting estimates of β with 95% confidence-intervals (low and up lim) are given in
Table 1.

To demonstrate the sensitivity of results to choice of working correlation structure, we next
fit the Markov correlation structure that is appropriate when the correlation between mea-
surements declines with increasing separation in time. As discussed in the introduction, this
structure is not readily applicable for GEE. We therefore implement the Markov structure
using QLS via the following command:

> [betahat,alphahat,results] = qls(id, percent, month, X, 'n', 'markov',
varnames);

The resulting estimates of β with 95% confidence-intervals (low and up lim) are given in
Table 2.

We note that in this particular example, the results are not sensitive to the choice of equicor-
related versus Markov structure.

For the binary outcome, high (= 1 if percentage ≥ 50; = 0 otherwise) is modeled using an
equicorrelated correlation structure and a Bernoulli link function. The associated commands
for obtaining the QLS and GEE estimates are:
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Method: QLS Covariance matrix: robust
estimate std. error z value p value low lim up lim

month .90717187 .12838767 7.0658803 1.596e-12 .65553667 1.1588071
group -11.887807 7.5787575 -1.5685693 .11674832 -26.741898 2.9662851
cons 28.493216 5.3826517 5.2935277 1.200e-07 17.943412 39.043019

Method: QLS Covariance matrix: model-based
estimate std. error z value p value low lim up lim

month .90717187 .102903 8.8157964 0 .70548571 1.108858
group -11.887807 7.6561579 -1.5527118 .12049201 -26.8936 3.1179872
cons 28.493216 5.4145422 5.2623499 1.422e-07 17.880908 39.105523

Method: GEE Covariance matrix: robust
estimate std. error z value p value low lim up lim

month .90907324 .12876037 7.0601941 1.663e-12 .65670754 1.1614389
group -11.941123 7.5661458 -1.5782306 .11451265 -26.770496 2.8882506
cons 28.494344 5.376535 5.2997599 1.160e-07 17.956529 39.032159

Method: GEE Covariance matrix: model-based
estimate std. error z value p value low lim up lim

month .90907324 .08249241 11.020083 0 .74739108 1.0707554
group -11.941123 7.816718 -1.5276389 .12660221 -27.261608 3.3793631
cons 28.494344 5.4789932 5.2006533 1.986e-07 17.755715 39.232974

Table 1: Estimates of β and associated 95% confidence-intervals (low and up lim) for the
percent outcome assuming an equicorrelatd correlation structure.

Method: QLS Covariance matrix: robust
estimate std. error z value p value low lim up lim

month 1.0527 0.1399 7.5231 5.3513e-014 0.7785 1.3270
group -12.0745 7.3972 -1.6323 0.1026 -26.5727 2.4237
cons 25.3058 5.1899 4.8760 1.0827e-006 15.1338 35.4778

Method: QLS Covariance matrix: model-based
estimate std. error z value p value low lim up lim

month 1.0527 0.1388 7.5848 3.3307e-014 0.7807 1.3248
group -12.0745 7.6073 -1.5872 0.1125 -26.9845 2.8355
cons 25.3058 5.5109 4.5919 4.3917e-006 14.5046 36.1070

Table 2: Estimates of β and associated 95% confidence-intervals (low and up lim) for the
percent outcome assuming a Markov correlation structure.
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Method: QLS Covariance matrix: robust
estimate std. error z value p value low lim up lim

month .05516138 .01580866 3.4893129 .00048426 .02417696 .08614579
group -.97889627 .60696593 -1.6127697 .10679455 -2.1685276 .2107351
cons -1.0439871 .41404722 -2.5214205 .01168821 -1.8555048 -.2324695

Method: QLS Covariance matrix: model-based
estimate std. error z value p value low lim up lim

month .05516138 .0135889 4.0592958 .00004922 .02852762 .08179514
group -.97889627 .59701443 -1.6396526 .10107742 -2.149023 .19123051
cons -1.0439871 .41774854 -2.4990803 .01245161 -1.8627592 -.22521506

Method: GEE Covariance matrix: robust
estimate std. error z value p value low lim up lim

month .05512979 .01595601 3.4551101 .00055007 .02385657 .086403
group -.97956447 .60867271 -1.6093451 .10754089 -2.1725411 .21341212
cons -1.0301008 .40730368 -2.529073 .01143642 -1.8284013 -.2318002

Method: GEE Covariance matrix: model-based
estimate std. error z value p value low lim up lim

month .05512979 .01286563 4.2850434 .00001827 .02991361 .08034596
group -.97956447 .60502254 -1.6190545 .10543554 -2.1653869 .20625793
cons -1.0301008 .41823048 -2.4629978 .01377808 -1.8498174 -.21038408

Table 3: Estimates of β and associated 95% confidence-intervals (low and up lim) for the
high outcome assuming an equicorrelatd correlation structure.

> [betahat, alphahat, results] = qls(id, high, month, X, 'b', 'equi',
varnames);
> [betahat, alphahat, results] = gee(id, high, month, X, 'b', 'equi',
varnames);

The resulting estimates of β with 95% confidence-intervals (low and up lim) are given in
Table 3.

5. Discussion

The GEEQBOX MATLAB toolbox can be used to analyze correlated data via either the
method of generalized estimating equations (GEE) or quasi-least squares (QLS). As demon-
strated in Section 4, QLS allowed for implementation of the Markov structure, with similar
results for the Markov and equicorrelated structures. If the results had differed, findings
based on application of the Markov structure might be preferred because an assumption of
equal correlations for all measurements within a subject (which is required for application of
the equicorrelated structure) is very strong and might not be reasonable for test result data,
i.e., we might anticipate that test results from two examinations that occur closely together
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in time will be more similar, and therefore more highly correlated, than examinations that
are taken further apart in time. In general, implementation of QLS will allow for considera-
tion of correlation structures, including the Markov, that previously have not been available
for GEE. Careful comparison of analysis results between several structures might strengthen
confidence in a strong finding, e.g., if a results persists across several structures, or might
result in the need to choose the most plausible structure, e.g., if the results are not consistent
across structures.

Future and ongoing work of these authors will include implementation of correlation structures
that have not previously been implemented in the framework of GEE. Related research will
involve the development and comparison of methods for choosing between several correlation
structures, which will be especially important for studies in which the findings differ according
to choice of correlation structure. Future versions of the toolbox will be made available via
the web site. These will also incorporate new correlation structures, add utility functions
for manipulating and displaying the clustered data, methods for analyzing nested correlation
structures and a window based “point-and-click” way of running the functions.

Acknowledgments

Work on this manuscript was supported by the NIH grant R01CA096885.

References

Chaganty NR (1997). “An Alternative Approach to the Analysis of Longitudinal Data via
Generalized Estimating Equations.” Journal of Statistical Planning and Inference, 63, 39–
54.

Chaganty NR, Shults J (1999). “On Eliminating the Asymptotic Bias in the Quasi-Least
Squares Estimate of the Correlation Parameter.” Journal of Statistical Planning and Infer-
ence, 76, 127–144.

Crowder M (1995). “On the Use of a Working Correlation Matrix in Using Generalised Linear
Models for Repeated Measures.” Biometrika, 82, 407–410.

Hardin J, Hilbe J (2003). Generalized Estimating Equations. Chapman and Hall/CRC, USA.

Liang KY, Zeger SL (1986). “Longitudinal Data Analysis Using Generalized Linear Models.”
Biometrika, 73, 13–22.

Naik D, Prabhala S (2002). “Prediction in Growth Curve Models Under Markov Covariance
Structure.” Journal of Applied Statistical Science, 11, 245–254.

Nunez-Anton V, Woodworth G (1994). “Analysis of Longitudinal Data with Unequally Spaced
Observations and Time-dependent Correlated Errors.” Biometrics, 50(2), 445–456.

SAS Institute Inc (2003). The SAS System, Version 9.1. Cary, NC. URL http://www.sas.
com/.

http://www.sas.com/
http://www.sas.com/


Journal of Statistical Software 13

Shults J (1996). The Analysis of Unbalanced and Unequally Spaced Longitudinal Data Us-
ing Quasi-Least Squares. Ph.D. thesis, Department of Mathematics and Statistics, Old
Dominion University, Norfolk, Virginia.

Shults J, Chaganty NR (1998). “Analysis of Serially Correlated Data Using Quasi-Least
Squares.” Biometrics, 54, 1622–1630.

Shults J, Mazurick CA, Landis JR (2006). “Analysis of Repeated Bouts of Measurements in
the Framework of Generalize Estimating Equations.” Statistics in Medicine, 25, 4114–4128.

Shults J, Morrow AL (2002). “Use of Quasi-Least Squares to Adjust for Two Levels of
Correlation.” Biometrics, 58, 521–30.

Shults J, Ratcliffe SJ, Leonard M (2007). “Improved Generalized Estimating Equation Anal-
ysis via xtqls for Quasi-Least Squares in Stata.” Stata Journal, 7, 147–166.

Shults J, Whitt MC, Kumanyika S (2004). “Analysis of Data with Multiple Sources of Corre-
lation in the Framework of Generalized Estimating Equations.” Statistics in Medicine, 23,
3209–3226.

StataCorp (2003). Stata Statistical Software: Release 8. StataCorp LP, College Station, TX.
URL http://www.stata.com/.

Sun W, Shults J, Leonard M (2006). “Use of Unbiased Estimating Equations to Estimate
Correlation in Generalized Estimating Equation Analysis of Longitudinal Trials.” Technical
Report Working Paper 4, University of Pennsylvania Biostatistics Working Papers.

Sutradhar BC, Das K (2000). “On the Accuracy of Efficiency of Estimating Equation Ap-
proach.” Biometrics, 56, 622–625.

The MathWorks, Inc (2007). MATLAB – The Language of Technical Computing, Ver-
sion 7.5. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.
com/products/matlab/.

Wang YG, Carey VJ (2004). “Unbiased Estimating Equations from Working Correlation
Models for Irregularly Timed Repeated Measures.” Journal of the American Statistical
Association, 99, 845–852.

Affiliation:

Sarah J. Ratcliffe
Department of Biostatistics and Epidemiology
University of Pennsylvania School of Medicine
6th flr Blockley Hall, 423 Guardian Drive
Philadelphia, PA, 19104-6021, United States of America
Telephone: +1/215/573-7398
E-mail: sratclif@upenn.edu
URL: http://www.cceb.upenn.edu/~sratclif/QLSproject.html

http://www.stata.com/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
mailto:sratclif@upenn.edu
http://www.cceb.upenn.edu/~sratclif/QLSproject.html


14 GEEQBOX: A MATLAB Toolbox for GEE and QLS

Justine Shults
Department of Biostatistics and Epidemiology
University of Pennsylvania School of Medicine
6th flr Blockley Hall, 423 Guardian Drive
Philadelphia, PA, 19104-6021, United States of America
Telephone: +1/215/573-6526
E-mail: jshults@mail.med.upenn.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 25, Issue 14 Submitted: 2007-04-13
April 2008 Accepted: 2008-03-28

mailto:jshults@mail.med.upenn.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	A brief description of QLS and GEE
	Notation
	Working correlation structures
	GEE estimates of the correlation parameter
	QLS estimates of the correlation parameter
	Testing hypotheses involving the regression parameter

	Some technical features of the GEEQBOX toolbox
	Data representation
	Output

	Example
	Discussion

