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Abstract

Bayes linear methodology provides a quantitative structure for expressing our beliefs and systematic methods for
revising these beliefs given observational data. Particular emphasis is placed upon interpretation of and diagnostics for
the specification. The approach is similar in spirit to the standard Bayes analysis, but is constructed so as to avoid much
of the burden of specification and computation of the full Bayes case. This report is the first of a series describing Bayes
linear methods. In this document, we introduce some of the basic machinery of the theory. Examples, computational
issues, detailed derivations of results and approaches to belief elicitation will be addressed in related reports.

1 Introduction

Bayes linear methodology provides a quantitative structure for expressing our beliefs and systematic methods for revising
these beliefs given observational data. Particular emphasis is placed upon interpretive and diagnostic features of the
analysis. The approach is similar in spirit to the standard Bayes analysis, but is constructed so as to avoid much of the
burden of specification and computation of the full Bayes case. From a foundational view, the Bayes analysis emerges as
a special case of the Bayes linear approach. From a practical view, Bayes linear methods offer a way of tackling problems
which are too complex to be handled by standard Bayesian tools.

This report is the first of a series describing Bayes linear methods. In this document, we introduce some of the basic
machinery of the theory. Examples, computational issues, detailed derivations of results and methods for belief elicitation
will be addressed in related reports. In particular, [9] contains a simple tutorial guide to the material in this report, by
means of a simple example, with details as to how the relevant calculations may be programmed in the computer language
[B/D].

We cover the following material.

Section 2 concerns our basic approach to quantifying uncertainty and details the specification requirements for the Bayes
linear analysis.

Section 3 defines and interprets the notions ofadjusted expectationandadjusted variancefor a collection of quantities,
and explains the role ofcanonical directionsin summarising the effects of an adjustment.

Section 4 concerns the types of diagnostic comparisons that we may make after we have evaluated the belief adjustment.
In particular, we discuss the role of thebearingof the adjustment in summarising the overall magnitude and nature
of the changes between prior and adjusted beliefs.

Section 5 covers the role ofpartial adjustmentsfor analysing beliefs which are modified in stages.

Section 6 Bayes linear methods are so named as, formally, they derive their properties from the linear structure of inner
product spaces rather than the boolean structure of probability spaces. This section summarises the geometry
underlying the adjustment of beliefs.
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2 Quantifying uncertainty

In a quantitative belief analysis, we quantify various aspects of our beliefs about a collection of unknown quantities, and
then, typically, we use further information to modify our statements of belief about these quantities. In this section, we
consider the structure within which we shall express initial uncertainties.

2.1 Quantifying uncertainty

There are many different ways in which beliefs may be quantified. Most familiar, perhaps, is the Bayesian approach, in
which beliefs about all of the uncertain quantities of interest are represented in terms of a joint probability distribution.
In practice, the specification of such a joint probability distribution will often be largely arbitrary due to the difficulty
that most of us find in thinking meaningfully and consistently in high numbers of dimensions (or even in low numbers
of dimensions - indeed even specifying a single probability may be a daunting task if our answer really matters for some
purpose).

Full probabilistic specification is unwieldy as a fundamental expression of prior knowledge in that it requires such an
extremely large number of statements of prior knowledge, expressing judgements to so fine a level of detail, that usually
we have neither the interest nor the ability to make most of these judgements in a meaningful way. To escape from the
straitjacket of full probabilistic specification, we suggest an approach which is related in spirit to the Bayesian approach,
but is more straightforward to apply.

Suppose, therefore, that we intend to quantify some aspects of our prior judgements. It is reasonable to require that
our subsequent analysis should only be based on those aspects of our beliefs which we are both willing and able to specify.
Each number that we specify expresses some aspect of our prior knowledge, and as such requires careful consideration. Our
concern is to develop a methodology which allows us to specify and analyse relatively small, carefully chosen collections
of quantitative judgements about whichever aspects of a problem are within our ability to specify in a meaningful way.

We begin by describing our basic approach to the quantification of belief.

2.2 Expectation

When we reduce the number of aspects of uncertainty about which specifications are to be made, we may also simplify the
nature of the specification process, by using methods which lead directly to the particular quantifications that we require.
For this purpose, we make direct assessments for our (subjective)expectationsfor the various uncertainties of interest.

The idea of treating expectation as a primitive quantity and specifying expectation directly rather than through some
intermediary probabilistic specification has been developed at length by various authors. The most detailed exposition of
this approach is described in de Finetti ([1, 2]). De Finetti uses the termprevisionfor an expectation elicited directly and
suggests various operational definitions for directly elicited expectations.1 In this formulation, the probability of an event
is simply the expectation or prevision for the associated indicator function.

We shall therefore assume, in what follows, that we have made various prior expectation statements, through direct
elicitation. We cannot give formal rules for specifying prior expectations any more than we can give such rules for
specifying prior probabilities in a standard Bayes analysis. Each expectation expresses a subjective choice that must be
made given our assessment of the situation in question. Our account concerns the various methods by which we can
improve our quantifications of belief, given such initial judgements and relevant data. Thus, while the forming of sensible
prior judgements is of fundamental importance, it falls outside the strict remit of this account. We will discuss in a separate
report the issues involved in eliciting such restricted prior specifications. All that we shall observe here is that, because
any full probability specification over some outcome space is logically equivalent to a specification of the expectation for
every random quantity which could possibly be constructed over that outcome space, it must be a substantially easier task
to make a careful prior specification of the expectations only for a small subset of such quantities.

2.3 Belief specification

In general, the level of detail at which we choose to describe our beliefs will depend on

• how interested we are in the various aspects of the problem;
1For example, the simplest such definition is that your prevision for a random quantityX is the valuex that you consider to be a “fair price” for a

ticket which paysX.
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• our ability to specify each aspect of our uncertainty;

• the amount of time and effort that we are willing to expend on the problem;

• how much detail is required from our prior specification in order to extract the necessary information from the data.

We must, therefore, recognise that our analysis depends not only upon the observed data but also upon the level of
detail to which we have expressed our beliefs. The formal framework within which we shall express our judgements is as
follows.

We begin by supplying an ordered (finite or infinite) listC = {X1, X2, . . .} of random quantities, for which we shall
make statements of uncertainty. We callC thebasefor our analysis.

For eachXi , X j ∈ C we specify

1. the expectation, E(Xi ), giving a simple quantification of our belief as to the magnitude ofXi ;

2. the variance, Var(Xi ), quantifying our uncertainty or degree of confidence in our judgements of the magnitude of
Xi ;

3. the covariance, Cov(Xi , X j ), expressing a judgement on the relationship between the quantities, quantifying the
extent to which observation onX j may (linearly) influence our belief as to the size ofXi .

These expectations, variances and covariances are specified directly, although this does not preclude us from deducing
the values from some larger specification, or even, when this is practical, from a full prior probability distribution. We
require that each element of C must have finite prior variance.

For any ordered subcollections,A, B, of elements ofC, we write

Var(A)

to denote the variance matrix of the vector of elements ofA, and we write

Cov(A, B)

to denote the covariance matrix between the vectorsA andB.
We control the level of detail of our investigations by our choice of the collectionC. The most detailed collection that

we could possibly select would consist of the indicator functions for all of the combinations of possible values of all of
the quantities of interest.With this choice ofC, we obtain a full probability specification over some underlying outcome
space. Sometimes this special case may be appropriate, but for large problems we will usually restrict attention to small
subcollections of this collection. (Thus, for example, if there were two quantitiesY andZ which we might measure, thenC
might contain the terms{Y, Y2, Z, Z2, Y Z}.) It is preferable to work explicitly with the collection of belief specifications
that we have actually made rather than to pretend to specify much larger collections of prior belief statements.

2.4 Belief structures

The formal structure which is described by our belief specification is as follows. We have a collection of random quantities
C = {X1, X2, . . .}, each with finite prior variance. We construct the linear space〈C〉 consisting of all finite linear
combinations

h0X0 + h1Xi1 + . . . + hk Xik

of the elements ofC, whereX0 is the unit constant. We view〈C〉 as a vector space in which eachXi is a vector, and
linear combinations of vectors are the corresponding linear combinations of the random quantities.〈C〉 is in general the
largest structure over which expectations are defined once we have defined expectations for the elements ofC.

Covariance defines an inner product(·, ·) and norm over〈C〉, defined, forX, Y ∈ 〈C〉 to be

(X, Y) = Cov(X, Y), ‖X‖
2

= Var(X).
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The vector space,〈C〉, with the covariance inner product(., .), defines an inner product space, which we denote[C].
We call[C] a belief structure with base{C}.2 In this space, the ‘length’ of any vector is equal to the standard deviation
of the random quantity.

A belief structure provides the minimal formal structuring for a belief specification which is sufficient for our general
analyses. A traditional discrete probability space is represented within this formulation by a base consisting of indicator
functions over a partition, so that the vectors are the linear combinations of the indicator functions, or, equivalently, the
random variables over the probability space. A continuous probability specification is expressed as the Hilbert space of
square integrable functions over the space with respect to the prior measure. In the probability specification, all covariances
between all such pairs of random quantities over the space must be specified. The belief structure allows us to restrict, by
our choice of base, the specification to any linear subspace of this collection, so that we may specify only those aspects of
our beliefs which we are both able and willing to quantify. Therefore, the formal properties of our approach follow from
the linearity underlying the inner product structure, which is why we term our approachBayes linear.

In the following sections, we describe various general properties of belief adjustment. In the final section, we return
to the geometry underlying this approach, and describe the formal structure of the analysis.

3 Adjusting beliefs by data

In this section, we discuss the adjustment of a collection of expectation statements, given data. As this report is intended
as a summary of concepts and properties, results will be stated without proof. Technical details will be discussed in a
separate report. To simplify the exposition, we shall suppose that our chosen baseC contains a finite number of quantities.
In the final section, we will describe the underlying geometry, identify the equivalent results for infinite collections, and
give geometric explanations for the various properties that we have described.

3.1 Adjusted expectation

We have a collection,C, of random quantities, for which we have specified prior means, variances and covariances.
Suppose now that we observe the values of a subset,D = {D1, . . . , Dk}, of the members ofC. We intend to modify our
beliefs about the remaining quantities,B = {B1, . . . , Br }, in C. A simple method by which we can modify our prior
expectation statements is to evaluate the adjusted expectation for each quantity.

The adjusted expectationof a random quantityX ∈ B, given observation of a collection of quantitiesD, written
ED(X), is defined to be the linear combination

ED(X) = hT
D D =

k∑
i =0

hi Di

which minimises

E((X −

k∑
i =0

hi Di )
2),

over all collectionsh = (h0, h1, . . . , hk), whereD0 = 1. ED(X)is sometimes called theBayes linear rule for X
given D.

ED(X) is determined by the prior mean, variance and covariance specifications. If Var(D) is of full rank3 then

ED(X) = E(X) + Cov(X, D)[Var(D)]−1(D − E(D)). (1)

Adjusted expectation obeys the following properties:

1. for any quantitiesX1, X2 and constantsc, d we have,

ED(cX1 + d X2) = cED(X1) + dED(X2) (2)

2Strictly, the inner product space is defined over the closure of the equivalence classes of random quantities which differ by a constant, so that we
identify any vector, such asX0, with zero variance with the zero vector.

3 If Var(D) is not of full rank, then we may discard elements ofD so that the reduced collection is of full rank. Otherwise, we may consider
[Var(D)]−1 to be the Moore-Penrose generalised inverse in the following matrix equations.
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2. for anyX, we have

E(ED(X)) = E(X) (3)

3.2 Interpretation

How should we interpret adjusted expectations? There are four inter-related interpretations that we can offer.

• The simplest interpretation is to view the quantity ED(X) as an ‘estimator’ of the value of X, which combines the data
with simple aspects of our prior beliefs in an intuitively plausible manner and which leads to a useful methodology.
Alternately, if we have extensive data sources to draw upon, then we may construct our prior judgements from these
sources and use our approach to develop ‘estimators’ which can be viewed as complementary to certain standard
estimators in multivariate analysis.

• The second interpretation is to view adjusted expectation simply as a primitive which quantifies certain aspects of
our beliefs, in a similar manner to the original expectation statement. Indeed, in de Finetti’s formal development
of prevision, the principle operational definition that he offers is that our prevision forX is the valuex which we
would choose if we were forced to suffer a penalty

L = k(X − x)2, (4)

wherek is a constant defining the units of loss. In this view adjusted expectation simply expresses the extension of
our choice of preferences from the certain choicex to the random choice

L D = k(X −

k∑
i =0

xi Di )
2. (5)

In the special case where the elementsDi are the indicator functions for a partition, then this is equivalent to de Finetti’s
choice for the operational definition of the conditional prevision,xi , of X given each eventDi . Under this view,
adjusted expectations are simply informative summaries, generalising the corresponding conditional expectations
defined over indicator functions.

• If we are committed in principle to a full Bayes view based on complete probabilistic specification of all uncertainties,
then we may view adjusted expectations as offering simple tractable approximations to a full Bayes analysis for
complicated problems. In addition, the various interpretive measures and diagnostic tests which we shall develop
below offer insights which are relevant to any full Bayes analysis.

• We have described three alternative views of adjusted expectation, each of which has merit in certain contexts and
reflects the contrasting views that may be held concerning the revision of beliefs. However, we hold a fourth view,
which, by proceeding directly by foundational arguments, subsumes each of the above views. This view explains
why we should view adjusted expectation as a primitive, the precise sense in which adjusted expectation may be
viewed as an ‘estimator’, and the general properties which may be claimed for the estimate. Further, it reverses our
third interpretation above by identifying a full Bayes analysis as a simple special case of the general analysis which
we advocate.

Our immediate intention is to describe the practical machinery of our approach. Therefore, we do not at this point intend
to take logical and philosophical diversions into foundational issues, and we shall develop the formal relationship between
belief adjustment and belief revision elsewhere. Instead, for now we will move between the first three interpretations that
we have listed above, viewing adjusted expectation as an intuitively plausible numerical summary statement about our
beliefs given the data. There is no implication that this value will fully express our genuine revised belief concerning the
expectation ofX. Rather, we have been explicit as to precisely which aspects of our prior beliefs have been utilised in
order to assess the adjusted expectation. As with any other formal analysis that we might carry out, adjusted expectations
offer logical information in quantitative form which we may use as we deem appropriate to improve our actual posterior
judgements.
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3.3 Adjusted variance

We define theadjusted versionof X given D, [X/D], to be the ‘residual’ form

[X/D] = X − ED(X).

Adjusted quantities obey the following properties:

1.
E([X/D]) = 0; (6)

2.
Cov([X/D], ED(X)) = 0. (7)

We write X as the sum of the two uncorrelated components

X = [X/D] + ED(X),

so that we can split Var(X) as

Var(X) = Var([X/D]) + Var(ED(X)).

Thevariance of the adjusted version ofX, or theadjusted variance, VarD(X), is defined to be

VarD(X) = Var([X/D]) = E((X − ED(X))2).

The value of VarD(X) is determined by our prior variances and covariances as

VarD(X) = Var(X) − Cov(X, D)[Var(D)]−1Cov(D, X) (8)

Thevariance of X resolved byD, RVarD(X), is defined as

RVarD(X) = Var(ED(X)) = Cov(X, D)[Var(D)]−1Cov(D, X).

We therefore write the variance partition forX as

Var(X) = VarD(X) + RVarD(X) (9)

In line with our various interpretations of belief adjustment, we may give corresponding interpretations to adjusted
variance. We may view VarD(X) as:

• the ‘mean squared error’ of the estimator ED(X);

• a primitive expression, interpreted as we would a prior variance, but applied to the ‘residual variation’ when we have
extracted the variation inX ‘accounted for’ byD;

• a simple, easily computable upper bound on full Bayes preposterior risk, under quadratic loss, for any full prior
specification consistent with the given mean and variance specifications;

• within the more general view of the foundations, the adjustment variance attaches directly to our posterior beliefs.

We quantify the effect of an adjustment by evaluating theresolution, RD(X), defined as

RD(X) =
RVarD(X)

Var(X)
= 1 −

VarD(X)

Var(X)
. (10)

If RD(X) is near zero then either the collectionD is not expected to be informative forX, relative to our prior knowledge
aboutX, or our beliefs have not been specified in sufficient detail to exploit the information contained inD.

Finally, we define theadjusted covariance, CovD(X, Y) to be

CovD(X, Y) = Cov([X/D], [Y/D]) = E((X − ED(X))(Y − ED(Y))).
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3.4 Adjusting a collection of quantities

We have suggested how we might adjust our prior expectation for any one element of a collectionB = {B1, . . . , Br } using
observations on a collectionD = {D1, . . . , Dk}. When we evaluate a collection of adjusted expectations {ED(B1), …,
ED(Bk)}, we also implicitly evaluate the adjusted value for each element of〈B〉, the collection of linear combinations of
the elements ofB, as, by the linearity of adjusted expectation (equation 2),

ED(

r∑
i =1

hi Bi ) =

r∑
i =1

hi ED(Bi ). (11)

We now analyse changes in beliefs over〈B〉. We considerB, D as vectors, of dimensionr andk, respectively. We
define the adjusted version of the collectionB given D, [B/D], to be the ‘residual’ vector

[B/D] = B − ED(B).

The properties of the adjusted vector are as for a single quantity, namely

1.
E([B/D]) = 0, (12)

ther dimensional null vector,

2.
Cov(ED(B), [B/D]) = 0, (13)

ther × k null matrix.

Therefore, just as for a single quantityX, we partition the vectorB as the sum of two uncorrelated vectors, namely

B = ED(B) + [B/D], (14)

so that we may partition the variance matrix ofB into two variance components

Var(B) = Var(ED(B)) + Var([B/D]) (15)

We call
RVarD(B) = Var(ED(B)),

theresolved variance matrix, for B by D. We call

VarD(B) = Var([B/D])

theadjusted variance matrix, for B by D.
ED(B), VarD(B) are calculated as in equations 1, 8, namely

ED(B) = E(B) + Cov(B, D)[Var(D)]−1(D − E(D)), (16)

VarD(B) = Var(B) − Cov(B, D)[Var(D)]−1Cov(D, B), (17)

RVarD(B) = Cov(B, D)[Var(D)]−1Cov(D, B). (18)

3.5 Adjusted belief structures

If we adjust each member of the base{B} by D, then we obtain a new base{[B1/D], . . . , [Bk/D]}, the base of adjusted
versions of the elements ofB. We call this thebase{B} adjusted by D, written{B/D} . The belief structure with this base
is termed theadjusted belief structure of B by D and is written[B/D]. To simplify our notation, we also use[B/D] to
represent the vector([B1/D], . . . , [Bk/D]), where appropriate.

We may view[B/D] as representing a belief structure over the linear space〈{B/D}〉. However, it is also useful to
view [B/D] as an inner product space constructed over the linear space〈B〉 but with the covariance inner product replaced
by the adjusted covariance inner product

(X, Y)D = CovD(X, Y) = Cov([X/D], [Y/D]).

We now analyse the differences between the variance and the adjusted variance inner products.
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3.6 Canonical directions

To assess how much information about[B] we expect to receive by observingD, we may first identify the particular linear
combinationY1 ∈ 〈B〉 for which we expect the adjustment byD to be most informative in the sense thatY1 maximises the
resolution RD(Y) over all elementsY ∈ 〈B〉 with non-zero prior variance. (Note from equation 10, that maximising the
resolution is equivalent to minimising the ratio of adjusted to prior variance.) We may then proceed to identify directions for
which we expect progressively less information. This is equivalent to defining collections of canonical variables between
[B] and[D]. We make the following definition.

DEFINITION The j th canonical direction for the adjustment of B by D is the linear combinationYj which
maximises RD(Y)over all elementsY ∈ 〈B〉with non-zero prior variance which are uncorrelated a priori withY1, . . . , Yj −1.
We scale eachYj to have prior expectation zero and prior variance one. The values

r i = RD(Yi ) = RVarD(Yi )

are termed thecanonical resolutions. The number of canonical directions that we may define is equal to the rank,
r (B), of the variance matrix of the elements ofB.

The quantities{Y1, . . . , Yr (B)}are mutually incorrelated. It is also the case that the adjusted expectations,{ED(Y1), . . . , ED(Yr (B))}

are also mutually uncorrelated, and eachYi is uncorrelated with each ED(Yj ), j 6= i .
The canonical resolutions may be calculated as the eigenvalues of theresolution matrix , TD, defined as

TD = [Var(B)]−1RVarD(B). (19)

We may calculateY1, . . . , Yr (B) by finding the normed eigenvectors,v1, . . . , vr (B), ordered by eigenvalues 1≥ r1 ≥

r2 ≥ . . . ≥ rr (B) ≥ 0, of TD, so that
Yi = vT

i B, VarD(Yi ) = 1 − r i .

The collection{Y1, Y2, . . .} forms a “grid” of directions over〈B〉, summarising the effects of the adjustment. We expect
to learn most about those linear combinations of the elements of B which have large correlations with those canonical
directions with large resolutions. The exact relation is as follows.

For anyX in 〈B〉,

RD(X) =

r (B)∑
i =1

ci (X)r i , (20)

where

ci (X) =
[Corr(X, Yi )]

2∑r (B)
j =1 [Corr(X, Yj )]2

.

3.7 The system resolution uncertainty

By analogy with the resolution for a single random quantity, we define theresolved uncertainty for the belief structure
[B] to be

RUD(B) =

r (B)∑
i =1

r i .

The total resolution is the sum of the resolutions for any collection ofr (B) elements of〈B〉 with prior variance one,
which are a priori uncorrelated. Note that ifD is the empty set∅, then

RU∅(B) = r (B).

Where appropriate, we may therefore viewr (B) as theprior uncertainty in the collection B, written as

U(B) = r (B),

namely the total uncertainty associated with any maximal collection of uncorrelated elements of〈B〉 standardised to
unit variance. We define thesystem resolution for B to be the ratio of resolved to prior uncertainty for the collection,
namely
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RD(B) =
RUD(B)

U(B)
.

The system resolution provides qualitatively similar information for the structure[B] to that expressed by the resolution
for a single quantity,X. RD(B) can be viewed as the “average” of the resolutions for each canonical direction, so that a
value near one implies that we expect substantial information about most elements of〈B〉, while a value near zero indicates
that there are a variety of elements for which the adjustment is not expected to be informative.

4 The observed adjustment

In the previous section, we constructed adjusted expectations given collections of observations. After we make the
observations and evaluate these adjustments, we express our overall changes in belief in ways which help us both to
identify qualitatively the most important changes between our prior and adjusted beliefs, and also to judge diagnostically
whether we should re-examine any aspects of our formulation. We proceed as follows.

4.1 Standardised observations

Each prior statement that we make describes our beliefs about some random quantity. When we actually observe this
quantity, we may compare what we expect to happen with what actually happens. A simple comparison is as follows.

For a single random quantityX, suppose that we specify E(X) and Var(X) and then observe valuex. Using only our
limited belief specification, we evaluate the standardised observation defined as

S(x) =
x − E(X)
√

Var(X)
.

S(x) has prior expectation zero and prior variance one. Thus, a very large absolute value for S(x) might suggest that
we have misspecified E(X) or underestimated the variability ofX, or misrecorded the valuex, while a value near zero
might suggest that we have overestimated the variability ofX. How large or small S(x) must be to merit attention depends
entirely upon the context, relating in large part to our confidence in our prior formulation.

4.2 Standardised adjustments

Suppose that we specify beliefs about a quantity,X, then adjust these beliefs by observation on a collection of quantities,
D. When we observe the actual data values,

D = d = (d1, . . . , dk),

then we may evaluate the random quantity ED(X). The value which is obtained is denoted by Ed(X). We apply the
standardisation operation to Ed(X), defining thestandardised adjustmentas

Sd(X) = S(Ed(X)) =
Ed(X) − E(X)
√

RVarD(X)
.

The value of Sd(X) may suggest that our beliefs aboutX appear to be more or less affected by the data than we had
expected. Very large changes may raise the possibility that we have been overly confident in describing our uncertainty,
very small changes that we have been overly modest in valuing our prior knowledge about the value ofX.

Such diagnostics provide us with qualitative and quantitative information. If our observations suggest to us substantially
new beliefs, then presumably it will be of interest to us to know this. (For example, we may appear to have made a great
discovery simply because of a blunder in our programming). Even when no simple explanation of a possible discrepancy
occurs to us, it will usually be of interest to identify which aspects of our beliefs have changed by substantially less or
more than we had expected. Such diagnostics are of particular importance when we make very large collections of belief
adjustments, so that we need simple, automatic methods to call our attention to particular assessments which we might
usefully re-examine.
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4.3 Canonical standardised adjustments

When we adjust a collection,B, of random quantities by a further collectionD, there are many standardised adjustments
that we may evaluate. A systematic collection of such consistency checks on our specification is provided by evaluating
the standardised value for each of the canonical directions,Yi , for the adjustment. We term these values thecanonical
standardised adjustmentsdefined as

Sd(Yi ) =
Ed(Yi ) − E(Yi )

√
r i

. (21)

There are two types of diagnostic information given by these values. Quantitatively, any aberrant value may require
scrutiny. Qualitatively, we may look for systematic patterns. For example, as we expect larger changes in belief for the
first canonical directions than for subsequent directions, a particularly revealing pattern would be a sequence of decreasing
absolute values, which might suggest qualitatively a false prior classification between the more and the less informative
directions.

4.4 The bearing of the adjustment

Each evaluation that we have so far discussed assesses the change in belief for a single element of〈B〉. We now summarise
our overall changes in belief over〈B〉, relative to our prior uncertainty. We make the following definition.

Definition Thesizeof the adjustment ofB given D = d is

Sized(B) = max
X∈〈B〉

(Ed(X) − E(X))2

Var(X)
.

Note: There are various alternative scalings for the changes in belief which we can choose, each of which may be
analysed in a similar fashion to our suggested choice and provide useful insights into the belief revision. Our particular
choice leads to the construction of various quantities whose properties unify many of the interpretive and diagnostic features
of the belief revision, and is particularly helpful when we come to consider the adjustment of beliefs in stages.

We now identify the element, Zd(B), of 〈B〉 with the largest such change in expectation. Zd(B) is termed thebearing
for the adjustment, and is constructed as follows.

Definition Thebearing for the adjustment of the belief structure[B] by observation ofD = d is the element Zd(B)

in 〈B〉 defined by

Zd(B) =

r (B)∑
i =1

Ed(Ui )Ui , (22)

whereU1, . . . ,Ur (B) are any collection of elements of〈B〉 which are a priori uncorrelated, with variance one. (The
canonical components of Var(B) form one such collection and the canonical directions for the adjustment form another
when suitably scaled. Zd(B) does not depend on the choice ofU1, . . . ,Ur (B).)

The bearing is so named as it expresses both the direction and the magnitude of the change between prior and adjusted
beliefs, as follows:

1. for any X which is a priori uncorrelated with Zd(B), Ed(X) = E(X);

2. if Md = αZd(B), then a bearing ofMd would representα times the change in expectation as would a bearing of
Zd(B), for every element of〈B〉.

3. these properties follow as
Ed(X) − E(X) = Cov(X, Zd(B)), ∀X ∈ 〈B〉. (23)

We may therefore deduce that Zd(B) is indeed the direction of maximum change in belief, and that

Sized(B) = Var(Zd(B)) =

r (B)∑
i =1

E2
d(Ui ). (24)
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4.5 The expected size of an adjustment

A natural diagnostic for assessing the magnitude of an adjustment is to compare the largest standardised change in
expectation that we observe to our expectation for the magnitude of the largest change, evaluated prior to observing D.
This expectation is assessed as follows.

E(SizeD(B)) = E(Var(ZD(B))) = RUD(B), (25)

(ZD(B) is the random element of〈B〉 which takes the value Zd(B) if D takes valued.) Thus, the expected size of the
adjustment is equal to the resolved uncertainty for the structure. To compare the observed and expected values, we define
thesize ratio for the adjustment of B by D to be

Srd(B) =
Sized(B)

E(SizeD(B))
=

Var(Zd(B))

RUD(B)
. (26)

We anticipate that the ratio will be near one. Large values of the size ratio suggest that we have formed new beliefs
which are surprisingly discordant with our prior judgements. Values near zero might suggest that we have exaggerated our
prior uncertainty.

The size ratio is essentially a ratio of variances. To determine some ‘critical size’ for this quantity, we would, at the
least, need to assess the variance of our variance statements, i.e. to make fourth moment specifications. For the present,
we treat the ratio as a simple warning flag drawing our attention to possible conflicts between prior and adjusted beliefs.4

4.6 Data size

Earlier in this section, we considered standardised changes in various individual quantities. We then considered measures
of maximal discrepancy in adjusted expectation. We now combine these two assessments.

For any data vectorD, we may construct the collection of linear combinations〈D〉. For any elementF ∈ 〈D〉, with
observed valuef , we must have Ed(F) = f . Therefore the element of〈D〉 with the largest standardised observation

max
F∈〈D〉

(
f − E(F)
√

Var(F)
)2,

is precisely the bearing Zd(D) of the adjustment ofD by D. We therefore define the size of the data observationD as
follows.

Definition Thesize of the data vectorD = d is

Sized(D) = max
F∈〈D〉

(S( f ))2.

Sized(D) is as defined in subsection 4.4. As in that subsection, we may construct the quantity Zd(D) as

Zd(D) =

r (D)∑
i =1

ui Ui , (27)

whereU1, . . . ,Ur (D) are any uncorrelated collection of elements of〈D〉, with prior variance one, andui is the observed
value ofUi . Zd(D) has the property that for anyF ∈ 〈D〉

f − E(F) = Cov(F, Zd(D)). (28)

We have

Sized(D) = Var(Zd(D)) =

r (D)∑
i =1

u2
i ,

4As an example of the type of simple rule of thumb that might sometimes be of use, observe that were all the elements ofD to be normally distributed,
then it would follow that

Var(SrD(B)) = 2

∑r (B)
i =1 r 2

i

(
∑r (B)

i =1 r i )
2
.

In certain circumstances, we might find it useful to approximate the distribution of SrD(B), for example by a distribution of formcX, wherec is a

constant andX has aχ2 distribution, withν degrees of freedom. Matching the mean and variance suggests a choice ofν = (
∑r (B)

i =1 r i )
2/(

∑r (B)
i =1 r 2

i )

degrees of freedom andc = 1/ν.
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and
E(SizeD(D)) = r (D),

the rank of Var(D). The size ratio for data vectorD = d is therefore

Srd(D) =
Sized(D)

E(SizeD(D))
=

∑r (D)
i =1 u2

i

r (D)
.

Again, we expect this value to be near one. Values which are very large or very close to zero suggest similar possible
misspecifications to those for a general adjustment.

5 Adjusting beliefs in stages

We have described the adjustment of beliefs about a collection of quantities by observation of a further collection. Often,
we will want to explore the ways in which different aspects of the data and the prior specification combine to give the final
adjustment. (For example, we might be combining information of various different types collected in different places by
different people at different times.) We now consider which aspects of the data are most crucial to the final adjustment,
in order to produce efficient sampling frames and experimental designs, a priori, and to investigate diagnostically whether
the various portions of the observed data have similar or contradictory effects on our beliefs.

5.1 Partial adjustment of beliefs

Suppose that we intend to adjust our beliefs about a collectionB = {B1, . . . , Br } by observation of two further collections
D = {D1, . . . , Dk} and F = {F1, . . . , F j } of quantities. We adjustB by the collection(D ∪ F) (i.e. the collection
{D1, . . . , Dk, F1, . . . , F j }) but separate the effects of the subsets of data. Therefore, we adjustB in stages, first byD,
then addingF . We may show that the additional adjustment ofB by F , given that we have already adjusted byD, is the
same as the adjustment ofB by [F/D], the belief structure[F] adjusted by[D]:

E(D∪F)(B) − ED(B) = E[F/D](B), (29)

(This relation follows as adjustingF by D removes the ‘common variability’ betweenF andD.) We call

E[F/D](B),

the(partial) adjustment of B by F given D. Note the following properties of partial adjustment.

1.
E(E[F/D](B)) = 0. (30)

2.
ED∪F (B) = ED(B) + E[F/D](B). (31)

3.
[B/(D ∪ F)] = [(B/D)/(F/D)]. (32)

4.

Cov(E[F/D](B), ED(B)) = Cov(E[F/D](B), [B/(F ∪ D)])

= Cov([B/(F ∪ D)], ED(B)) = 0. (33)
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5.2 Partial variance

In section 3, we split the vectorB into two uncorrelated components, as

B = ED(B) + (B − ED(B)).

We further decompose(B − ED(B)), and write

B = ED(B) + (ED∪F (B) − ED(B)) + (B − ED∪F (B))

= ED(B) + E[F/D](B) + [B/F ∪ D]. (34)

The three components on the right hand side of the above equation are mutually uncorrelated. We may partition
VarD(B), the ‘unresolved variation’ from the adjustment byD, as

VarD(B) = Var(E[F/D](B)) + Var(D∪F)(B). (35)

The second term is the adjusted variance matrix ofB by D ∪ F , and the first is the(partial) resolved variance matrix of
B by F given D, namely

RVar[F/D](B) = Var(E[F/D](B)).

Resolved variances are additive in the sense that

RVar(F∪D)(B) = RVarD(B) + RVar[F/D](B).

For anyX ∈ 〈B〉, we assess the further reduction in ‘residual variation’ from addingF , given D, as the(partial)
resolution, namely

R[F/D](X) =
RVar[F/D](X)

Var(X)
. (36)

5.3 Partial canonical directions

We summarise the effects of the partial adjustment in a similar fashion to that for a full adjustment. We make the following
definition.

DEFINITION The j th partial canonical direction for the adjustment of B by F given D is the linear combination
Wj which maximises R[F/D](B) over all elements in〈B〉 with non-zero prior variance which are uncorrelated with each
Wi , i < j , scaled so that each Var(Wj ) = 1. The values

fi = R[F/D](Wi )

are termed thepartial canonical resolutions.
The partial canonical directions forF givenD are evaluated exactly as are the canonical directions forD, as described

in subsection 3.6, but the eigenstructure is extracted from thepartial resolution matrix

T[F/D] = [Var(B)]−1RVar[F/D](B).

The collectionW1, W2 . . . forms a “grid” of directions over〈B〉, summarising the additional effects of the adjustment.
Having adjusted byD, we expect to learn most additionally fromF for those linear combinations of the elements ofB
which have large correlations with those partial canonical directions with large resolutions. The exact relation is as before,
namely for anyX ∈ 〈B〉,

R[F/D](X) =

r (B)∑
i =1

ci (X) fi , (37)

where

ci (X) =
(Corr(X, Wi ))

2∑r (B)
j =1 (Corr(X, Wj ))2

.
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Thesystem partial resolution is

R[F/D](B) =

∑r (B)
i =1 fi
r (B)

The resolution is additive, namely
RD(B) + R[F/D](B) = RD∪F (B).

When we have made the adjustment, in addition to evaluating canonical standardised adjustments for the adjustment
by D and byD ∪ F , we may obtain similar qualitative insights into the changes in adjustment by evaluating thepartial
canonical standardised adjustmentswhich are as in subsection 4.3 but applied to the adjustment by[F/D].

5.4 Representing the observed partial adjustment

When we observe the values ofD andF , and so of[F/D], taking values

D = d, F = f, [F/D] = [ f/d],

then we may evaluate thesize of the partial adjustmentdefined to be

Size[ f/d](B) = max
X∈〈B〉

(Ed∪ f (X) − Ed(X))2

Var(X)
= max

X∈〈B〉

(E[ f/d](X))2

Var(X)
.

We create thebearing for the partial adjustment , as

Z[ f/d](B) =

r (B)∑
i =1

E[ f/d](Ui )Ui ,

for any collectionU1, . . . ,Ur (B) mutually uncorrelated with unit prior variance. Z[ f/d](B) satisfies the relation

Ed∪ f (X) − Ed(X) = E[ f/d](X) = Cov(X, Z[ f/d](B)), ∀X ∈ 〈B〉. (38)

Therefore
Size[ f/d](B) = Var(Z[ f/d](B)),

which may be compared to the expected value, namely

E(Size[F/D](B)) = RU[F/D](B).

ReplacingB by F in the above expressions allows us to define the corresponding partial data size ofF givenD, namely
the largest change

Size[ f/d](D) = max
F∈〈F〉

( f − ED(F))2

Var(F)
= Var(Z[ f/d](F)).

5.5 Path correlation

When we adjust beliefs in stages, the expected sizes of the respective adjustments are additive in the sense that

E(SizeD∪F (B)) = E(SizeD(B)) + E(Size[F/D](B))

However, the observed sizes of the adjustments are not additive. We have

Zd∪ f (B) = Zd(B) + Z[ f/d](B). (39)

The size of each adjustment is the variance of the corresponding bearing. Therefore

Var(Zd∪ f (B)) = Var(Zd(B)) + Var(Z[ f/d](B)) + 2Cov(Zd(B), Z[ f/d](B)) (40)

so that
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Sized∪ f (B) = {Sized(B) + Size[ f/d](B)} + 2Cov(Zd(B), Z[ f/d](B)).

Thus, while

E(Cov(ZD(B), Z[F/D](B))) = 0,

the observed value of this covariance
Cov(Zd(B), Z[ f/d](B))

may be taken to expresses the degree of support/conflict between the two collections of evidence in determining the
revision of beliefs. As a summary, we define thepath correlation to be

C(d, [ f/d]) = Corr(Zd(B), Z[ f/d](B))

If this correlation is near 1 then the two collections of data are complementary in that their combined effect in changing
our beliefs is greater than the sum of the individual effect of each collection. If the path correlation is near -1 then the two
collections are giving contradictory messages which give smaller overall changes in belief, in combination, than we would
expect from the individual adjustments withD and[F/D].

5.6 Adjustment in several stages

Now suppose that we intend to adjustB sequentially by the collections of quantitiesG1, G2, . . . , Gm. We define the
cumulative collection

G[i ] =

i⋃
j =1

G j .

and denote the cumulative adjustment

E[i ](B) = EG[i ](B).

We may ‘partial out’ any stage of the adjustment, defining for anyi > j thepartial adjustment of B by G[i ] given
G[ j ] as

E[i /j ](B) = E[i ](B) − E[ j ](B) = E
[
⋃i

k= j +1 Gk/
⋃ j

k=1 Gk]
(B)

Corresponding to the adjustment E[i ](B) is the bearing Z[i ](B). The bearing for the partial adjustment E[i /j ](B) is

Z[i /j ](B) = Z[i ](B) − Z[ j ](B).

As before, we have

E[i ](X) − E[ j ](X) = Cov(X, Z[i /j ](B)).

The bearing for the partial adjustment expresses the change in both magnitude and direction in beliefs between stages
[ j ] and[i ]. Thei th stepwise partial adjustment,E[i /](B) is

E[i /](B) = E[i / i −1](B) = E[Gi /G[i −1]]
(B),

with bearing Z[i /](B) = Z[i ](B)−Z[i −1](B). We refer to the full sequence of stepwise adjusted bearings Z[1](B), Z[2/](B), . . . , Z[m/](B)

as thedata trajectory . For eachj we may write

Z[ j ](B) = Z[1](B) + Z[2/](B) + . . . + Z[ j/](B)

We have therefore have that

Size[ j ](B) = Size[1](B) + Size[2/](B) + . . . + Size[m/](B) + 2(C[2] + . . . + C[ j ])

where

C[r ] = Cov(Z[r −1](B), Z[r/](B))

So to examine the ways in which the individual terms combine to determine the revision we must consider
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• the prior expectation for each change to assess which subcollections of data are expected to be informative;

• the individual adjusted bearings Z[i /](B) to identify the stages at which larger than expected changes in belief occur;

• the path correlationsC[i ] to see whether the evidence is internally supportive or contradictory.

6 The geometry of belief adjustment

Just as traditional Bayes methods derive their formal properties from the structure of probability spaces, Bayes linear
methods derive their formal properties from the linear structure of inner product spaces. We now describe this underlying
geometry.

6.1 Belief adjustment

We have defined a (partial) belief structure as follows:
We have a collectionC = {X1, X2, . . .}, finite or infinite, of random quantities, each with finite prior variance. We

construct the vector space〈C〉 consisting of all finite linear combinations

c0X0 + c1Xi1 + . . . + ck Xik

of the elements ofC, whereX0 is the unit constant. Covariance defines an inner product(·, ·) and norm, over the
closure of the equivalence classes of random quantities which differ by a constant in〈C〉, defined, forX, Y ∈ 〈C〉 to be

(X, Y) = Cov(X, Y), ‖X‖
2

= Var(X).

The space〈C〉 with covariance inner product is denoted as[C], the (partial) belief structure with base{C}.
Belief adjustment is represented within this structure as follows:
We have a collection{C} = {B1, B2, . . . , D1, D2, . . .}, the base for our analysis. We construct[C] as above. We

construct the two subspaces[B] and[D] corresponding to bases{B} = {B1, B2, . . .} and{D} = {D1, D2, . . .}. We define
PD to be the orthogonal projection from[B] to [D]. Thus, for anyX ∈ 〈B〉, PD(X) is the element of[D] which is closest
to X in the variance norm. This orthogonal projection is therefore equivalent to the adjusted expectation, i.e.

ED(X) = PD(X). (41)

Thus the adjusted version ofX is
[X/D] = X − PD(X),

namely the perpendicular vector fromX to the subspace[D]. The adjustment variance VarD(X) is therefore equal to the
squared perpendicular distance fromX to [D]. Further, as

X = [X/D] + PD(X)

and[X/D] is perpendicular to PD(X), we have

‖X‖
2

= ‖[X/D]‖
2
+ ‖PD(X)‖2

which is the variance partition expressed in equation 9.
If we adjust each member of{B} by D, we obtain a new base{[B1/D], . . . , [Bk/D]}, which we write as{B/D}. We

use[B/D] to represent both the vector of elements of{B/D} and the adjusted belief structure of B by D.
Alternately, it is often useful to identify[B/D] as a subspace of the overall inner product space[B ∪ D], namely the

orthogonal complement of[D] in [B ∪ D].
Note from this latter representation that for any basesD andF we may write a direct sum decomposition of[D ∪ F]

into orthogonal subspaces as

[D ∪ F] = [D] ⊕ [F/D], (42)

Therefore, we may write
P[D∪F](X) = P[D](X) + P[F/D](X), ∀X ∈ 〈B〉, (43)

where the two projections on the right hand side of equation 43 are mutually orthogonal. The variance partition for a
partial belief adjustment follows directly from this representation.
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6.2 A comment on the choice of inner product

While it is natural to view the variance inner product as describing our uncertainties, we may choose any inner product
over〈C〉 which describes relevant aspects of our beliefs as the starting point for our analysis. One particular choice that
is frequently useful is theproduct inner product ,

(X, Y) = E(XY).

This inner product does not set the unit constantX0 to zero. We can represent our original expectations by means of
orthogonal projections onto the subspace generated by the unit constant as

E(X) = PX0(X). (44)

Within this belief structure, the covariance inner product is simply the adjustment by the unit constant, so that the inner
product space that we have termed[B] above, under this representation is more fully expressed as[B/X0]. Equivalently
[B] is the orthogonal complement ofX0 in 〈B〉 under the product inner product. Usually, we suppress the prior adjustment
by X0 for notational simplicity, illustrating our freedom to choose whichever inner product is appropriate to emphasise the
important features of a particular analysis.

6.3 Belief transforms

Geometrically, the effect of the belief adjustment may be represented by the eigenstructure of a certain linear operatorTD

defined on[B]. This operatorTD is defined to be

TD = PB PD (45)

wherePB, PD are the orthogonal projections from[D] to [B], and from[B] to [D], respectively.
TD is a bounded self-adjoint operator, asPB, PD are adjoint transforms, namely

(X, PB(Y)) = (PD(X), Y), ∀X ∈ [B], Y ∈ [D], (46)

because both sides of the above equation are equal to (X,Y).
The operatorTD is termed theresolution transform for B induced byD, as it represents the variance resolved for

eachX by D as
RVarD(X) = Cov(X, TD(X)), (47)

as
RVarD(X) = Var(PD(X)) = (PD(X), PD(X)) = (X, PB(PD(X))).

We may also evaluate the transform
SD = I − TD,

whereI is the identity operator on[B]. We termSD thevariance transform for B induced byD, as adjusted covariance
is represented by the relation, for eachX andY in 〈B〉, that

CovD(X, Y) = Cov(X, SDY), (48)

or equivalently, in terms of the inner products over[B], as

(X, Y)D = (X, SDY). (49)

TD, SD are self-adjoint operators, of norm at most one. They have common eigenvectors,Yi , with eigenvalues
1 ≥ r i , si ≥ 0, wherer i + si = 1.

From equation 47, we may deduce that, providedTD has a discrete spectrum, each canonical direction,Yi , of the
adjustment ofB by D, is an eigenvector ofTD, with eigenvaluer i , and conversely each eigenvector ofTD is a canonical
direction of the adjustment. Thus the eigenstructure ofTD summarises the effects of the adjustment over the whole structure
[B]. In particular, the resolved uncertainty may be written as

RUD(B) = Trace(TD). (50)
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6.4 Comparing inner products

The variance transform and the resolution transform are particular examples of the general class ofbelief transforms.
Suppose that we specify two inner products{·, ·}1,{·, ·}2, over〈B〉, derived perhaps from alternative prior formulations or
alternative sampling frames. Provided that

sup
X∈〈B〉

{X, X}2

{X, X}1
= M12 < ∞, (51)

then we may define a bounded, self-adjoint transformT on 〈B〉, under inner product{·, ·}1, with normM12, for which

{X, Y}2 = {X, T(Y)}1, ∀X, Y ∈ 〈B〉. (52)

T is termed the belief transform for{·, ·}1, associated with{·, ·}2. For example, the variance transformSD is obtained
by selecting{·, ·}1 to be the inner product Cov(X, Y), and{·, ·}2 to be the adjusted covariance inner product CovD(X, Y),
so that

CovD(X, Y) = Cov(X, SD(Y)), ∀X, Y ∈ 〈B〉.

Just as the eigenstructure of the variance transform summarises the comparison between the prior and adjusted variance
specification, so does the eigenstructure of a general belief transform summarise the comparison between any two inner
products. The ratio{X, X}2/{X, X}1 will be large/ near one / small according as whetherX has large components
corresponding to eigenvectors with large/ near one / small eigenvalues.

Belief transforms provide a natural way to compare sequences of inner products, as they are multiplicative. LetTi j be
the belief transform for{·, ·}i associated with{·, ·} j . Then we have

T13 = T12T23, (53)

(operator multiplication is by composition, namelyT12T23(X) = T12(T23(X))), as

{X, T13(Y)}1 = {X, Y}3 = {X, T23(Y)}2 = {X, T12(T23(Y))}1.

This relation allows us to decompose a particular comparison into constituent stages. For example, if we wish to adjust
[B] by [D ∪ F], then we may decompose the overall variance transformS[D∪F], into the product

S[D∪F] = SD S(D)F , (54)

whereS(D)F is the variance transformSF applied to the adjusted space[B/D], so that

CovD∪F (X, Y) = CovD(X, S(D)F (Y)). (55)

Such multiplicative forms offer a natural sequential construction for a complicated belief transform. They also allow us
to apply the collection of interpretive and diagnostic tools that we have developed to each stage of a belief comparison or
adjustment.

6.5 The bearing

By the Riesz representation for linear functionals,f is a bounded linear functional on[B] if and only if there is a unique
elementZ f ∈ [B], for which

f (X) = (X, Z f ), ∀X ∈ 〈B〉.

The difference between the prior expectation E(X) and the observed adjusted expectation Ed(X) defines a linear
functional

fd(X) = Ed(X) − E(X),

on [B]. Therefore by the Riesz representation, iffd(X) is bounded on[B]
5, then there is a unique elementZd ∈ [B],

corresponding tofd(X), for which
5 for example,fd will automatically be bounded ifD has a finite number of elements
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Ed(X) − E(X) = fd(X) = (X, Zd) = Cov(X, Zd).

This element is precisely the bearing as created in section 4, and the properties of the bearing may be deduced directly
from this representation. Note that in the preceding sections we have also used the Riesz representation to create the
bearing for two other functionals, namely the difference functional, Ed∪F (X) − Ed(X), and also the functional which
replaces eachX by its observed value.
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