
JSS Journal of Statistical Software
January 2007, Volume 18, Issue 6. http://www.jstatsoft.org/

Model-based Methods of Classification: Using the

mclust Software in Chemometrics

Chris Fraley
University of Washington

Adrian E. Raftery
University of Washington

Abstract

Due to recent advances in methods and software for model-based clustering, and to
the interpretability of the results, clustering procedures based on probability models are
increasingly preferred over heuristic methods. The clustering process estimates a model
for the data that allows for overlapping clusters, producing a probabilistic clustering that
quantifies the uncertainty of observations belonging to components of the mixture. The
resulting clustering model can also be used for some other important problems in multi-
variate analysis, including density estimation and discriminant analysis. Examples of the
use of model-based clustering and classification techniques in chemometric studies include
multivariate image analysis, magnetic resonance imaging, microarray image segmentation,
statistical process control, and food authenticity. We review model-based clustering and
related methods for density estimation and discriminant analysis, and show how the R
package mclust can be applied in each instance.

Keywords: model-based clustering, classification, density estimation, discriminant analysis, R,
mclust.

1. Introduction

Clustering and classification methods are among the most important techniques in multivari-
ate analysis. Due to recent advances in methods and software for model-based clustering, and
to the interpretability of the results, clustering procedures based on probability models are
increasingly preferred over heuristic methods. Finite mixture models (McLachlan and Peel
2000) provide a principled statistical approach to clustering. Each component probability
corresponds to a cluster, and models that differ in the number of components and/or compo-
nent distributions can be compared using statistical criteria. The clustering process estimates
a model for the data that allows for overlapping clusters, producing a probabilistic clustering
that quantifies the uncertainty of observations belonging to components of the mixture. The
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2 Model-based Methods of Classification: Using mclust in Chemometrics

resulting clustering model can also be used for some other important problems in multivariate
analysis, including density estimation and discriminant analysis (Fraley and Raftery 2002).
Chemometric studies involving model-based clustering and classification techniques include
multivariate image analysis (Wehrens, Simonetti, and Buydens 2002; Wehrens, Buydens, Fra-
ley, and Raftery 2004; Fraley, Raftery, and Wehrens 2005; Tran, Wehrens, and Buydens 2006),
magnetic resonance imaging (Wehrens et al. 2002; Fraley et al. 2005; Forbes, Peyrard, Fraley,
Georgian-Smith, Goldhaber, and Raftery 2006), microarray image segmentation (Li, Fraley,
Bumgarner, Yeung, and Raftery 2005; Fraley and Raftery 2006c), statistical process control
(Thissen, Swierenga, de Weijer, Wehrens, Melssen, and Buydens 2005), and food authenticity
(Toher, Downey, and Murphy 2005; Dean, Murphy, and Downey 2006).

In this article, we illustrate model-based clustering, density estimation and discriminant anal-
ysis using the R (R Development Core Team 2006) package mclust (Fraley and Raftery 1999,
2003, 2006a) available as a contributed package from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/. We use standard benchmark data sets since our
focus is on methodology rather than on specific applications. The first example concerns the
diagnosis of diabetes from blood plasma glucose and insulin levels measured under various
conditions. The second example involves modeling the atmospheric concentration of carbon
monoxide. The third example is the identification of wine cultivars through chemical analysis.

2. Model-based clustering

In model-based clustering, the data x are viewed as coming from a mixture density f(x) =∑G
k=1 τkfk(x), where fk is the probability density function of the observations in group k, and

τk is the probability that an observation comes from the kth mixture component (τk ∈ (0, 1)
and

∑G
k τk = 1).

Each component is usually modeled by the normal or Gaussian distribution. Component
distributions are characterized by the mean µk and the covariance matrix Σk, and have the
probability density function

φ(xi;µk,Σk) =
exp{−1

2(xi − µk)>Σ−1
k (xi − µk)}√

det(2πΣk)
.

For univariate data, the covariance matrix reduces to a scalar variance. The likelihood for
data consisting of n observations assuming a Gaussian mixture model with G multivariate
mixture components is

n∏
i=1

G∑
k=1

τkφ(xi;µk,Σk). (1)

For a fixed number of components G, the model parameters τk, µk, and Σk can be estimated
using the EM algorithm initialized by hierarchical model-based clustering (Dasgupta and
Raftery 1998; Fraley and Raftery 1998). Data generated by mixtures of multivariate normal
densities are characterized by groups or clusters centered at the means µk, with increased
density for points nearer the mean. The corresponding surfaces of constant density are ellip-
soidal. Geometric features (shape, volume, orientation) of the clusters are determined by the
covariances Σk, which may also be parametrized to impose constraints across components.
There are a number of possible parameterizations of Σk, many of which are implemented in
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the R package mclust. Common instances include Σk = λI, where all components are spheri-
cal and of the same size; Σk = Σ constant across components, where all components have the
same geometry but need not be spherical; and unrestricted Σk, where each component may
have a different geometry.

Banfield and Raftery (1993) proposed a general framework for geometric constraints in mul-
tivariate normal mixtures by parametrizing covariance matrices through eigenvalue decompo-
sition in the following form:

Σk = λkDkAkD
>
k , (2)

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose elements
are proportional to the eigenvalues, and λk is an associated constant of proportionality. The
decomposition factors λk, Ak and Dk are treated as independent sets of parameters, and
either constrained to be the same for each component or allowed to vary among components.
When parameters are fixed, components share certain geometric properties: Dk governs the
orientation of the kth component of the mixture, Ak its shape, and λk its volume, which is
proportional to λd

k det(Ak).

The model options available in the R package mclust are summarized in Table 1. In one
dimension, there are just two models: E for equal variance and V for varying variance. In more
than one dimension, the model identifiers encode geometric characteristics of the model. For
example, EVI denotes a model in which the volumes of all clusters are equal (E), the shapes of
the clusters may vary (V), and the orientation is the identity (I). Clusters in this model have
diagonal covariances with orientation parallel to the coordinate axes. Parameters associated
with characteristics designated by E or V are determined from the data.

A ‘best’ model can be estimated by fitting models with differing parameterizations and/or

Identifier Model # Covariance parameters Distribution
EII λI 1 Spherical
VII λkI G Spherical
EEI λA d Diagonal
VEI λkA G + (d − 1) Diagonal
EVI λAk 1 + G(d − 1) Diagonal
VVI λkAk Gd Diagonal
EEE λDAD> d(d + 1)/2 Ellipsoidal
EEV λDkAD>

k 1 + (d − 1) + G[d(d − 1)/2] Ellipsoidal
VEV λkDkAD>

k G + (d − 1) + G[d(d − 1)/2] Ellipsoidal
VVV λkDkAkD

>
k G[d(d + 1)/2] Ellipsoidal

Table 1: Parameterizations of the multivariate Gaussian mixture model available in mclust.
Model identifiers use three letters to encode code geometric characteristics: volume, shape,
and orientation. E means equal and V means varying across components or clusters; I refers to
the identity matrix in specifying shape or orientation and is a special case of E. In the column
labeled ‘# Covariance parameters’, d denotes the dimension of the data, and G denotes
the number of mixture components. The total number of parameters for each model can
be obtained by adding Gd parameters for the means and G − 1 parameters for the mixing
proportions.



4 Model-based Methods of Classification: Using mclust in Chemometrics

numbers of components to the data by maximum likelihood, and then applying a statistical
criterion for model selection. The Bayesian Information Criterion or BIC (Schwarz 1978)
is the model selection criterion provided in the mclust software. It adds a penalty term on
the number of parameters to the loglikelihood. For details of model-based clustering, see
McLachlan and Peel (2000) and Fraley and Raftery (2002).

We illustrate model-based clustering on the diabetes dataset (Reaven and Miller 1979) giving
three measurements for each of 145 subjects described in Table 2.

This dataset is a standard introductory example for model-based clustering (e.g., Banfield
and Raftery 1993; Fraley and Raftery 1998, 2006b) and is included in the mclust package.
The subjects were clinically diagnosed into three groups: normal, chemically diabetic, and
overtly diabetic. The diagnosis is given in the first column of the diabetes dataset, which is
excluded from the cluster analysis.

The following code computes the model using the function mclust and plots its BIC: (see
Figure 1, upper left):

R> library("mclust")
R> data("diabetes")
R> diabetesModel <- Mclust(diabetes[,-1])
R> plot(diabetesModel, diabetes[,-1], what = "BIC")

Function coordProj can be used to plot the data and mclust classification, marking the means
and drawing ellipses (with axes) corresponding to the variance for each group (see Figure 1,
upper right).

R> coordProj(diabetes[,-1], dimens = c(2,3), what = "classification",
classification = diabetesModel$classification,
parameters = diabetesModel$parameters)

For this data, model-based clustering chooses a model with three components, each having a
different covariance. The corresponding three-group classification matches the three clinically
diagnosed groups with 88% accuracy.

The uncertainty of a classification can be assessed in model-based clustering and function
coordProj can be used to display the relative uncertainty of a classification:

R> coordProj(diabetes[,-1], dimens = c(2,3), what = "uncertainty",
uncertainty = diabetesModel$uncertainty,
parameters = diabetesModel$parameters)

Variable Description
glucose plasma glucose response to oral glucose
insulin plasma insulin response to oral glucose
sspg steady-state plasma glucose (measures insulin resistance)

Table 2: Description of the three measurements given in the diabetes data set (Reaven and
Miller 1979) for 145 subjects.
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Figure 1: Upper left: BIC from mclust for the 10 available model parameterizations and
up to 9 clusters for the diabetes dataset. Different symbols and line types encode different
model parameterizations. The ‘best’ model is taken to be the one with the highest BIC among
the fitted models. Upper right: A projection of the diabetes data, with different symbols
indicating the classification corresponding to the best model as determined by mclust. The
component means are marked and ellipses with axes are drawn corresponding to their covari-
ances. In this case there are three components, each with a different covariance. Lower left: A
projection of the diabetes data showing classification uncertainty. Larger symbols indicate
the more uncertain observations. Lower right: A projection of the diabetes data show-
ing errors in the mclust classification. Filled black symbols indicate incorrectly classificated
observations.

The resulting plot is shown in Figure 1, lower left. In this case, the misclassified data points
tend to be among the most uncertain, indicating suitability of the cluster model for the data
as clinically classified. Since there is a known classification, the classification errors can also
be plotted:
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R> coordProj(diabetes[,-1], dimens = c(2,3), what = "errors",
classification = diabetesModel$classification,
parameters = diabetesModel$parameters,
truth = diabetes[,1])

The resulting plot is shown in Figure 1, lower right. Note that some of observations with low
uncertainty are misclassified; these to correspond to outliers of the component distributions.

3. Density estimation

While membership in components is important in clustering, the mixture likelihood (1) itself,
or its value at given points, is the focus of interest in density estimation (Silverman 1986;
Scott 1992). The fitted likelihood can be used for example to reveal or compare data trends.
We use the co2 dataset (Keeling and Whorf 1999) included in the R language to illustrate
an application of density estimation. It is a time series of measurements of atmospheric
concentrations of carbon dioxide.

Although we treat co2 as one-dimensional data in this example, we convert it to a matrix to
make it easier to extract the observations we need through indexing by months and years:

R> co2mat <- matrix(co2, ncol = 12)
R> dimnames(co2mat) <- list(1959:1997, month.abb)

We divide the data into three thirteen year periods, and compare the corresponding density
estimates.

R> earlyData <- as.vector(co2mat[as.character(1959:1971),])
R> middleData <- as.vector(co2mat[as.character(1972:1984),])
R> lateData <- as.vector(co2mat[as.character(1985:1997),])

R> library("mclust")
R> earlyModel <- Mclust(earlyData)
R> middleModel <- Mclust(middleData)
R> lateModel <- Mclust(lateData)

R> mclust1Dplot(earlyData, parameters = earlyModel$parameters,
what = "density", xlab = "PPM")

R> title("1959 - 1971")
R> mclust1Dplot(middleData, parameters = middleModel$parameters,

what = "density", xlab = "PPM")
R> title("1972 - 1984")
R> mclust1Dplot(lateData, parameters = lateModel$parameters,

what = "density", xlab = "PPM")
R> title("1985 - 1997")

These plots, shown in Figure 2, indicate that the overall density for the data remains relatively
unchanged over the years.
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Figure 2: Density via mixture modeling of atmospheric concentrations of carbon dioxide for
three 13-year time periods 1959-1971 (left), 1972-1984 (middle), and 1985-1997 (right) and the
corresponding histograms. The densities capture the data trends better than the histograms,
and show that the distribution of concentrations is essentially the same for each time period.

More generally, density estimates at specific values can be obtained via function dens. As an
illustration, we divide the data into cold and warm months, and compare the corresponding
density estimates. The following computes and plots density estimates for the model fit to
the data in the warm and cold months:

R> coldData <- as.vector(co2mat[,c("Oct","Nov","Dec","Jan","Feb","Mar")])
R> warmData <- as.vector(co2mat[,c("Apr","May","Jun","Jul","Aug","Sep")])

R> library("mclust")
R> coldModel <- Mclust(coldData)
R> warmModel <- Mclust(warmData)

R> coldDens <- dens(modelName=coldModel$modelName, data = ppm,
parameters = coldModel$parameters )

R> warmDens <- dens(modelName=warmModel$modelName, data = ppm,
parameters = warmModel$parameters )

R> ylim <- range(c(coldDens, warmDens))
R> x <- seq(from = min(ppm), to = max(ppm))
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Figure 3: Density via mixture modeling of atmospheric concentrations of carbon dioxide for
warm (April - September) and cold (October - March) months during the years 1959-1997.

R> plot(x, warmDens, ylim=ylim, type="l", ylab="density", xlab="PPM",
col="red", lty=1)

R> lines(x, coldDens, ylim=ylim, type="l", ylab="density", xlab="PPM",
col="blue", lty=2)

R> legend("topright", legend = c("April to September","October to March"),
lty = c(1,2), col = c("red", "blue"))

The resulting plots are shown in Figure 3. It is easy to see, for example, that an observations
between 330 and 340 ppm would be more likely to occur in the warmer months than in the
colder ones, while an observations below 320 ppm and above 350 ppm would be more likely
to occur in the colder months.

When comparing density estimates, the question naturally arises as to whether a density
estimate can be used to classify data.

4. Discriminant analysis

In discriminant analysis, also know as supervised classification, known classfications of some
observations (the ‘training set’) are used to classify others. Many methods have been proposed
for discriminant analysis, and it is applicable in a wide variety of settings (see e.g., Ripley 1996;
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Duda, Hart, and Storck 2001; Hastie, Tibshirani, and Friedman 2001; McLachlan, Bean, and
Peel 2002). Discriminant analysis methods are often probabilistic, based on the assumption
that observations in each class are generated by a distribution specific to that class. If K
is the number of classes, fk(·) is the probability distribution of the kth class, and τk is the
proportion of members of the population that are in class k, then according to Bayes’ theorem,
the posterior probability that an observation x belongs to the kth class is

Pr(x ∈ class k) =
τkfk(x)∑K
l=1 τlfl(x)

.

In probabilistic discriminant analysis, a model is fit to each class in the training set, and data
is assigned to the class corresponding to the model in which it has the highest posterior prob-
ability. When the model is a normal mixture fitted by model-based clustering, the procedure
is known as mclustDA (Fraley and Raftery 2002).

We illustrate mclustDA on the wine recognition database (Forina, Lanteri, Armanino, and
Leardi 1998) from the UCI Machine Learning Repository (Newman, Hettich, Blake, and Merz
1998). These data are the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities of 13
constituents found in each of the three types of wines. Since the classification (according to
cultivar) is available as the first column of the dataset, but there are no designated training
or test sets, we use the odd numbered observations as a training set to classify the even
numbered observations.

R> odd <- seq(from = 1, to = nrow(wine), by = 2)
R> even <- seq(from = 2, to = nrow(wine), by = 2)

R> wineDA1 <- mclustDA(train = list(data = wine[odd,-1],
labels = wine[odd,1]),

test = list(data = wine[even,-1],
labels = wine[even,1]))

R> wineDA1

Modeling Summary:
trainClass mclustModel numGroups

1 1 VEI 2
2 2 EEI 2
3 3 VEI 2

Test Classification Summary:
1 2 3
25 40 24

Training Classification Summary:
1 2 3
30 35 24
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Training Error: 0

Test Error: 0.04494382

In this case all of the training models have diagonal covariance matrices (oriented along the 13
coordinate axes), and there is no training error. The test error is less than half a percent. Note
that labels need not be provided for the test data: they do not affect the test classification
results, but they do allow assessment of the test error if they are available.

The above analysis implicity assumed equal prior probabilities for each class in training data.
We could, for example, assume that the prior probabilities are equal to the proportions of the
observations in each class in the training data:

R> tab <- table(wine[odd,1])
R> tab
1 2 3
30 35 24

R> pro <- tab/sum(tab)
R> pro

1 2 3
0.3370787 0.3932584 0.2696629

R> wineDA2 <- mclustDA(train = list(data = wine[odd,-1],
labels = wine[odd,1]),

test = list(data = wine[even,-1],
labels = wine[even,1]),

pro = pro)

In this case the classification results are the same as they were when the probabilities were
assumed equal, although this will not necessarily be the case in general.

5. Summary and future work

We have demonstrated the use of the mclust software for model-based clustering, density
estimation, and discriminant analysis on benchmark datasets involving chemometric mea-
surements. We gave references in the introduction to model-based clustering applications in
chemometrics. The current version of mclust also includes a Bayesian prior for regularization
for datasets in which maximum likelihood estimation fails due to singularities or degeneracies
(Fraley and Raftery 2005). There has been considerable recent work on extension to large
data sets (Wehrens et al. 2004; Fraley et al. 2005), to high-dimensional data (McLachlan, Peel,
and Bean 2003; Raftery and Dean 2006), and to models involving categorical data (Handcock,
Raftery, and Tantrum 2005; Handcock, Tantrum, Shortreed, and Hoff 2006). Model-based
clustering is an active area of research, and advances in these and other areas can be antici-
pated in the near future.
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