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Abstract

A SAS macro for fitting an extension of the Dale (1986) regression model to bivariate
ordinal data is provided. The macro is described in detail and examples from Dale (1986)
and McMillan, Hanson, Bedrick, and Lapham (2005) are discussed.
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1. Motivating example and objectives

The BDM SAS macro was developed to fit the Bivariate Dale Model (BDM) to bivariate ordinal
level data. The motivating problem was modeling alcohol use frequency and quantity. One
data collection instrument that alcohol researchers and clinicians generally rely on is called
the Quantity-Frequency survey. Quantity-frequency surveys usually consist of two items that
query the respondent on average frequency of drinking events and the average quantity con-
sumed per such event. The Alcohol Use Disorders Identification Test (AUDIT), for example,
asks, “On average, how often do you drink alcohol?”, which corresponds to the frequency
measure. The respondent is then asked, “On days that you drink, on average how much
alcohol do you consume?”, which corresponds to the quantity measure. Response levels for
the frequency and quantity measures used in the AUDIT questionnaire are shown in Table 1.

An appropriate statistical methodology is necessary for quantifying risk factors of alcohol con-
sumption pattern and intervention effect sizes using Quantity-Frequency survey data, which
have certain particular features that must be addressed. First, the frequency item includes
the response “I Never Drink” for individuals who are teetotalers. This frequency level makes
the quantity measure (drinks per drinking occasion) meaningless since one cannot specify the
number of drinks per drinking occasion if one never has any drinking occasions! If abstainers
are in the sample considered, then a complete analysis requires a two-part analysis of (a) the
event at which one drinks at all, and (b) alcohol consumption pattern given that one is not an
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2 Bivariate Dale SAS Macro

Frequency of alcohol use Quantity of alcohol use
On average, how often do you On days that you drink, on average
drink alcohol? how much alcohol do you consume?
(Never) 1-2 drinks
Monthly or less 3-4 drinks
2-4 times per month 5-6 drinks
2-3 times per week 7-9 drinks
4 or more times per week 10 drinks or more

Table 1: Quantity-frequency response scales from the Alcohol Use Disorders Identification
Test instrument.

abstainer. This is not a particularly complex problem and is analogous to two-part analyses
commonly used in medical-cost analysis (Lachenbruch (2001)).

Second, quantity-frequency measures are usually expressed on an ordinal scale. There is no
interval or ratio scale difference between “Monthly” and “2-3 times per week” on the AUDIT
frequency of consumption items except to say that the former is less frequent than the latter.
Alcohol quantity-frequency modeling therefore requires methods suitable for ordinal data.
Finally, clinicians and alcohol epidemiologists agree that alcohol frequency and quantity of
consumption are not independent behaviors, and the degree of association between quantity
and frequency likely varies among sub-populations (Makela (1996)). For example, alcoholics
drink frequently to mitigate the somatic and psychological effects of alcohol withdrawal, but
physiological tolerance, which increases the rate of alcohol metabolism and reduces the in-
toxicating effect of individual doses, requires increased quantities of alcohol per consumption
event to obtain the desired “high.” Alcohol quantity-frequency modeling requires statistical
methods for the bivariate ordinal nature of the quantity-frequency data, while also allowing
for sub-population variability in the degree of association between quantity and frequency of
alcohol consumption.

We suggest using the Bivariate Dale Model (Dale (1984), Dale (1985), Dale (1986)) to model
the quantity and frequency of alcohol consumption and to estimate risk factors for alcohol
consumption patterns. The BDM allows us to model the joint distribution of the quantity
and frequency of alcohol consumption when recorded on an ordinal scale. BDM parameter
estimates are expressed in log-odds ratios and are interpreted in exactly the same manner as
ordinal logistic regression results. The BDM also allows one to infer the correlation between
quantity and frequency of alcohol consumption, and to model variation in this association
as a function of covariates. While the motivating example pertains to alcohol use, the BDM
macro can be used to fit the Bivariate Dale Model to any data set containing bivariate ordinal
response data.

2. Statistical development

The model is comprised of two components. Let d be the binary indicator that an individual
drinks (d = 1 denotes drinking, and d = 0 denotes abstinence) and, conditional on the event
that a person drinks (i.e., d = 1), let f and q denote the frequency and quantity that an
individual drinks on the r and c level ordinal scales. For example, r = 4 and c = 5 in
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the AUDIT example shown in Table 1. We model the probability that an individual with
covariate vector x drinks at all using logistic regression as

logit{P (d = 1)} = x′β1.

β1 is a vector of regression coefficients for the log odds that a person with covariate combina-
tion x drinks, and is interpreted in the usual way (Collett (1991)). Conditional on d = 1 we
model the bivariate ordinal vector (f, q)′ using a BDM (Dale (1986), Molenberghs and Lesaffre
(1994)). The marginal probabilities P (f ≤ i), i = 1, . . . , r− 1, and P (q ≤ j), j = 1, . . . , c− 1,
are modeled using ordinal logistic regression:

logit{P (f ≤ i)} = θf,i + x′β2,

logit{P (q ≤ j)} = θq,j + x′β3.

Note that x defines covariates applicable to each of these models, but does not necessarily
overlap among models. For example, age might be important in predicting the probability
that one drinks or frequency of drinking given that one drinks, but might not be included
in the model of the quantity that one drinks per drinking occasion. Each β2,j parameter
expresses the log-odds of drinking at or below frequency level i for an individual with covariate
value xj relative to one with covariate value xj − 1. A similar interpretation holds for the
β3 parameters, but with respect to quantity consumed. The {θf,1, . . . , θf,r−1; θq,1, . . . , θq,c−1}
terms are intercepts expressing the log odds of drinking at or below frequency level i or
quantity level j. In this particular parameterization of the ordinal logit model, the intercept
terms increase from the lowest to the highest levels on each ordinal scale. Note that the highest
level category does not have an intercept term. In particular, P (f ≤ r) = P (q ≤ c) = 1, thus
the highest levels need not be considered in the specification of the model. The interpretation
of regression coefficients for the ordinal logistic model appears in most introductory texts on
categorical data analysis (e.g. Everitt (1994), Agresti (2002)).

Possible dependence between f and q is modeled using a global cross-ratio (GCR) model
(Dale (1986), Molenberghs and Lesaffre (1994)). The GCR is a useful measure of association
for contingency tables in which the row and column responses are ordered variables with
greater than two levels each (Dale, 1984). The GCR is defined for a pair of “cutpoints”
(i, j) on the quantity and frequency scales (e.g. Figure 1, Lesaffre and Molenberghs (1991)).
Cutpoints refer to particular levels on the quantity and frequency scales about which the level
of association between the two is measured. The GCR is equal to the cross-product ratio

ψij =
P (f ≤ i, q ≤ j)P (f > i, q > j)
P (f > i, q ≤ j)P (f ≤ i, q > j)

for a table dichotomized at cutpoints (i, j). This is the odds ratio of cumulative quantity and
frequency levels, and is interpreted as the ratio of the odds of f being at or under category
i given q is at or under category j to the odds of f being at or under category i given q is
greater than category j. Details of the GCR, and its relation to other measures of association
are in Dale (1984). We assume the log-linear model

log(ψij) = ∆ + αi + γj + x′β4.

The GCR is modeled as a function of the frequency and quantity cutpoints (i, j), as well as
covariate vector x. Note that ψr,c is undefined, and that a αr−1 = γc−1 = 0 for modeling
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purposes so that log(ψr−1,c−1) = ∆ + x′β4. Thus, there are r − 2 {αi} terms and c− 2 {γj}
terms in the model. When ψij does not depend on cutpoints (i, j), then the constant GCR
model ( = e∆+x′β4) obtains for any given covariate vector x over the entire table (Dale, 1986).

The contribution of an individual who abstains from drinking to the overall likelihood is
simply p(d|β1). The contribution from an individual who drinks is given by the product of
mass functions p(d|β1)p(f, q|d = 1, τ ), where τ is the vector of parameters associated with
the BDM. For the motivating example τ is

τ = (β′
2,β

′
3,β

′
4, θf,1, θf,2, θf,3, θq,1, θq,2, θq,3, θq,4,∆, α1, α2, γ1, γ2, γ3)′.

p(f, q|d = 1, τ ) has been defined (Dale (1986), Molenberghs and Lesaffre (1994)). The full
likelihood function factors into two separate functions of β1 and τ , the former based on all
subjects and the latter based on only those subjects who drink. Because the likelihood factors,
the two separate models (logistic for whether someone drinks and BDM to model the alcohol
consumption pattern in those that drink) are fit to the data, but the resulting inferences can be
interpreted simultaneously. We can perform a formal statistical test of the null hypothesis of
no association between quantity and frequency of alcohol consumption. If the null hypothesis
of no association is rejected, then results of simple univariate ordinal regression analysis that
assume independence between the quantity and frequency of alcohol use should be regarded
with skepticism. The log-likelihoods of independent ordinal logit models fit individually to
the quantity and frequency measures are additive. The drop in deviance from the sum of
these independent models to the GCR model has a chi-square distribution with k+1 degrees
of freedom, where k is the number of predictors in the GCR model described above. A
statistically significant drop in the deviance after incorporating the GCR into the analysis
indicates that the association between the quantity and frequency of alcohol consumption is
important and should be considered during statistical analysis.

3. Code description

The BDM macro models P (d = 1) using PROC LOGISTIC, and bivariate ordinal responses are
modeled using the PROC NLMIXED procedure in SAS Version 8.2. We chose to write the pro-
gram using SAS/STAT procedures as they are widely used by epidemiologists and biostatisti-
cians. SAS/IML or PROC NLP in the SAS/OR module could accomplish the same thing given
a reasonable amount of programming experience. The BDM macro allows one to control the
predictor set for each part of the model, including the cutpoint effects for the GCR model.
Predictors can be on either quantitative or categorical scales, but categorical predictors must
be coded as dummy variates. Procedure output includes parameter estimates, standard er-
rors, confidence intervals, and p-values for the hypothesis test of no difference from zero. The
drop in deviance from the marginal-only models to the model including the GCR portion of
the model is also shown to test the improvement in fit when the association between ordinal
outcomes is included in the model. The macro generates a table of observed and predicted
counts for each covariate combination included in the model, and outputs raw and Pearson
residuals for model criticism.

Output datasets include:

• BDM_BIN_EST = Covariance matrix for the Bernoulli part (if applicable).
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• BDM_BIN_PARMEST = Parameter estimates for the Bernoulli part (if applicable).

• BDM_SPECS = Model specification for the BDM.

• BDM_FITS = Fit statistics for the BDM.

• BDM_EST = Parameter estimates for the BDM.

• BDM_COV = Covariance matrix for the BDM.

• BDM_FINAL = Observed and predicted counts, with raw and Pearson residuals.

4. Data formatting

Each row of the input dataset must pertain to one level of the row response, one level of the
column response, and a unique covariate combination within the row-column combinations.
Levels of each dependent variable are ordered from 1 to #, with 1 being the lowest and
# levels being the highest. The data may be in summarized or unsummarized from. It is
advisable to limit the variable name lengths to 8 characters or less, and variable names should
not end with digits. This causes instability the algorithm. For example, Dale (1986) provides
the following data table (Table 1, p. 910) of patient pain level and medication requirements
as a function of operation type.

Operation Pain
level Medication Requirements

Never Seldom Occ. Reg.
VP None 170 7 8 0
VP Slight 18 5 8 3
VP Significant 7 0 4 14

VA None 170 7 5 2
VA Slight 22 7 8 1
VA Significant 8 1 8 9

VH None 176 8 5 2
VH Slight 26 6 5 5
VH Significant 14 3 2 9

RA None 181 6 6 2
RA Slight 17 12 7 3
RA Significant 10 2 3 11

These data needs to be modified to appear as follows:

pain VP VA VH RA MED CT
1 1 0 0 0 1 170
1 1 0 0 0 2 7
1 1 0 0 0 3 8
1 1 0 0 0 4 0
2 1 0 0 0 1 18
2 1 0 0 0 2 5

et cetera...

5. Inputs

The macro is called as:
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%BDM( dat=,
Cond=,
Condpred=,
Rowvar=,
Colvar=,
Ct=,
Rowpred=,
Colpred=,
Gcrpred=,
Gcrrow=,
Gcrcol=);

Inputs are defined as follows.

• dat = Name of input dataset. See below for data formatting.

• Cond = Name of outcome measure for Bernoulli portion of two-part model. This is left
blank for standard BDM model fitting.

• Condpred = Predictors used for the Bernoulli piece, separated by blanks.

• Rowvar = Name of the ordinal response for the row variable.

• Colvar = Name of the ordinal response for the column variable.

• Ct = Name of the cell count variable.

• Rowpred = Predictors used for the row variable marginal model, separated by blanks.
Leaving this blank will only model the Row response with intercept terms.

• Colpred = Predictors used for the column variable marginal model, separated by blanks.
Leaving this blank will only model the Column response with intercept terms.

• Gcrpred = Predictors used for the GCR model.

• Gcrrow = ‘row’ indicates the GCR model will contain row level terms. Leaving this
blank will omit the row level in the GCR model.

• Gcrcol = ‘col’ indicates the GCR model will contain column level terms. Leaving this
blank will omit the column level in the GCR model.

6. Examples

6.1. Example 1

This example is a replication of an analysis in Dale (1986). In this example, Dale fits the
BDM to self-reported pain level and medication requirements, each of which is measured on
an ordinal scale. The data are shown in Table 1, above. The following SAS code reads the
table, formats it for use with the BDM, and calls the BDM macro to fit the BDM. The fitted
model includes no predictors on either ordinal response scales, but has operation type ’VH’ in
the GCR model, along with terms that vary the association between pain level and medication
requirement over levels of the medication requirements. Data and code for this example are
included with the BDM macro.
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***** Example: Dale (1986), Table 3, P.913 ***********;

Data dale1986;
input OPERATION $ pain NEVER SELDOM OCC REG;

IF OPERATION = ’VP’ THEN VP = 1; ELSE VP = 0;
IF OPERATION = ’VA’ THEN VA = 1; ELSE VA = 0;
IF OPERATION = ’VH’ THEN VH = 1; ELSE VH = 0;
IF OPERATION = ’RA’ THEN RA = 1; ELSE RA = 0;

MED = 1; CT = NEVER; OUTPUT;
MED = 2; CT = SELDOM; OUTPUT;
MED = 3; CT = OCC; OUTPUT;
MED = 4; CT = REG; OUTPUT;

DROP NEVER SELDOM OCC REG operation;
DATALINES;
VP 1 170 7 8 0
VP 2 18 5 8 3
VP 3 7 0 4 14
VA 1 170 7 5 2
VA 2 22 7 8 1
VA 3 8 1 8 9
VH 1 176 8 5 2
VH 2 26 6 5 5
VH 3 14 3 2 9
RA 1 181 6 6 2
RA 2 17 12 7 3
RA 3 10 2 3 11
;
RUN;

%BDM(dat=dale1986,
rowvar=PAIN,
colvar=MED,

ct=ct,
gcrpred=VH,
gcrcol=col);

Results of this analysis are shown below:

Specifications for Bivariate Dale Model [1]
Response variables PAIN MED

Descr Value

Data Set WORK.BDM_D1
Dependent Variable ll
Distribution for Dependent Variable General
Optimization Technique Trust Region
Integration Method None

Convergence Status of Bivariate Dale Model [2]

Reason
NOTE: GCONV convergence criterion satisfied.

Fit Statistics for Bivariate Dale Model and Marginal Models [3]

Sum -2 LogL Drop in
Value for Marginal Deviance

Description for BDM ONLY Models w/GCR DF P-value

-2 Log Likelihood 2622.9 2913.56 290.645 4 <.0001

Parameter Estimates for Bivariate Dale Model [4]

Log Odds Standard
Parameter Ratio Error P-value Lower CL Upper CL
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MED_int1 1.4349 0.07951 <.0001 1.2708 1.5990
MED_int2 1.9060 0.09324 <.0001 1.7136 2.0985
MED_int3 2.7289 0.1303 <.0001 2.4600 2.9978
PAIN_int1 1.0858 0.07132 <.0001 0.9386 1.2330
PAIN_int2 2.1677 0.1014 <.0001 1.9584 2.3770
GCRdelta 3.8333 0.3048 <.0001 3.2042 4.4625
GCRMED1 -1.0806 0.2793 0.0007 -1.6571 -0.5041
GCRMED2 -0.7872 0.2529 0.0047 -1.3091 -0.2653
GCR_VH -0.7617 0.3511 0.0402 -1.4864 -0.03698

Note that regression coefficients for the marginal model indicate the log
odds ratio of being at or below a particular response level. Negative
coefficients indicate reduced probability of being at or BELOW a particular level.

Observed & Predicted Values from Bivariate Dale Model
Dataset = work.final [5]

Raw
Predicted Residual Pearson

pain MED VH count ct (O-E) Residual
1 1 0 521.727 521 -0.72748 -0.05756
1 2 0 22.059 20 -2.05851 -0.44487
1 3 0 14.904 19 4.09593 1.07163
1 4 0 3.497 4 0.50268 0.26942
2 1 0 63.025 57 -6.02465 -0.79284
2 2 0 18.766 24 5.23430 1.22367
2 3 0 22.706 23 0.29354 0.06255
2 4 0 8.091 7 -1.09076 -0.38555
3 1 0 22.615 25 2.38521 0.50929
3 2 0 6.480 3 -3.47989 -1.37297
3 3 0 13.629 15 1.37144 0.37491
3 4 0 34.502 34 -0.50181 -0.08746
1 1 1 175.019 176 0.98071 0.12916
1 2 1 9.732 8 -1.73150 -0.56570
1 3 1 8.033 5 -3.03306 -1.08700
1 4 1 2.337 2 -0.33704 -0.22146
2 1 1 24.082 26 1.91757 0.41013
2 2 1 4.659 6 1.34143 0.62712
2 3 1 6.529 5 -1.52864 -0.60589
2 4 1 3.807 5 1.19338 0.61617
3 1 1 11.700 14 2.30017 0.68807
3 2 1 2.028 3 0.97203 0.68524
3 3 1 3.222 2 -1.22208 -0.68506
3 4 1 9.853 9 -0.85297 -0.27702

====
1013

Each result section is described below:

[1] Model description information.

[2] Convergence status of the BDM model.

[3] Results of the test of the null hypothesis of no association between the ordinal responses
after model adjustment. The drop in deviance that occurs after adding the GCR portion
of the model is highly statistically significant, indicating a marked improvement in model
fit once the association between pain level and medication requirements is built into the
analysis.

[4] Parameter estimates. These are interpreted in the usual way for ordinal logit models.
Parameters relevant for each response variable are given that variable name as a prefix.
For example, the medication requirement intercepts are given the prefix MED. The int
suffix identifies the intercept terms. The GCR prefix denotes parameter estimates for the
GCR portion of the model. Detailed interpretation of the parameter estimates is given
in Dale (1986).
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b

Gender
Females Males
Beers / occasion Beers / occasion

Frequency 1 2-3 4-5 6+ 1 2-3 4-5 6+
Age ≤ 30
No abuse Abstainer 36 75

Up to 1-2 times / month 20 53 4 0 65 171 42 7
A few times / month 1 30 12 1 12 130 81 19
A few times / week 0 4 2 1 1 32 27 14
Almost daily 0 0 0 0 0 2 2 4

Abuse Abstainer 12 23
Up to 1-2 times / month 4 19 3 0 12 43 7 8
A few times / month 0 13 7 0 4 49 25 9
A few times /week 0 0 1 5 1 11 12 7
Almost daily 0 0 0 0 0 3 2 1

Age > 30
No abuse Abstainer 37 64

Up to 1-2 times / month 24 33 3 0 62 159 27 6
A few times / month 2 22 11 2 5 106 59 16
A few times / week 0 8 4 1 3 50 40 8
Almost daily 0 0 0 0 0 6 1 9

Abuse Abstainer 24 16
Up to 1-2 times / month 4 25 2 1 15 53 9 1
A few times / month 0 11 6 2 2 56 22 10
A few times / week 0 4 3 2 1 28 21 12
Almost daily 0 0 2 0 0 4 4 14

Table 2: DWI offender alcohol quantity-frequency data by age, gender, and history of physi-
cal/sexual abuse.

[5] Table of observed and predicted cell counts for each covariate combination and response
level. None of the Pearson’s residuals exceed 2, indicating a reasonable model fit to the
data.

6.2. Example 2

This example, from McMillan et al. (2005), concerns the relationship between the consumption
of beer and physical or sexual abuse among DWI offenders. These data include non-beer
drinkers, demonstrating the two-part model described in the prequel. See details therein for
detailed description of the study sample. The original data is shown in Table 2.

Note that the data are relatively sparse for certain covariate combinations. This poses no
problem to the modeling framework proposed here, although complex three-way interaction
effects (e.g. age by gender by smoking status) might not be estimable. Such conditions
are familiar to epidemiologists working with data in which the outcome measure is strongly
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separated by regions in the predictor space. This phenomenon is referred to as“quasi/complete
separation” and results in infinite maximum likelihood estimates. Also note that the data
appear to be concentrated on the diagonals or upper right areas of each table. This strongly
suggests a high degree of association between the quantity and frequency variables. The
quantity and frequency variables were re-ordered so that 4 corresponds to the lowest quantity
(1 beer per occasion) and lowest frequency (up to 1-2 times per month) categories. This
reordering is necessary so that the regression coefficients are expressed in log-odds of drinking
at or above each quantity or frequency level. Positive coefficients therefore express greater
risk of drinking more frequently or with greater quantity, which is more easily understood by
alcohol researchers. The macro code is called up to fit the BDM.

%BDM(dat=analysis,
cond=DRINKER,
condpred=SEX,
rowvar=Q,
colvar=F,
ct=COUNT,
rowpred= PHYS_ABUS SEX sexphys,
colpred=AGECAT PHYS_ABUS SEX ,
gcrpred= SEX ,
gcrrow=row,
gcrcol=);

The output is identical to that of the first analysis, with the addition of the logistic regression
results for the probability that one drinks.

Logistic regression model parameter estimates of the probability of DRINKER.

Prob
Variable DF Estimate StdErr WaldChiSq ChiSq

Intercept 1 1.1722 0.1096 114.3707 <.0001
SEX 1 1.0312 0.1351 58.2565 <.0001

Specifications for Bivariate Dale Model
Response variables Q F

Descr Value

Data Set WORK.BDM_D1
Dependent Variable ll
Distribution for Dependent Variable General
Optimization Technique Trust Region
Integration Method None

Convergence Status of Bivariate Dale Model

Reason
NOTE: GCONV convergence criterion satisfied.

Fit Statistics for Bivariate Dale Model and Marginal Models

Sum -2 LogL Drop in
Value for Marginal Deviance

Description for BDM ONLY Models w/GCR DF P-value
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-2 Log Likelihood 8243.3 8643.10 399.759 4 <.0001

Parameter Estimates for Bivariate Dale Model

Log Odds Standard
Parameter Ratio Error P-value Lower CL Upper CL

F_int1 -4.3642 0.1782 <.0001 -4.7179 -4.0105
F_int2 -2.2853 0.1235 <.0001 -2.5303 -2.0403
F_int3 -0.5471 0.1122 <.0001 -0.7698 -0.3244
F_AGECAT 0.2550 0.07636 0.0012 0.1034 0.4065
F_PHYS_ABUS 0.5172 0.09341 <.0001 0.3319 0.7026
F_SEX 0.5920 0.1122 <.0001 0.3692 0.8147
Q_int1 -3.1507 0.1473 <.0001 -3.4431 -2.8583
Q_int2 -1.5390 0.1288 <.0001 -1.7947 -1.2834
Q_int3 1.3133 0.1282 <.0001 1.0589 1.5676
Q_PHYS_ABUS 0.8813 0.1912 <.0001 0.5019 1.2608
Q_SEX 0.7020 0.1350 <.0001 0.4340 0.9700
Q_sexphys -0.5309 0.2080 0.0122 -0.9437 -0.1182
GCRdelta 2.9001 0.3019 <.0001 2.3010 3.4993
GCRQ1 -0.4323 0.2505 0.0876 -0.9294 0.06485
GCRQ2 -0.7175 0.2065 0.0008 -1.1272 -0.3078
GCR_SEX -0.7845 0.2613 0.0034 -1.3031 -0.2659

Note that regression coefficients for the marginal model indicate
the log odds ratio of being at or below a particular response
level. Negative coefficients indicate reduced probability of
being at or BELOW a particular level.

A portion of the residual analysis table is shown below.

PHYS_ Predicted Residual Pearson
SEX ABUS sexphys AGECAT count COUNT (O-E)
1 1 1 1 4.364 14 9.6359 4.65306
1 1 1 0 2.287 8 5.7128 3.79995

Covariate combinations with Pearson’s residuals larger than about 3 are poorly fit and might
indicate some degree of model inadequacy. In this result, old men who have suffered physical
or sexual abuse as a child have substantially lower predicted probabilities of being in the
highest quantity and frequency group (observed count = 14, expected = 4.4). Also, younger
men who have suffered physical or sexual abuse as a child are more common that expected in
the highest quantity / lowest frequency levels of the responses. These subjects are not well
fit by the model.
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