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Abstract

The core of the wavelet approach to nonparametric regression is thresholding of wavelet
coefficients. This paper reviews a cross-validation method for the selection of the thresh-
olding value in wavelet shrinkage of Oh, Kim, and Lee (2006), and introduces the R
package CVThresh implementing details of the calculations for the procedures.

This procedure is implemented by coupling a conventional cross-validation with a fast
imputation method, so that it overcomes a limitation of data length, a power of 2. It can be
easily applied to the classical leave-one-out cross-validation and K-fold cross-validation.
Since the procedure is computationally fast, a level-dependent cross-validation can be
developed for wavelet shrinkage of data with various sparseness according to levels.
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1. Introduction

The main goal of this paper is to introduce the package CVThresh in R, which imple-
ments level-dependent cross-validation for thresholding in wavelet shrinkage by Oh, Kim,
and Lee (2006). In addition, we provide algorithmic calculations and details of the procedure
which could not be given in the original paper, so one can be ready for applying CVThresh
to real data. The CVThresh package is implemented in R. The source code, windows
binary and reference manual are available from http://stats.snu.ac.kr/~heeseok/cv.
html and the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/
(Kim and Oh, 2006). See reference manual for usage and syntax of CVThresh for imple-
menting level-dependent cross-validation for wavelet shrinkage. For a step-by-step tutorial
one may download example R codes and other introductory documentation from http:
//stats.snu.ac.kr/~heeseok/cv.html. Note that CVThresh package is implemented with
WaveThresh3 or newer and EBayesThresh which are available from http://www.stats.
bris.ac.uk/~wavethresh/ (Nason, 1998) and CRAN (Silverman, 2004), respectively. For
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detailed explanation of methodology for EBayesThresh package, see Johnstone and Silverman
(2005).

The statistical problem we attempt to solve with wavelet shrinkage is, given the data yi’s
observed from the model yi = f(xi) + εi (i = 1, 2, . . . , n = 2J), to estimate f . The standard
wavelet shrinkage can be performed in the following steps: (1) taking the discrete wavelet
transform of yi; (2) processing the resulting coefficients by some procedure; and (3) trans-
forming back to obtain the estimate f̂ . The part (2) to determine a threshold value plays
the most important role for the estimation quality. Oh, Kim, and Lee (2006) proposed a
level-dependent cross-validation for selection of thresholding value(s).

2. Cross-validation scheme

When establishing a statistical model based on the observations at hand, it is hard to evaluate
how well a statistical model predicts new observations. One way to overcome this problem is
cross-validation. The procedure of cross-validation consists of following steps

1. CV Scheme step: deciding a scheme how to choose test dataset, which is regarded as
new observations, and

2. Optimization step: estimating a statistical model based on the remaining data called
training dataset, and evaluating models by prediction error of test dataset.

The first step is to decide test datasets, which can be constructed through re-indexing of
observation index. That is, with defining a function k : {1, 2, . . . , n} → {1, 2, . . . ,K}, we
obtain K test datasets, Tj = {yi : j = k(i), i = 1, 2, . . . , n} (j = 1, . . . ,K). According to the
scheme of re-index, we can implement various kinds of K-fold cross-validations. Thus, one
constructs K test datasets in a way that each test dataset consists of blocks of b consecutive
data. In addition, one can employ a randomized scheme to select a block or a fold. Such a
cross-validation scheme can be referred as a random K-fold cross-validation with block size
b. The re-indexing scheme characterizes various cross-validation schemes.

The R function cvtype() provides indexes of test data according to various cross-validation
schemes. In other words, cvtype() generates an index set of each test data of K-fold. For
example, for performing a random 4-fold cross-validation with block size 2 of observations
y1, · · · , y32 from Heavisine function (Donoho and Johnstone, 1994), the following R code pro-
duces an index set of each test dataset.

> set.seed(3)

> cvtype(n=32, cv.bsize=2, cv.kfold=4, cv.random=T)$cv.index

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 9 10 11 12 15 16 25 26
[2,] 4 5 10 11 16 17 26 27
[3,] 16 17 22 23 28 29 30 31
[4,] 4 5 8 9 20 21 24 25

Each row represents an index set corresponding to test dataset Tj (j = 1, 2, 3, 4). That is,
each training set consists of data excluding Tj in turn. See the left panel of Figure 1.



Journal of Statistical Software 3

For the traditional K-fold cross-validation in the right panel of Figure 1, use the following R
code.

> cvtype(n=32, cv.bsize=1, cv.kfold=4, cv.random=F)$cv.index

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 5 9 13 17 21 25 29
[2,] 2 6 10 14 18 22 26 30
[3,] 3 7 11 15 19 23 27 31
[4,] 4 8 12 16 20 24 28 32
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Figure 1: Circles are 32 observations from Heavisine. Black circles are each test dataset of a
random and the traditional 4-fold cross-validation, respectively.

If one would like to construct folds by just specifying the number of blocks with a block size,
use cvtype() in the following manner. In this example code, the number of blocks is 2 with
block size 2.

> set.seed(1)

> nblock <- 2; cv.bsize <- 2; cv.kfold <- trunc(32/(cv.bsize*nblock))

> cvtype(n=32,cv.bsize=cv.bsize,cv.kfold=cv.kfold,cv.random=T)$cv.index

[,1] [,2] [,3] [,4]
[1,] 11 12 17 18
[2,] 8 9 26 27
[3,] 18 19 20 21
[4,] 5 6 7 8
[5,] 12 13 22 23
[6,] 23 24 29 30
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[7,] 25 26 29 30
[8,] 3 4 21 22

For constructing test datasets with block size 3 where each test dataset consists of approxi-
mately 33% of the whole data, try the following code.

> set.seed(1)

> perc <- c(0.33); cv.bsize <- 3; cv.kfold <- trunc(1/perc)

> cvtype(n=32,cv.bsize=cv.bsize,cv.kfold=cv.kfold,cv.random=T)$cv.index

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 10 11 12 16 17 18 22 23 24
[2,] 16 17 18 25 26 27 28 29 30
[3,] 2 3 4 5 6 7 26 27 28

3. Imputation by wavelet and h-likelihood

In wavelet context, the classical cross-validation method cannot be directly applied to wavelet
shrinkage, because the limitation of Mallat’s fast algorithm for discrete wavelet transform is
of the length of data= 2J where J is an integer. To overcome this problem, we propose the
cross-validation which is described as the following three steps:

1. CV Scheme step: deciding a scheme how to construct test datasets,

2. Imputation step: performing the imputation method for test datasets, and

3. Optimization step: finding thresholding values minimizing prediction error.

In Section 2, CV Scheme step using the R function cvtype() has already been explained. This
section introduces a simple methodology for imputation step based on a hierarchical likelihood
(or h-likelihood) concept and the R function cvimpute.by.wavelet() for imputation.

Lee and Nelder (1996, 2001) introduced the hierarchical likelihood as an extended likelihood
for general models that include unobserved random variables such as missing. Following Lee
and Nelder (1996, 2001), we impute the missing values by maximizing the h-likelihood. Since
it has been known that a wavelet shrinkage estimator can be formulated by penalized least
squares problem (Antoniadis and Fan, 2001), we obtain the wavelet estimate by minimizing
the penalized least squares criterion after missing values are imputed. These arguments lead
to the following iterative algorithm. See Oh, Kim, and Lee (2006) for details.

Suppose that y = (yobs, ymis) are random variables with mean f and variance σ2, where
yobs = (y1, . . . , yk) are ymis = (yk+1, . . . , yn) denote the subsets of observed data and missing
data, respectively. Then the imputation step can be described as

1. Set an initial estimate ŷ
(0)
mis.

2. Iterate at l until converge.

2-1 Estimate f̂ (l) by applying a wavelet shrinkage to the new data y
(l)
new =

(
yobs, ŷ

(l−1)
mis

)
.
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2-2 Impute ŷ
(l)
mis.

The R function cvimpute.by.wavelet() imputes test data by the proposed methodology,
given the index of test dataset provided by a cross-validation scheme. Suppose that we have
1024 observations from the model yi = fi + εi, where f is Heavisine and noise ε’s are iid
Gaussian random variables. Figure 2 shows imputation results at iterations 1, 2, and 7, when
randomly chosen 64 observations are treated as missing values. As seen, the method converges
very fast.
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Figure 2: Black circles are imputed values at iteration 1, 2 and 7 with mean values of y as
the initial values, and circles are original observations.

The following code implements the imputation of each test data for a random 8-fold cross-
validation with block size 2. Figure 3 represents a “goodness of fit” of imputation results for
the 8-fold cross-validation. Note that throughout the imputation process, EBayesThresh has
been used for threshold value(s).

> ### Define CV scheme
> set.seed(1)



6 CVThresh: R Package for Level-Dependent Cross-Validation Thresholding

> cv.index <- cvtype(n=1024, cv.bsize=2, cv.kfold=8, cv.random=T)$cv.index
> ### Generate observations
> snr <- 5
> testdata <- heav(1024)
> x <- testdata$x
> y <- testdata$meanf + rnorm(1024, 0, testdata$sdf/snr)
> ### Run imputation
> yimpute <- cvimpute.by.wavelet(y=y, impute.index=cv.index)$yimpute
> ### Plot of imputation results
> par(mar=0.1+c(4,4,2,1))
> plot(y, yimpute, xlab="Observations", ylab="Imputed Values",

main="Piecewise Polynomial", cex=0.5);abline(0,1)
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Figure 3: A goodness of fit of imputation results obtained in Figure 2.

4. Optimization after imputation

Consider the classical K-fold cross-validation in wavelet context and prediction error CV. The
CV score can be calculated by expelling the kth part of data. That is, the CV score of a
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K-fold cross-validation with indexing k : {1, 2, . . . , n} → {1, 2, . . . ,K} can be defined as

CV (λ) =
1
n

n∑
i=1

(
yi − f̂

−k(i)
λ (xi)

)2
, (1)

where f̂
−k(i)
λ (xi) denotes the wavelet estimate at xi given a threshold λ with removing the

kth part of data.
After applying the imputation procedure, we have a new dataset ynew = (yobs, ŷmis). We are
now free to use Mallat’s fast algorithm. Finally we find a value λ̂ to minimize (1), that is

λ̂ = argmin
λ

CV (λ).

The R function cvwavelet.after.impute() calculates the optimal threshold values, and then
reconstruct f from noisy data y. The inputs of the R function cvwavelet.after.impute()
are listed as the index of each test data, imputed values according to cross-validation scheme,
and discrete wavelet transform of y. For an efficient computation of CV (λ), we adapt the
grid search algorithm of the R function WaveletCV() in WaveThresh3 of Nason (1998).
Although one can use any cross-validation scheme and imputation methods, it is convenient to
use the R functions cvtype() and cvimpute.by.wavelet() for those processes. The following
example shows how to conduct a wavelet shrinkage with the threshold(s) by the proposed
method for a real data IPD. The dataset IPD used in Nason (1996) contains 4096 observations
of inductance plethysmography data regularly sampled at 50Hz starting at 1229.98 seconds.
We estimates the mean function by a random 4-fold cross-validation with block size 2.

> ### Define IPD
> data(ipd)
> y <- as.numeric(ipd); n <- length(y); nlevel <- log2(n)
> ### Define CV scheme
> set.seed(1)
> cv.index <- cvtype(n=n, cv.bsize=2, cv.kfold=4, cv.random=T)$cv.index
> ### Run imputation
> yimpute <- cvimpute.by.wavelet(y=y, impute.index=cv.index)$yimpute
> ### Discrete wavelet transform of observation
> ywd <- wd(y)
> ### Find optimal threshold values and reconstruct the data
> out <- cvwavelet.after.impute(y=y, ywd=ywd, yimpute=yimpute,

cv.index=cv.index, cv.optlevel=c(3:(nlevel-1)))

Cross-validation can be performed as a level-by-level-wise by applying K-fold cross-validation
algorithm to each level or groups of resolution levels from coarse level, say 3 to the finest
level, say l. This level-dependent cross-validation finds thresholding values

(
λ̂1, . . . , λ̂l

)
to

minimize prediction error CV , that is(
λ̂1, . . . , λ̂l

)
= arg min

λ1,...,λl

CV (λ1, . . . , λl),

where

CV (λ1, . . . , λl) =
1
n

n∑
i=1

(
yi − f̂

−k(i)
λ1,...,λl

(xi)
)2

.
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We need to specify which levels or groups of levels are thresholded. The argument cv.optlevel
of the R function cvwavelet.after.impute() specifies thresholding structure. See the fol-
lowing R codes which define thresholding structures.

> ### Threshold (level 3 to the finest level) at the same time.
> cv.optlevel <- 3

> ### Threshold two groups of resolution levels, (level 3, 4) and
> ### (level 5 to the finest level).
> cv.optlevel <- c(3, 5)

> ### Threshold each resolution level 3, 4, 5, 6, 7, and 8.
> cv.optlevel <- c(3,4,5,6,7,8)

The R function cvwavelet() implements all three steps for cross-validation scheme, impu-
tation, and thresholding process. In fact, the cvwavelet() consists of three R functions
cvtype(), cvimpute.by.wavelet() and cvwavelet.after.impute(). A comparison using
IPD data is performed by EBayesThresh, Nason’s cross-validation and level-dependent cross-
validation below. See Figure 4 for the results indicating that proposed method produces the
most smooth reconstruction around 1300 seconds while it keeps the sharpness of observations.

> ### level-dependent cross-validation
> set.seed(1)
> out <- cvwavelet(y=y, ywd=ywd, cv.optlevel=c(3:(nlevel-1)),

cv.bsize=2, cv.kfold=4)
> ### Nason’s cross-validation
> yn <- wr(threshold(ywd, policy="cv"))
> ### EBayesThresh
> ye <- wr(ebayesthresh.wavelet(ywd, smooth.levels=nlevel-3))
> ### Plotting the results
> par(mfrow=c(2,2), oma=c(0,0,0,0), mar=0.1+c(4,2,2.5,1))
> ts.plot(ts(y, start=1229.98, deltat=0.02, frequency=50),

main="Observations", xlab = "Seconds", ylab="")
> ts.plot(ts(ye, start=1229.98, deltat=0.02, frequency=50),

main="EBayes", xlab = "Seconds", ylab="")
> ts.plot(ts(yn, start=1229.98, deltat=0.02, frequency=50),

main="cv.Nason", xlab = "Seconds", ylab="")
> ts.plot(ts(out$yc, start=1229.98, deltat=0.02, frequency=50),

main="cv.level", xlab = "Seconds", ylab="")

5. Application to image reconstruction

The proposed method is straightforward to extend to a cross-validation method for image
data. Similarly, we divide two-dimensional data into K roughly equal-sized parts, and then
follow the same steps for one dimensional signal described above. Likewise one-dimensional
case, we provide four R functions for images
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Figure 4: Wavelet estimates of IPD data by EBayesThresh, Nason’s CV, and level-dependent
cross-validation performed by a random 4-fold with block size 2.

(1) cvtype.image() for re-indexing of two-dimensional cross-validation scheme,

(2) cvimpute.image.by.wavelet() for imputation given cross-validation scheme,

(3) cvwavelet.iamge.after.impute() for thresholding values and a reconstruction given
a cross-validation scheme and imputation, and

(4) cvwavelet.image() for combining the above three R functions.

For two-dimensional cross-validation scheme, one needs to specify size of images, two dimen-
sional block size, and the number of folds. Only random scheme is possibly provided.

> cvtype.image(n=c(256,256), cv.bsize=c(2,2), cv.kfold=10)

The usage of the cv.optlevel in the R functions cvwavelet.iamge.after.impute() and
cvwavelet.image() is different from that of one dimensional case. Each level from the lowest
resolution to the finest resolution level specified in the cv.optlevel is thresholded, and LH,
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HL and HH indicating horizontal, vertical, and diagonal detail coefficients are respectively
thresholded within a level. One may alter the R code to use a specific thresholding scheme.

To check the performance of the proposed method, noise is added to the original image
lennon: Gaussian mixture 0.9φ(·; snr=5)+0.1φ(·; snr=0.5) in Figure 5. Comparing universal,
EBayesThresh, and level-dependent 10-fold cross-validation threshold, the level-dependent
cross-validation outperforms with respect to MSE as well as to visual perception. Especially,
level-dependent cross-validation effectively smooths out the extreme pixels from the Gaussian
mixture.

> ### Generate Noisy Image
> data(lennon)
> sdimage <- sd(as.numeric(lennon))
> nlennon <- ncol(lennon)
> nlevel <- log2(ncol(lennon))
> optlevel <- c(3:(nlevel-1))

> set.seed(55)
> n1 <- trunc(nlennon^2 * 0.9)
> n2 <- nlennon^2 - n1
> lennonnoise <- lennon + matrix(sample(c(rnorm(n1, 0, sdimage/5),

rnorm(n2, 0, sdimage*2))), nlennon, nlennon)

> par(mfrow=c(2,2), oma=c(0,0,0,0), mar=0.1+c(1,1,2.0,1))
> image(lennonnoise, axes=F, col=gray(0:100/100), main="Noisy Image")

> ### Reconstruction by Universal Threshold
> lennonwd <- imwd(lennonnoise)
> lennonuv <- imwr(threshold(lennonwd, policy="universal"))
> image(lennonuv, axes=F, col=gray(0:100/100), main="Universal Threshold")

> ### Reconstruction by EBayesThresh
> tmp <- c(8,9,10)
> slevel <- NULL
> for (j in 1:(diff(range(optlevel))+1))

slevel <- c(slevel, tmp+4*(j-1))
> slevel <- slevel[length(slevel):1]

> sdev <- mad(c(lennonwd[[8]], lennonwd[[9]], lennonwd[[10]]))

> lennonwdth <- lennonwd
> for (j in 1:length(slevel))
lennonwdth[[slevel[j]]] <- ebayesthresh(lennonwdth[[slevel[j]]], sdev=sdev)

> lennoneb <- imwr(lennonwdth)
> image(lennoneb, axes=F, col=gray(0:100/100), main="EBayes")

> ### Reconstruction by cv.level
> lennoncv <- cvwavelet.image(images=lennonnoise, imagewd=lennonwd,
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cv.optlevel=optlevel, cv.bsize=c(1,1), cv.kfold=10)$imagecv
> image(lennoncv, axes=F, col=gray(0:100/100), main="cv.level")

> ### MSE of Universal Threshold, Ebayes and cv.level
> c(mean((lennonuv-lennon)^2), mean((lennoneb-lennon)^2),

mean((lennoncv-lennon)^2))

Figure 5: Noisy Lennon image with Gaussian mixture, and wavelet estimates by universal,
EBayes, and level-dependent 10-fold CV threshold. MSE’s are 250.2, 619.8 and 164.3, respec-
tively.
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6. Conclusions

CVThresh is an R package for implementation of the level-dependent cross-validation thresh-
olding in wavelet shrinkage. It can be easily installed by simply loading the package CVThresh
from the CRAN archive. In this paper, we introduce CVThresh and provide a step-by-step
tutorial introduction for wide potential applicability. Our hope is that CVThresh can help
some readers who are interested in the level-dependent cross-validation thresholding to use it
for real applications.
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