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Abstract

This article introduces Rcapture, an R package for capture-recapture experiments.
The data for analysis consists of the frequencies of the observable capture histories over
the t capture occasions of the experiment. A capture history is a vector of zeros and ones
where one stands for a capture and zero for a miss. Rcapture can fit three types of models.
With a closed population model, the goal of the analysis is to estimate the size N of the
population which is assumed to be constant throughout the experiment. The estimator
depends on the way in which the capture probabilities of the animals vary. Rcapture
features several models for these capture probabilities that lead to different estimators
for N . In an open population model, immigration and death occur between sampling
periods. The estimation of survival rates is of primary interest. Rcapture can fit the
basic Cormack-Jolly-Seber and Jolly-Seber model to such data. The third type of models
fitted by Rcapture are robust design models. It features two levels of sampling; closed
population models apply within primary periods and an open population model applies
between periods. Most models in Rcapture have a loglinear form; they are fitted by
carrying out a Poisson regression with the R function glm. Estimates of the demographic
parameters of interest are derived from the loglinear parameter estimates; their variances
are obtained by linearization. The novel feature of this package is the provision of several
new options for modeling capture probabilities heterogeneity between animals in both
closed population models and the primary periods of a robust design. It also implements
many of the techniques developed by R. M. Cormack for open population models.

Keywords: loglinear models, mixture models, multinomial distribution, profile likelihood con-
fidence intervals, residuals.

1. Introduction

The goal of a classical capture-recapture experiment is to study the demographic character-
istics of an animal population. It is carried out by capturing animals, marking them with an
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animal specific tag and releasing them. This operation is repeated several times. Afterwards,
each captured animal is associated with a capture history, which is a vector of zeros and ones
giving the capture status at each capture occasion. A 1 is a catch and a 0 is a miss. The
frequencies of the observable capture histories form the data set to be analyzed.

The parameters of interest depend on whether the population is assumed to be closed, open,
or both. Births and deaths, together with immigration and emigration, can occur in an open
population, but not in a closed one. Therefore, for closed populations, survival rates are
supposed equal to one and we want to estimate a population size. On the other hand, open
population models specialize in survival rates estimation. Moreover, a capture-recapture ex-
periment can be constructed in a hierarchical way, i.e. by dividing capture occasions into
primary periods. This results in two levels of sampling. The population experiences immigra-
tion and mortality between primary periods, but it is closed within a primary period, which
are typically successive days of capture. This type of sampling is called a robust design.
Capture-recapture models for the robust design allow the estimation of abundances for each
primary periods and survival rates between periods.

Capture-recapture methods were originally developed in the area of wildlife management
(Seber 1982), but they are now used in a variety of applications, including epidemiology
(Abeni, Brancato, and Perucci 1994), the evaluation of census undercount (Darroch, Fienberg,
Glonek, and Junker 1993) and software testing (Wohlin, Runeson, and Brantestam 1995;
Ebrahimi 1997; Briand, Emam, Freimut, and Laitenberger 2000). Therefore, the captured
units are no longer animals only. For example, in an epidemiological application, they are
humans with a certain disease and capture occasions are reporting lists.

This paper presents a new software for the analysis of capture-recapture data: the package
Rcapture written in R (R Development Core Team 2007). This package uses Poisson regres-
sions to estimate parameters in a capture-recapture experiment. It implements the work of
Cormack (Cormack 1985, 1989, 1993b; Cormack and Jupp 1991) and extends it (Rivest and
Lévesque 2001; Rivest and Daigle 2004; Rivest and Baillargeon 2007). In Rcapture, the Pois-
son regressions are fitted with the glm function; then the loglinear parameters are transformed
into demographic parameters.

This article aims to demonstrate the use of the Rcapture package. In Section 2, an approach
is suggested for the analysis of data from a closed population. Section 3 illustrates how,
with Rcapture, we can reproduce some of Cormack’s data analysis of open populations. The
modeling of data from a robust design with Rcapture is treated in Section 4. Finally, Rcapture
is compared to other capture-recapture softwares in Section 5.

2. Closed populations

A population is said to be closed if no mortality nor immigration can occur within the popu-
lation. Hence, the size of a closed population, noted N , does not vary during the experiment.
This assumption is reasonable for capture-recapture experiments held over a short period of
time. To estimate this population size, a model is fitted to the data. Following Otis, Burn-
ham, White, and Anderson (1978), the model can incorporate up to three sources of variation
among capture probabilities: a temporal effect (subscript t), a heterogeneity between units
(subscript h) and a behavioral effect (subscript b). A temporal effect causes the capture prob-
abilities to vary among capture occasions; heterogeneity causes the capture probabilities to
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Figure 1: Analysis approach for closed population data linked to relevant Rcapture functions

vary among units. A behavioral effect means that the first capture changes the behavior of
a unit, so the capture probability differs before and after the first capture. These sources of
variation lead to eight fundamental closed population models: M0 (no source of variation),
Mt, Mh, Mth, Mb, Mtb, Mbh, Mtbh.

The analysis of data from a closed population capture-recapture experiment amounts to find-
ing the best fitting model and estimating the population size from the chosen model. Here
we propose steps to follow for such an analysis. Figure 1 schematizes these steps and links
them to relevant functions of the Rcapture package. The first step is to explore the data
with descriptive statistics. This helps to identify the factors associated to the variability of
the capture probabilities. Next, several models are fitted and compared based on standard
criteria such as the deviance of the model and the AIC. Ultimately, a model is chosen and the
population abundance N is estimated from this model. The following paragraphs describe
the Rcapture functions associated to each steps.

First note that a capture history will be expressed as a t × 1 vector ω = (ω1, . . . , ωt), where
ωj = 1 if the unit is captured at the jth occasion and 0 if not. There are two accepted formats
for a capture-recapture data set in the package Rcapture. The first one is an R matrix or data
frame whose rows are the capture histories of each animal caught. The number of columns
in the data matrix is then the number of capture occasions in the experiment (noted t). In
the alternative format, the data matrix contains one row per capture history followed by its
frequency. In that case, it has t+1 columns. The first t columns identify the capture histories.
They must contain only zeros and ones. In Rcapture functions, the format of the data set is
specified with the dfreq argument. This argument is set to FALSE for the first format; it is
set to TRUE for the alternative format. The function histpos.t generates the (2t − 1) × t
matrix of the observable capture histories in a capture recapture experiment; it also defines
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the order of the capture histories for the Poisson regression. This order is relevant when using
the closedp.mX function and the keep option of the openp functions.

Descriptive Statistics

The descriptive function of the Rcapture package computes basic capture-recapture fre-
quency statistics. It displays, for i = 1, . . . , t, the number of units captured i times (fi), the
number of units captured for the first time on occasion i (ui), the number of units captured
for the last time on occasion i (vi) and the number of units captured on occasion i (ni). If
the ni statistics vary among capture occasions, there is a temporal effect. The descriptive
function also gives the m-array matrix, which contains recapture frequencies for units released
on each occasion.
An interesting tool to explore a possible heterogeneity in the capture probabilities are the
graphs of log

(
fi/
(
t
i

))
and log(ui) versus i generated by the plot.descriptive function.

Table 1 gives the form of the two graphs for some models. Some elements of Table 1 are easy
to justify. For model M0, the number of captures follows the Binomial(t, p) distribution and
the number of capture occasions before the first capture follows the Geometric(p) distribution,
where p is the capture probability of a unit at any capture occasion. This latter result also
holds under model Mb. So, in these cases,

log

(
fi(
t
i

)) ' log

(
N × Pr(i captures)(

t
i

) )
= log(N(1−p)t−ipi) = log(N(1−p)t)+i log

(
p

1− p

)
and

log(ui) ' log(N×Pr(first capture on occ i)) = log(N(1−p)i−1p) = log
(

Np

1− p

)
+ i log(1−p)

where N is the population abundance we want to estimate. Therefore, the graphs produced
by plot.descriptive are linear. Moreover, Rivest (2007) shows that the fi graph should be
concave downward when there is a temporal effect. This effect is typically small and the graph
of the fi stays almost linear for model Mt. Furthermore, from the work of Lindsay (1986) on
mixing distributions in an exponential family, the fi graph for model Mh and the ui graph for
models Mh and Mbh should be convex, up to sampling errors. The shape of the fi graph for
model Mth depends on the relative importance of the temporal effect and the heterogeneity.
So the plot.descriptive function can bring out heterogeneity among capture probabilities
in a data set through graphs with a convex shape.

Graph M0 Mt Mh Mth Mb Mbh

fi L L* C L*/C ? ?
ui L ? C ? L C

Table 1: Form of the graphs produced by plot.descriptive for different models
(The letter L means linear, L* means almost linear, C means concave upward or convex and a question
mark indicates that the graph has no definitive form.)

Models fitting

The main Rcapture function for fitting a model to a closed population data set is closedp.
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It fits M0, Mt, Mh, Mth, Mb, and Mbh through Poisson regressions. Since Mtb and Mtbh do
not have a loglinear form, closedp does not produce abundance estimations for these models.
All models are fitted using the glm function; it produces maximum likelihood estimates of
the loglinear parameters. The maximization is done through an iteratively reweighed least-
squares algorithm which is simple and numerically stable. An estimate of the population size
N is then derived from the loglinear parameters.

The estimator of N is obtained by maximizing a Poisson loglikelihood. Cormack and Jupp
(1991) showed that this Poisson estimator is almost identical to the conditional multinomial
estimator. A variance, valid under multinomial sampling, is derived in Sandland and Cormack
(1984). It is given by varm(N̂) = varp(N̂)−N where subscripts m and p refer to multinomial
and Poisson sampling.

To illustrate the use of a loglinear model in a closed population experiment, let’s detail the
case of model M0. This is the simplest model; it has a single capture probability p common
to all units, at every capture occasion, which does not change after a first capture. For an
experiment including t capture occasions, 2t − 1 capture histories ω are observable. The
probability for a unit to experience a capture history ω is Pr(ω) = (1− p)t−

P
ωjp

P
ωj where∑

ωj is the number of times the unit is caught. Therefore, the expected number of units
in the population having capture history ω is µω = N(1 − p)t−

P
ωjp

P
ωj . This expected

frequency can be reexpressed in the form of a loglinear model as

µω = exp

log(N(1− p)t)︸ ︷︷ ︸
γ

+
∑

ωj log
(

p

1− p

)
︸ ︷︷ ︸

β

 .

Thus, model M0 is fitted in closedp by fitting a loglinear model E(Y ) = exp(Xβ) with Y
equal to the (2t − 1) × 1 vector of the observed frequencies nω (including zero frequencies),
X is a (2t − 1) × 2 design matrix with a first column of ones and a second column defined
by
∑

ωj , and β = (γ, β)t. Then, the abundance is estimated as N̂ = n + exp(γ̂) where n
is the total number of units caught during the experiment. This is indeed an estimator of
the population size because exp(γ) = exp(log(N(1 − p)t)) = N(1 − p)t = N × Pr(ω0) = µ0

where ω0 is the unobservable capture history of zero capture and µ0 is the expected number
of units never captured. A loglinear presentation of the other models fitted by closedp can
be found in Rivest and Lévesque (2001) and Rivest and Baillargeon (2007). Note that in
closedp model Mb is as presented in (Cormack 1989) while Mbh allows the probability of
first capture at occasion 1 to differ from the probability of first capture after occasion 1. It is
suitable when the ui plot of descriptive is linear except for occasion 1.

The Rcapture package specializes in modeling heterogeneity. The closedp function suggests
three types of models for Mh and Mth: Chao, Darroch and Poisson2. Chao’s models estimate
a lower bound for the abundance. The estimate obtained under Mh Chao is Chao’s (1987)
moment estimator. Rivest and Baillargeon (2007) exhibit a loglinear model underlying this
estimator and provide a generalization to Mth. Some loglinear parameters of Chao’s models,
the η parameters, should theoretically be greater or equal to zero. So when the argument neg
of the function closedp is set to TRUE (the default), negative η parameters are fixed to zero.
For Darroch’s models, a column defined as (

∑
ωj)2/2 is added to the design matrix for either

M0 or Mt. These models for Mh and Mth are considered by Darroch et al. (1993) and Agresti
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(1994). For Poisson2 models, the column for heterogeneity in the design matrix is 2
P

ωj − 1.
For these two models, the logits of the individual capture probabilities are assumed to be
random variables. These variables are distributed according to a mixed normal distribution
under Darroch’s model or to a mixed Poisson distribution under a Poisson model. Details
can be found in Rivest and Baillargeon (2007). The Poisson model typically yields smaller
corrections for heterogeneity than Darroch’s model since the capture probabilities are bounded
from below under this model.

In addition to Chao, Darroch and Poisson2 heterogeneity models, other Mh and Mth models
can be fitted with the closedp.h function. This function can fit general Poisson models with
heterogeneity columns equal to a

P
ωj − 1. When a is large, the Poisson estimator is close to

the one obtained under models M0 or Mt and as a goes to 1, the Poisson estimator becomes
close to Darroch’s estimator. The family of Poisson estimator for Mh and Mth provides a
wide range of corrections for heterogeneity. The function closedp.h can also fit models with
the form of the column for heterogeneity in the design matrix defined by the user. For the
log-gamma model of Rivest and Baillargeon (2007), this column is − log(λ+

∑
ωj)+log(λ) for

some λ > 0. Rcapture also features a function, closedp.mX, that has a user defined design
matrix. closedp.mX allows, for instance, fitting a model with an interaction between two
capture occasions. Adding interactions between successive occasions results in a trap effect
because the probability of being captured at occasion i depends on the capture at occasion
i− 1. The function closedp.mX estimates the population size as N̂ = n + exp(γ̂), where γ̂ is
the estimated intercept. Therefore, it is not suited for models with behavioral effects.

Model selection

When several models have been fitted, they must be compared and one has to be selected.
The functions closedp, closedp.h and closedp.mX generate deviances, degrees of freedom
and Akaike Information Criteria (AIC). These statistics are useful tools to compare models
and to assess the goodness of their fit. Under the assumption of a good fit, the deviance
of a model follows a χ2 distribution with the model’s degrees of freedom. Also, likelihood
ratio tests can be constructed to compare nested models and a smaller AIC indicates a better
model. Note however that for model Mh Chao and Mth Chao a small deviance means that there
is a heterogeneity in capture probabilities; it does not mean that the lower bound estimates
calculated for these models are unbiased.

The fit of a model can also be judged through its residuals. The functions boxplot.closedp
and boxplot.closedp.custom produces boxplots of the Pearson residuals for the different
fitted models. These graphs bring out badly fitted data.

Rcapture also contains a function aimed at studying the model’s fit from the ui statistics.
The uifit function focuses on what is most important to model accurately, i.e. the number
of new captures at each occasion. It displays the observed ui statistics and the ui predicted by
each model in closedp. It also forecasts the ui for 5 additional hypothetical capture occasions
for models M0, Mh Poisson2, Mh Darroch and Mb. The predicted and observed ui-statistics are
compared using χ2 statistics. Moreover, the mean and variance of the day of first capture are
calculated with the predicted ui for each model. All these statistics generated by uifit are
further tools to assess the fit of a model.
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Abundance estimation

The functions closedp, closedp.h and closedp.mX give an estimate for the abundance and
its standard error. For small samples, the estimation can be improved by a bias correction.
The function closedp.bc performs, for the models in closedp, a bias correction through fre-
quency modifications as presented in Rivest and Lévesque (2001) and Rivest and Baillargeon
(2007). These frequency modifications also stabilize the the standard errors estimates for N̂ .

Abundance can also be estimated through confidence intervals. A naive 100(1−α)% confidence
interval assuming asymptotic normality is N̂ ± Zα/2se(N̂) . Better confidence intervals are
obtained using a profile loglikelihood. This can be done with the profileCI function which
follows the methodology of Cormack (1992). This function calculates the value of N that
maximizes the multinomial likelihood. It also plots the the profile likelihood for N and
calculates a 100(1−α)% profile likelihood confidence interval. It works for every model fitted
by closedp, closedp.h or closedp.mX, except models Mb and Mbh.

2.1. Snowshoe hare example

We now fit closed population models to the snowshoe hare data considered in Cormack (1989)
and Agresti (1994). This data set is included in the Rcapture package. It has the default
format, i.e. each row represents the capture history of one animal. Hence, the argument
dfreq of Rcapture functions doesn’t have to be specified as it is set to FALSE by default.

R> data("hare")

R> desc <- descriptive(hare)

R> plot(desc)

R> closedp(hare)

Number of captured units: 68

Abundance estimations and model fits:
abundance stderr deviance df AIC

M0 75.4 3.5 68.516 61 154.707
Mt 75.1 3.4 58.314 56 154.505
Mh Chao 79.8 6.4 58.023 58 150.214
Mh Poisson2 81.5 5.7 59.107 60 147.298
Mh Darroch 90.4 11.6 61.600 60 149.791
Mth Chao 79.6 6.3 47.115 52 151.305
Mth Poisson2 81.1 5.6 48.137 55 146.327
Mth Darroch 90.5 11.7 50.706 55 148.896
Mb 81.1 8.3 67.027 60 155.217
Mbh 74.2 14.6 63.257 59 153.447

Note: 1 eta parameter has been set to zero in the Mh Chao model

The fi plot of the function descriptive in Figure 2 shows that the two animals caught
on all occasions create some heterogeneity in the capture probabilities. Therefore, it is not
surprising that the best fitting model is heterogenous. Indeed, the model with the smallest
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Figure 2: Plot of the descriptive object of the snowshoe hare data

AIC (146.327) is Mth Poisson2. It leads to an estimate N̂ equals to 81.1 (s.e. = 5.7). The
estimate for Mth Darroch is equal to that reported in Agresti (1994).

Another approach to take care of the heterogeneity would be to remove the 2 hares caught 6
times, as Cormack (1989) did. With Rcapture, the best way to discard these hares is to add
a column to the design matrix for Mt taking the value 1 for the capture history (1, 1, 1, 1, 1, 1)
and 0 otherwise.

R> col <- rep(0, 2^6 - 1)

R> mat <- histpos.t(6)

R> col[apply(mat, 1, sum) == 6] <- 1

R> cp.m2 <- closedp.mX(hare, mX = cbind(mat, col), mname = "Mt without 111111")

R> cp.m2$results

abundance stderr deviance df AIC
Mt without 111111 76.77761 3.911153 47.89417 55 146.0846

This gives N̂ = 76.8 (s.e. = 3.9) with an AIC of 146.085. These results match Cormack’s
results in Table 4 (1989, p.406). Besides the point estimates for N , profile likelihood confidence
intervals can easily be calculated for both models.
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R> CI1 <- profileCI(hare, m = "Mth", h = "Poisson", a = 2)

R> CI1$results

abundance InfCL SupCL
Mth Poisson2 80 71.84073 93.84254

R> CI2 <- profileCI(hare, mX = cbind(mat, col), mname = "Mt without 111111")

R> CI2$results

abundance InfCL SupCL
Mt without 111111 76 70.08663 85.41181

The upper bound of the confidence interval for N depends on the interpretation given to the
two hares caught at all occasions. It is large when they are assumed to be associated with a
small heterogeneity in the capture probabilities. It is small when the two trap happy hares
are assumed to be unrepresentative of the unsampled part of the population.

2.2. HIV example

We now analyze epidemiological capture-recapture data on HIV in Abeni et al. (1994). The
capture histories are obtained by linking the records of four reporting centers in Rome, Italy.
The data set’s format is the alternative one, i.e. each row represents an observed capture
history followed by its frequency. Therefore, the argument dfreq of the Rcapture functions
has to be set to TRUE.

R> data("HIV")

R> descriptive(HIV, dfreq = TRUE)

Number of captured units: 1896

Frequency statistics:
fi ui vi ni

i = 1 1774 466 403 466
i = 2 115 593 578 630
i = 3 7 632 679 693
i = 4 0 205 236 236
fi: number of units captured i times
ui: number of units captured for the first time on occasion i
vi: number of units captured for the last time on occasion i
ni: number of units captured on occasion i

The function descriptive shows that 1774 out of 1896 individuals (94%) appear on one list
only. The fi plot in Figure 3 is linear showing that heterogeneity is not a problem; the ui plot
is not interpretable since it depends on the arbitrary ordering of the 4 centers. The model
with a time (or a list) effect and the six possible pairwise dependencies between lists is fitted.
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Figure 3: Plot of the descriptive object of the HIV data

R> mat <- histpos.t(4)

R> mX1 <- cbind(mat, mat[, 1] * mat[, 2], mat[, 1] * mat[, 3], mat[,

+ 1] * mat[, 4], mat[, 2] * mat[, 3], mat[, 2] * mat[, 4],

+ mat[, 3] * mat[, 4])

R> cp.m1 <- closedp.mX(HIV, dfreq = TRUE, mX = mX1, mname = "Mt double interactions")

R> cp.m1$results

abundance stderr deviance df AIC
Mt double interactions 23443.54 9594.88 3.036804 4 92.07266

The above model fits well. We need to find out the dependencies that are important; their
estimates are given by parameters mX5 to mX10 in the output.

R> summary(cp.m1$glm)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 9.9780167 0.4452368 22.4105827 3.103499e-111
mX1 -3.9758604 0.4438850 -8.9569599 3.337529e-19
mX2 -3.6785194 0.4437085 -8.2903961 1.128719e-16
mX3 -3.5469201 0.4440686 -7.9873239 1.378994e-15
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mX4 -4.6582017 0.4453831 -10.4588655 1.334439e-25
mX5 1.1545857 0.4329136 2.6670119 7.652896e-03
mX6 0.4810600 0.4305346 1.1173552 2.638425e-01
mX7 0.3339371 0.5168483 0.6461027 5.182129e-01
mX8 0.8266913 0.4291786 1.9262176 5.407721e-02
mX9 0.7884198 0.4612659 1.7092522 8.740424e-02
mX10 0.6951611 0.4705025 1.4774867 1.395452e-01

Eliminating the non-significant interactions stepwise shows that only the [1,2] interaction is
important. The results for the final model are the following. Figure 4 shows the 95% profile
likelihood confidence interval of the abundance. The results are close to the results in Abeni
et al. (1994, p.413), but not equal due to differences in the estimation method.

R> mX2 <- cbind(mat, mat[, 1] * mat[, 2])

R> cp.m2 <- closedp.mX(HIV, dfreq = TRUE, mX = mX2, mname = "Mt interaction 1,2")

R> cp.m2$results

abundance stderr deviance df AIC
Mt interaction 1,2 12318.47 1188.722 7.61376 9 86.64962
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Figure 4: Plot of the 95% profile likelihood confidence interval of the abundance for the HIV
data
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R> CI <- profileCI(HIV, dfreq = TRUE, mX = mX2, mname = "Mt interaction 1,2")

R> CI$results

abundance InfCL SupCL
Mt interaction 1,2 12308 10286.85 14977.69

2.3. Meadow vole period 3 example

The last closed population example concerns the third primary sampling period of the meadow
vole data set presented in Chapter 19 of Williams, Nichols, and Conroy (2002). The data is
in columns 11 to 15 of the data set mvole included in the Rcapture package. The complete
data set will be analyzed with a robust design model in Section 4.1. Descriptives statistics are
not presented here, but they suggest that heterogeneity is present in the data for the third
period.

R> data("mvole")

R> cp <- closedp(mvole[, 11:15])

R> cp

Number of captured units: 49

Abundance estimations and model fits:
abundance stderr deviance df AIC

M0 51.1 1.6 66.964 29 122.895
Mt 50.9 1.6 61.208 25 125.138
Mh Chao 71.9 14.2 33.556 26 95.486
Mh Poisson2 61.0 6.3 37.902 28 95.833
Mh Darroch 93.2 26.7 34.611 28 92.541
Mth Chao 71.0 13.7 26.120 22 96.051
Mth Poisson2 60.5 6.1 30.652 24 96.582
Mth Darroch 93.1 26.6 27.178 24 93.108
Mb 51.0 2.0 66.964 28 124.894
Mbh 52.6 9.1 66.256 27 126.187

Model Mh gives the best fit; the abundance estimator can vary by up to 33% according to
the model selected. Very large estimates are possible; for instance one can try the log gamma
model discussed in Rivest and Baillargeon (2007).

R> psi <- function(x) {

+ -log(3.5 + x) + log(3.5)

+ }

R> lgmodel <- closedp.h(mvole[, 11:15], h = psi)

R> lgmodel$results

abundance stderr deviance df AIC
Mh psi 203.2393 119.0627 33.98449 28 91.91481
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This gives a very small AIC. However the estimate of 203 is too large. To help select an
estimate one can use the function uifit that assesses the fit of each model for the number of
new captures at each occasion and forecasts, for some models, the number of new captures if
the experiment were continued.

R> xx <- uifit(cp)

R> xx$predicted[, c(1, 4, 5, 6)]

observed Mh Chao Mh Poisson2 Mh Darroch
u1 26 24.2 24.2000000 24.200000
u2 12 9.9 10.1340984 9.900000
u3 3 6.2 6.5764481 6.340635
u4 6 4.7 4.6588525 4.747957
u5 2 4.0 3.4306010 3.811407
u6 NA NA 2.5849972 3.180338
u7 NA NA 1.9785928 2.720707
u8 NA NA 1.5319327 2.368835
u9 NA NA 1.1965924 2.089944
u10 NA NA 0.9411818 1.863153

There is not much ground for discriminating between the Mh Poisson2 and the Mh Darroch esti-
mator; still the Mh Poisson2 predicted values for ui are somewhat closer to the observed ui than
those for Mh Darroch. One can also wonder whether to predict that 1.86 new unmarked ani-
mals will be caught on a hypothetical 10th day of capture is realistic. In the model selection
process, it might also be useful to look at the models’ Pearson residual.

The boxplots in Figure 5 present another argument for selecting Mh Poisson2 over Mh Darroch

since Mh Poisson2 residuals are more concentrated around zero. The selection of a model for
Mh is settled using the robust design in Section 4.1. It turns out that Mh Darroch is not
appropriate.

3. Open populations

Open population models apply when animals are released and recaptured or resighted at
future capture occasions. Typically the capture occasions are distant in time and mortality
occurs between them. When the animals released are not a random sample of the animals in
the population at a given capture occasion, the analysis focuses on the estimation of survival
rates of the animals that were released. The Cormack-Jolly-Seber model applies in such
situations. When marked and unmarked animals undergo the same sampling process, both
the population sizes and the survival rates can be estimated. This is the Jolly-Seber model.
Open population models are often used for capture-recapture experiments held over a long
period of time. Therefore, the capture occasions are called periods; they are indexed by the
subscript i ranging from 1 to I.

The function openp of Rcapture fits both the Cormack-Jolly-Seber and the Joly-Seber model
following the loglinear approach of Cormack (1985, 1989), see also Rivest and Daigle (2004).
If the interest focuses only on estimating survival rates, the abundance estimators are sim-
ply discarded. Besides the survival rates φ1 to φI−1, these functions estimate the capture
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probabilities p∗1 to p∗I , the population sizes N1 to NI , the number of new units entering
the population B1 to BI−1 and the total number or units who ever inhabited the survey
area Ntot. In some applications of the Jolly Seber model, births are arrivals to the colony
and deaths are departures (see Schwarz and Stobo 1997). In those cases, the total number
of visitors to the colony Ntot, is the parameter of interest. By default, the argument m of
the function openp is set to “up”; which means that the capture probabilities vary between
periods (up = unconstrained probabilities). Because of the well known lack of identifiability
for the Jolly-Seber model (see Pollock, Nichols, Brownie, and Hines 1990), the parameters
p∗1, p∗I , the survival rate φI−1 between periods I − 1 and I, N1 and NI are not estimable
with the function openp.up. On the other hand, all the parameters are estimable when m is
given the value “ep” because it sets the capture probabilities equal to a common value (ep
= equal probabilities). The function openp insures that the estimated survival probabilities
belong to [0, 1] and that the births Bi are positive by imposing constraints to the loglinear
parameters. Setting the argument neg of this function to FALSE removes these constraints.

The steps we propose to follow in the analysis of an open population data set differ from the
ones for a closed population data set. A single model is fitted; refitting the model to a subset
of the data can be attempted if it doesn’t fit well. Figure 6 summarizes the procedure. First, if
the experiment follows a robust design, the data matrix must be converted to between primary
session data. This is done with the function periodhist which pools the capture histories for
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Figure 5: Boxplots of the Pearson residuals of the models fitted by closedp for the third
period of the meadow vole data
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Figure 6: Strategy for the analysis of open population data linked to relevant Rcapture
functions

several occasions into a single entry having the value 1 for a unit caught at least once during
these occasions and 0 otherwise. Next, descriptive statistics can be produced to explore the
data; the m.array matrix output by descriptive is of interest. The Cormack-Jolly-Seber
or the Jolly-Seber model is fitted with openp which produces estimates of the demographic
parameters. The presence of a trap effect is tested by including additional loglinear parameters
in the model. Unfortunately, estimates of demographic parameters accounting for a significant
trap effect cannot be calculated at this time. The model’s quality of fit is assessed with the
deviance of the standard model (without a trap effect) and with plot.openp. This function
plots the Pearson residuals versus the number of captures. Large residuals bring out badly
fitted data. To pursue its analysis, the user can choose to remove some units from the data set
and refit the model. This is done with the keep argument of openp. Typically, one wishes to
omit the units caught too often or, on the contrary, the units caught only once which can be
considered as transients. The removal of units is a good diagnostic tool to assert the stability of
the results, but it is not advised as a general strategy. When some units are omitted, Rcapture
brings them back into the final abundance estimates with a correction proposed by (Cormack
1989, p.410). The difference between observed and expected frequencies for the omitted groups
is added to the model’s estimations of abundance. To complete the analysis, it is possible
to construct tests on the parameters under the assumption of multivariate normality of the
estimators as will be shown in the following examples. For this, the covariance matrix of all
the demographic parameters estimates is used. This matrix is returned by the function openp
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under the name cov. As noted before, the abundance output presents standard errors adjusted
to be valid under multinomial sampling. However, the code matrix contains unadjusted
variances of abundance estimators. So these variances are valid under Poisson sampling and
not multinomial sampling.

3.1. Lazuli bunting example

Let’s analyze the lazuli bunting data treated in Cormack (1993a). The data comes from a
eight-year (1973 to 1980) study by Allen W. Stokes of lazuli bunting wintering in Logan,
Utah.

R> data("bunting")

R> descriptive(bunting, dfreq = TRUE)

Number of captured units: 1681

Frequency statistics:
fi ui vi ni

i = 1 1430 168 132 168
i = 2 180 367 359 398
i = 3 37 65 64 88
i = 4 23 230 213 264
i = 5 7 255 232 304
i = 6 2 256 246 322
i = 7 1 240 247 323
i = 8 1 100 188 188
fi: number of units captured i times
ui: number of units captured for the first time on occasion i
vi: number of units captured for the last time on occasion i
ni: number of units captured on occasion i

The descriptives statistics show that 1430 birds out of a total of 1681 birds seen (85%) were
caught only once. This suggests the presence of transient birds at each capture occasion. This
might bias the survival probabilities downward since, in the presence of transient animals,
these represent the probabilities of not being a transient and of surviving. The Jolly-Seber
model is fitted by the following command.

R> op.m1 <- openp(bunting, dfreq = TRUE)

R> op.m1$model.fit[1, ]

deviance df AIC
219.4100 234.0000 456.0147

R> plot(op.m1)

The residuals plot in Figure 7 shows large residuals for the birds caught twice or more while
the residuals are small for birds caught once. The Jolly-Seber model does not fit well and the
likely presence of transients might cause that. To remove the birds caught only once from the
analysis, one uses the keep argument as follows.
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Figure 7: Plot of the Pearson residuals of the Jolly-Seber model fitted to the lazuli bunting
data

R> keep2 <- apply(histpos.t(8), 1, sum) > 1

R> op.m2 <- openp(bunting, dfreq = TRUE, keep = keep2)

R> op.m2$model.fit[1, ]

deviance df AIC
125.1796 228.0000 302.5521

The deviance drop of 94 for 6 degrees of freedom is highly significant. The residual plot for
this model is not presented here; it still has some Pearson residuals larger than 4 that might
influence the survival estimates. The next commands use the object keep3 to identify capture
histories with more than one capture and with residuals smaller than 4.

R> keep3p <- residuals(op.m2$glm, type = "pearson") < 4

R> num3 <- ((1:255)[keep2])[keep3p]

R> keep3 <- rep(FALSE, 255)

R> keep3[num3] <- TRUE

R> op.m3 <- openp(bunting, dfreq = TRUE, keep = keep3)

R> tab <- data.frame(op.m2$survivals, rep("|", 7), op.m3$survivals)

R> colnames(tab) <- c("estimate.m2", "stderr.m2", "|", "estimate.m3",
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+ "stderr.m3")

R> tab

estimate.m2 stderr.m2 | estimate.m3 stderr.m3
period 1 -> 2 NA NA | NA NA
period 2 -> 3 0.4851117 0.13125375 | 0.4815109 0.14167601
period 3 -> 4 0.6742944 0.13207217 | 0.6188964 0.13535331
period 4 -> 5 0.7287239 0.12854646 | 0.7013263 0.12751218
period 5 -> 6 0.5176471 0.09566484 | 0.5012495 0.09560564
period 6 -> 7 0.5559809 0.08310532 | 0.5512693 0.08368251
period 7 -> 8 NA NA | NA NA

The two sets of survival estimates are similar; the large residuals have a small impact. Tables
3 and 4 of Cormack (1993a, p.46) present estimates obtained by fitting the first two models
of this Section. They report estimates that are identical to those presented here.

The survival estimates are quite similar between periods. We would like to test the equality
of the survival probabilities and estimate their common value. In softwares such as Mark and
M-Surge, this test is easily performed by fitting a model with constant survival probabilities.
This model is not loglinear. An asymptotically equivalent to these homogeneity tests can be
calculated with Rcapture using the output from openp.

The vector of estimated survival probabilities φ̂ = (φ̂2, ..., φ̂6) is op.m2$survivals[2:6,2]
while its estimated covariance matrix Σ̂ is op.m2$cov[8:12,8:12]. Under the hypothesis of
constant survival, φ̂ is distributed as N5(φ1, Σ̂). The least squares estimates of φ and of its
standard error are

φ̂ =
1tΣ̂

−1
(φ̂2, ..., φ̂6)t

1tΣ̂
−1

1
and se(φ̂) =

1√
1tΣ̂

−1
1

.

In R, we calculate them as follows.

R> siginv <- solve(op.m2$cov[8:12, 8:12])

R> phi <- t(rep(1, 5)) %*% siginv %*% op.m2$survivals[2:6, 1]/(t(rep(1,

+ 5)) %*% siginv %*% rep(1, 5))

R> se <- 1/sqrt(t(rep(1, 5)) %*% siginv %*% rep(1, 5))

R> data.frame(estimate = phi, stderr = se, row.names = "Common survival: ")

estimate stderr
Common survival: 0.5872904 0.03422890

Thus φ̂ = 0.587 with s.e. = 0.034. Under the assumption of a constant survival, the statistic
(φ̂ − φ̂1)tΣ̂

−1
(φ̂ − φ̂1) has a χ2 distribution with 5-1=4 degrees of freedom. So, the χ2

goodness of fit statistic for a constant survival and its pvalue are the following.

R> chisq4 <- t(op.m2$survivals[2:6, 1] - phi * rep(1, 5)) %*% siginv %*%

+ (op.m2$survivals[2:6, 1] - phi * rep(1, 5))

R> data.frame(stat = chisq4, pvalue = 1 - pchisq(chisq4, df = 4),

+ row.names = "Chi-square test: ")
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stat pvalue
Chi-square test: 2.620060 0.6232736

The hypothesis of a constant survival is accepted.

3.2. Eider duck example

This example shows that Rcapture can reproduce the analysis of eider duck data set presented
in Cormack (1989).

R> data("duck")

R> op.m1 <- openp(duck, dfreq = TRUE)

R> op.m1$model.fit[1, ]

deviance df AIC
83.3599 49.0000 328.8301

R> plot(op.m1)
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Figure 8: Plot of the Pearson residuals of the model fitted to the eider duck data

The deviance is 83.36 for 49 degrees of freedom. The pvalue of the goodness of fit test based
on the deviance is
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R> 1 - pchisq(op.m1$model.fit[1, 1], df = 49)

[1] 0.001592682

This is less than 2%. The residual plot in Figure 8 shows a large residual for the 13 ducks
captured all the times. We redo the analysis without them.

R> keep2 <- apply(histpos.t(6), 1, sum) != 6

R> op.m2 <- openp(duck, dfreq = TRUE, keep = keep2)

R> op.m2$model.fit[1, ]

deviance df AIC
67.31143 48.00000 308.36595

R> 1 - pchisq(op.m2$model.fit[1, 1], df = 48)

[1] 0.03427131

The fit is still not satisfactory. The residual plot has the convex shape characteristic of
heterogeneity in the capture probabilities. We also remove the individuals caught at 5 periods
out of 6.

R> keep3 <- apply(histpos.t(6), 1, sum) < 5

R> op.m3 <- openp(duck, dfreq = TRUE, keep = keep3)

R> op.m3$model.fit[1, ]

deviance df AIC
56.83066 42.00000 277.20140

R> 1 - pchisq(op.m3$model.fit[1, 1], df = 42)

[1] 0.06298297

The fit is better but there is still heterogeneity in the data. To investigate whether the capture
probabilities are homogeneous, one can fit a model with equal capture probabilities.

R> op.m4 <- openp(duck, dfreq = TRUE, keep = keep3, m = "ep")

R> op.m4$model.fit[1, ]

deviance df AIC
117.9115 47.0000 328.2822

It gives a much larger deviance; so the hypothesis of equal capture probabilities is rejected.
In the end, the best model is the one fitted without the animals captured 5 or 6 times. The
abundances obtained from that model are the following.
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R> op.m3$N

estimate stderr
period 1 NA NA
period 2 395.8469 22.96070
period 3 483.6490 32.44455
period 4 386.9222 22.76065
period 5 494.1728 28.99329
period 6 NA NA

These abundances and previously shown deviances reproduce the results in Table 6 of Cormack
(1989, p.408).

We now investigate models for the growth rate Ni+1/Ni of this population using the multi-
variate normal distribution for the abundance estimates. If the estimated variance covariance
matrix of (N̂2, . . . , N̂5) is Σ̂, then the variance of the growth rates (N̂3/N̂2, . . . , N̂5/N̂4) is
ÂΣ̂Ât where A is the 3× 4 matrix of partial derivatives,

A =

 −N̂3/N̂2
2 1/N̂2 0 0

. . . . . . . . . . . .

0 0 −N̂5/N̂2
4 1/̂̂N4

 .

The R code for the calculations of the the growth rates and their standard errors is as follows.

R> growth <- op.m3$N[3:5, 1]/op.m3$N[2:4, 1]

R> partial <- matrix(c(-op.m3$N[3, 1]/op.m3$N[2, 1]^2, 1/op.m3$N[2,

+ 1], 0, 0, 0, -op.m3$N[4, 1]/op.m3$N[3, 1]^2, 1/op.m3$N[3,

+ 1], 0, 0, 0, -op.m3$N[5, 1]/op.m3$N[4, 1]^2, 1/op.m3$N[4,

+ 1]), 3, 4, byrow = TRUE)

R> sig <- partial %*% op.m3$cov[9:12, 9:12] %*% t(partial)

R> cbind(estimate = growth, stderr = sqrt(diag(sig)))

estimate stderr
period 3 1.2218081 0.11281160
period 4 0.8000063 0.07563975
period 5 1.2771890 0.08512487

As previously mentioned, this standard error is calculated using variances under Poisson
sampling. In the same way that we calculated a common survival in Section 3.1, we can now
obtain an estimate for the common growth rate.

R> siginv <- solve(sig)

R> growth.e <- t(rep(1, 3)) %*% siginv %*% growth/(t(rep(1, 3)) %*%

+ siginv %*% rep(1, 3))

R> se <- 1/sqrt(t(rep(1, 3)) %*% siginv %*% rep(1, 3))

R> data.frame(estimate = growth.e, stderr = se, row.names = "Common growth rate: ")

estimate stderr
Common growth rate: 1.037558 0.03187539
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A χ2 statistic for testing the equality of the growth rates and its pvalue are

R> chisq2 <- t(growth - growth.e * rep(1, 3)) %*% siginv %*% (growth -

+ growth.e * rep(1, 3))

R> data.frame(stat = chisq2, pvalue = 1 - pchisq(chisq2, df = 2),

+ row.names = "Chi-square test: ")

stat pvalue
Chi-square test: 13.53338 0.001151498

The hypothesis of a common growth rate is rejected at the 5% level. As an alternative to this
analysis, one may fit a model with a common growth rate. Such models are not loglinear;
they can be fitted by the software Popan available in Mark.

3.3. Revisiting the snowshoe hare example

One can use the function openp to investigate whether the hare population is closed. The
following commands add possible deaths and immigrations to the final model fitted with
closedp.mX in Section 2.1.

R> data("hare")

R> keep <- rep(TRUE, 2^6 - 1)

R> mat <- histpos.t(6)

R> keep[apply(mat, 1, sum) == 6] <- FALSE

R> op <- openp(hare, keep = keep)

R> op$model.fit[1, ]

deviance df AIC
46.12223 52.00000 145.69894

The new deviance of 46.2, df = 52, is not significantly smaller than the one for the closed
population model, 47.9, df = 55, see Section 2.1. The assumption that the population is
closed cannot be rejected. Models featuring births and deaths after a particular sampling
occasion can be fitted to this data set using the function robustd.t discussed in the next
section.

4. Robust design

The robust design is a combination of models for closed and open populations introduced
by Pollock (1982). Units are captured at different periods between which the population
experiences mortality and immigration. Thus, open population models apply at this first
level of sampling to estimate survival rates. However, within each primary period, sampling
is done more than once; that is, a short term study is conducted. Closed population models
are used at this stage to estimate population sizes. By pooling the data of a series of short-
term studies, the robust design improves the estimation of the demographic characteristics of
the population.
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With the package Rcapture, one can fit a model for a robust design using either the function
robustd.t or the function robustd.0. These functions implement the loglinear parameteriza-
tions presented in Rivest and Daigle (2004). They estimate the same demographic parameters
as the openp function, without any constrain or unestimable parameters. Within the primary
periods, The function robustd.t can fit closed population models M0, Mt, Mh and Mth while
robustd.0 only accepts models M0 and Mh. That is, the function robustd.0 doesn’t fit mod-
els with a within period temporal effect. However, it is much less memory consuming than
robustd.t, so it runs faster. This is so because robustd.0 codes capture histories in terms
of the number of captures for each primary period. Therefore, the length of the response
vector for a model fitted with robustd.t is 2

PI
i=1 ti−1 while it is

∏I
i=1(ti +1)−1 for a model

fitted with robustd.0, where ti stands for the number of capture occasions at period i. For
an experiment such as the one in Section 4.1, with 6 primary periods having each 5 capture
occasions, this represents over 1 billion entries in the dependent vector, brought down to 46
655 by the alternative coding of the capture histories.

The function robustd uses the data matrix and a vector vt containing the numbers of capture
occasions for each primary sampling period as input arguments. The closed population models
for each period are specified with the arguments vm, vh and va as described in the package
documentation. Negative γ parameter estimates in the open population part of the model
and negative η parameter estimates for Chao’s closed population models are by default set
to zero. They can be unconstrained by setting the neg function to FALSE, however this also
allows survival estimates to be greater than 1 and immigration parameters to be less than 0.

Open population
analysis between
primary periods

robustd.t

Analysis Steps Rcapture functions

robustd.0

Computes various demographic parameters using a loglinear model
in capture-recapture experiments.

The .0 function does not allow models with temporal
effects but it can fit data from a large number of capture
occasions. It is less memory consuming than robustd.t.

as in Figure 1

as in Figure 2

Model fitting
and parameters

estimation

Study of the
model's fit

Refitting of
the model
changing the
vm, vh and
va arguments
of the
robustd
function

Further analysis
using multivariate

normality

Closed population
analyses per

primary period

cov matrix produced by the robustd function
Covariance matrix of all the demographic parameters estimates

Test for temporary emigration in the robustd function

The .t function allows models with temporal effects but it
cannot be used with a large number of capture occasions
because it becomes memory consuming. 

Figure 9: The steps of a robust design analysis linked to relevant Rcapture functions
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Figure 9 presents the steps in a robust design data analysis. First, closed population analyses
should be performed, as described in Section 2, for the short terms study within each period.
Then, after converting the data set with the function periodhist, an open population analysis
is conducted (see Section 3). These preliminary analyses suggest robust design models for
consideration, which are now fitted with the function robustd.t or robustd.0. The selection
of closed population models within periods relies on the closed populations analyses. The
model’s fit is evaluated by testing for the presence of a temporary emigration. This is done by
comparing the deviance of the fitted model to the deviance of the same model with temporary
emigration, homogenous or not. One can simply use the AIC to do the comparison, or a
likelihood ratio test can be performed. If a model with temporary emigration is significantly
better than the model without temporary emigration, then the fitted model might not be
appropriate. A bad fit can be associated to a temporary emigration out of the study area
if the difference on the logit scale of the between period capture probabilities minus the
within period capture probabilities are negative. A bad fit can also be caused by an improper
modeling of the within period capture probabilities, especially if the capture probabilities
display some heterogeneity. New specifications for the models Mh or Mth used in the primary
periods might be needed. As in the open population analysis, once a final model is chosen,
further analysis can be conducted assuming that the parameter estimates have a multivariate
normal distribution.

In robustd.t and robustd.0, the parameter values of the closed population models change
between periods. Also these functions do not have a keep argument for investigating the
impact of a particular capture history on the outcome.

4.1. Meadow vole example

This example presents a study of the complete meadow vole data set in Chapter 19 of Williams
et al. (2002). The third period of this data set has been analysed in Section 2.3. This data set
concerns a robust design with 30 capture occasions pertaining to 6 primary periods having 5
capture occasions each. These capture occasions represent five consecutive days of trapping
every month from June to December 1981 at Patuxent Wildlife Research Center, Laurel,
Maryland. This data set has 10 trap deaths that are ignored in this analysis.

First, a between primary period Jolly-Seber analysis is presented.

R> data("mvole")

R> mvole.op <- periodhist(mvole, vt = rep(5, 6))

R> op.m1 <- openp(mvole.op, dfreq = TRUE)

There is one large residual, removing the corresponding capture history from the analysis
does not change the results. The model fits well.

R> keep2 <- residuals(op.m1$glm, type = "pearson") < 4

R> op.m2 <- openp(mvole.op, dfreq = TRUE, keep = keep2)

R> op.m2$model.fit

deviance df AIC
fitted model 36.0454 47 150.9319
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To find a suitable model within each primary period, the function closedp has been used
repeatedly. Heterogeneity has been detected in all periods except the second one where the
data collection was perturbed by a racoon (the last capture occasion for the second period
does not have any new animal captured and is taken out of the analysis). In a robust design
we use Mh models for all primary periods bearing in mind the questionable fit in the second
one. Since there is no time effect within primary periods, we use the function robustd.0 to
fit the model.

R> rd.m1 <- robustd.0(mvole[, -10], vt = c(5, 4, rep(5, 4)), vm = "Mh",

+ vh = "Chao")

R> rd.m1$model.fit

deviance df AIC
fitted model 627.3967 38847 911.4528

R> rd.m1$emig.fit

deviance df AIC
model with homogeneous temporary emigration 627.2376 38846 913.2937
model with temporary emigration 621.8716 38843 913.9277

The test for temporary immigration is not significant (χ2
4=5.53, pvalue=0.238) meaning that

capture probabilities estimated with the Jolly-Seber model are not different from those esti-
mated with the individual closed population models. The differences, on the logit scale, of the
Jolly-Seber minus the closed population models capture probabilities can be obtained with

R> rd.m1$emig.param

estimate stderr
period 2 0.5896720 1.1255156
period 3 0.7590532 0.7494904
period 4 0.7576857 0.9043055
period 5 -1.6842044 0.9378936
homogenous 0.1690180 0.4260088

Even in period 2 where the closed population model does not fit well, the difference on the
logit scale is non significant (estimate=0.59, s.e.=1.12). Using Darroch’s model to handle
heterogeneity yields

R> rd.m2 <- robustd.0(mvole[, -10], vt = c(5, 4, rep(5, 4)), vm = "Mh",

+ vh = "Darroch")

R> rd.m2$model.fit

deviance df AIC
fitted model 640.769 38857 904.825
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R> rd.m2$emig.fit

deviance df AIC
model with homogeneous temporary emigration 635.2724 38856 901.3285
model with temporary emigration 630.1530 38853 902.2091

R> rd.m2$emig.param

estimate stderr
period 2 0.3922484 1.2188324
period 3 1.4190404 0.7481082
period 4 2.1327701 0.9108267
period 5 -0.4681385 0.8769895
homogenous 1.0120808 0.4397377

Now the deviance difference of 10.64 on 4 degrees of freedom for temporary immigration has
a pvalue of 3.1%. With Darroch’s model, the closed population estimates of the capture
probabilities are significantly smaller than those obtained from the Jolly-Seber model. This
cannot be interpreted as indicating a temporary emigration. This suggests that Darroch’s
model is not appropriate within primary periods.

We note that it is possible not to specify any model for the second period. It would be done
with the following command.

R> rd.m3 <- robustd.0(mvole[, -10], vt = c(5, 4, rep(5, 4)), vm = c("Mh",

+ "none", "Mh", "Mh", "Mh", "Mh"), vh = "Chao")

We have tried many models, and the smallest AIC is obtained with the Poisson model, with
parameter a=1.5 within sessions.

R> rd.m4 <- robustd.0(mvole[, -10], vt = c(5, 4, rep(5, 4)), vm = "Mh",

+ vh = "Poisson", va = 1.5)

As can be seen in the comparative tables printed below, the estimators of the demographic
parameters obtained with the robust design are similar to those obtained with the Jolly-Seber
model applied to the between primary period data.

R> survivals <- data.frame(op.m1$survivals, rep("|", 5), rd.m4$survivals)

R> N <- data.frame(op.m1$N, rep("|", 6), rd.m4$N)

R> birth <- data.frame(op.m1$birth, rep("|", 5), rd.m4$birth)

R> Ntot <- data.frame(op.m1$Ntot, c("|"), rd.m4$Ntot)

R> name <- c("estimate.open", "stderr.open", "|", "estimate.robust",

+ "stderr.robust")

R> colnames(survivals) <- colnames(N) <- colnames(birth) <- colnames(Ntot) <- name

R> survivals
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estimate.open stderr.open | estimate.robust stderr.robust
period 1 -> 2 0.8195489 0.05653036 | 0.8228273 0.05516940
period 2 -> 3 0.5605845 0.06475147 | 0.5687647 0.06528882
period 3 -> 4 0.7011614 0.07268043 | 0.7261012 0.07697910
period 4 -> 5 0.5787844 0.06847395 | 0.5542232 0.06763400
period 5 -> 6 NA NA | 0.9989390 0.09125118

R> N

estimate.open stderr.open | estimate.robust stderr.robust
period 1 NA NA | 63.17356 4.639529
period 2 75.10048 2.591686 | 75.53404 2.024295
period 3 59.69964 3.789494 | 61.41466 3.861024
period 4 62.64063 3.320978 | 67.22767 4.227080
period 5 55.60073 3.229606 | 53.70764 2.044445
period 6 NA NA | 92.35621 7.352186

R> birth

estimate.open stderr.open | estimate.robust stderr.robust
period 1 -> 2 NA NA | 23.55311 6.422676
period 2 -> 3 17.59948 5.025697 | 18.45357 5.181694
period 3 -> 4 20.78154 5.391299 | 22.63441 5.972292
period 4 -> 5 19.34531 5.349862 | 16.44851 4.822338
period 5 -> 6 NA NA | 38.70555 7.491438

R> Ntot

estimate.open stderr.open | estimate.robust stderr.robust
all periods 174.0010 2.061650 | 182.9687 4.626267

5. Limitations and comparison to other softwares

One limitation of Rcapture is that it does not handle trap deaths. This occurs if some captured
animals are not released in the population after their capture. Animals cannot be recaptured
after a trap death so that their capture histories will have zeros for the remaining capture
occasions. In closed population models, trap deaths can be considered as a subpopulation
with a known size. The analysis can focus on the estimation of the size of the non trap
death population, using the data on the animals that did not experience a trap death. In
open population models, the goodness of fit statistics of the openp functions are valid in
the presence of trap deaths. Their demographic parameter estimates are however biased;
alternative formulas for converting loglinear parameters into demographic parameters need
to be develop to account for trap deaths. A robust design analysis is also sensitive to the
occurrence of trap deaths; they might bias its conclusions. Methods to deal with death traps
with this software are under investigation.
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The robust design functions highlight another limitation of the Poisson regression for modeling
capture recapture data. In large experiments, the number of observable capture histories can
be very large. Most of them have a zero frequency; still, all these zero frequencies must
appear in the dependent vector for the Poisson regression. This makes the number of cases
in the Poisson regression unnecessarily large. An alternative fitting strategy discussed in
Barker and White (2004) is to model the capture histories of the released animals at each
capture occasion using multinomial distributions. Then, only capture histories with a positive
frequency contribute to the likelihood. For an open population model, the likelihood to
maximize can be written in terms of the m-array matrix for the experiment. This fitting
strategy is implemented in Mark (see White and Burnham 1999; White 2005), which is the
main software for analyzing capture recapture data. Since the likelihood is written in terms
of aggregated data, testing the fit of the model is not straightforward under this approach.
The simple tests for trap dependence and the goodness of fit diagnostics based on residuals
presented in Section 3 are not available anymore.

Over the years several softwares have been written for the analysis of data from capture
recapture experiments. Several of these softwares are now available within Mark (see White
and Burnham 1999; White 2005). For instance it contains the package Popan of Schwarz
and Arnason (1996) for the modeling of abundance in open population models, see also
http://www.cs.umanitoba.ca/~popan/. Package Care for closed populations data, with
an emphasis on epidemiological applications, is discussed in Chao, Tsay, Lin, Shau, and
Chao (2001). Package M-Surge (see Choquet, Reboulet, Pradel, Gimenez, and Lebreton
2004) is also available to model multistate recapture data in the Cormack-Jolly-Seber setting.
Bayesian methods can also be used to fit capture-recapture model (see Madigan and York
1997; Brooks, Catchpole, and Morgan 2000). Durban and Elston (2005) suggest a Bayesian
approach to Mh. Gibbs sampling and Markov chain Monte Carlo techniques are implemented
for fitting complex models (see Gimenez, Crainiceanu, Barbraud, Jenouvrier, and Morgan
2006).

The package Rcapture covers the basic statistical models for capture-recapture experiments.
It is the only package that focuses on the use of loglinear models for the analysis of closed
and open population data. As illustrated in Section 3, the fit of complex models can be
investigated with the maximum likelihood estimates and their asymptotic variances obtained
from Rcapture. This package provides diagnostic tools and several alternatives for fitting
model Mh and Mth to closed population data. In view of the lack of identifiability of such
models pointed out by Link (2003), this flexibility is welcomed when confronting heterogene-
ity. Rcapture tries to emphasize that there is more to data analysis than model fitting by
providing probability and residual plots to guide the analysis. It takes advantage of the flex-
ible R programming environment which allows users to build their own R function by using
multipurpose minimization functions such as optim. For instance a function closedp.Mtb for
fitting closed population model Mtb which does not have a loglinear form is provided with the
package as an illustration of the application of the R programming language to the building
of models for capture-recapture data.
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