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Abstract

In computerized testing, the test takers’ responses as well as their response times on
the items are recorded. The relationship between response times and response accuracies
is complex and varies over levels of observation. For example, it takes the form of a trade-
off between speed and accuracy at the level of a fixed person but may become a positive
correlation for a population of test takers. In order to explore such relationships and test
hypotheses about them, a conjoint model is proposed. Item responses are modeled by a
two-parameter normal-ogive IRT model and response times by a lognormal model. The
two models are combined using a hierarchical framework based on the fact that response
times and responses are nested within individuals. All parameters can be estimated simul-
taneously using an MCMC estimation approach. A R-package for the MCMC algorithm
is presented and explained.
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1. Introduction

When computerized tests are administered, not only are the responses to the test items but
also the times used to produce them are automatically recorded. The information in the
response times may help to improve routine operations in testing, such as item calibration,
adaptive item selection, latent ability estimation, as well as to explore and measure factors
that influence the performances on the test.

The issue of how to model response times has been approached from three different angles.
One approach is to model the response times with time parameters added to a regular item
response theory (IRT) model (see, e.g., Roskam, 1997; Thissen, 1983; and Verhelst, Ver-
straalen, and Jansen, 1997). A second approach is characterized by modeling the response
times separately from the responses (see, e.g., Maris, 1993, and Scheiblechner, 1979). Van der
Linden (2006) discusses a selection of these models for response times on test items. In a third
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approach, introduced in van der Linden (2007), the response times and responses are modeled
hierarchically. At the first level, both the distributions of the responses and response times are
assumed to follow separate models, each with a different set of person and item parameters.
The person parameters represent the speed and accuracy (or ability) of the test taker on the
items. A test taker’s choice of speed and accuracy is generally constrained by a tradeoff. But
since the speed and accuracy is assumed to be stationary during the test, the tradeoff can be
ignored. Hence, at this first level of modeling, the item responses and response times can be
assumed to be conditionally independent given the speed and accuracy parameters. However,
at the second level, these parameters are allowed to be dependent. This leads to a hierarchical
modeling framework in which the relation between speed and accuracy is dependent on the
level of modeling.

Since response times have a natural lower bound at zero, their logarithm is modeled. Their
distribution is assumed to be normal. The choice of a lognormal distribution is a classic
one in response-time research. For response times on test items, it was made earlier, for
example, by Thissen (1983), Schnipke and Scrams (1997), and van der Linden, Scrams, and
Schnipke (1999). Each of these studies showed a good fit of response times to a lognormal
distribution. In the present paper, both the binomial distribution of the responses and the
normal distribution of the log response times are given a traditional item-response theory
(IRT) parameterization. The binomial parameter for the responses has the structure of the
two-parameter normal-ogive model (Lord and Novick, 1968). The distribution of the response
times has a parameterization close to that of an IRT model for continuous response data
(see, e.g., Samejima, 1973; Shi and Lee, 1998). Since the responses and response times are
conditionally independent, their joint distribution is the product of a binomial and a normal
distribution. This product can be considered as a conjoint IRT model for the analysis of
discrete and continuous data for measuring test takers’s speed and ability on test items.

A novel approach to the necessity of introducing identifying restrictions for the conjoint model
is followed. In this approach, the restrictions are incorporated in the prior structure such that
both the model is identified and a Gibbs sampler for estimating the model parameters can
be used. The approach facilitates the use of informative proper priors as well as a Bayes
factor for testing statistical hypothesis. The Gibbs sampler was programmed in FORTRAN
and can be used in R with a package of functions called cirt. The package enables users to
model patterns of responses and response times as a conjoint IRT model and to estimate and
check the model. In a simulation study, the beneficial effects of modeling response-time data
jointly with response data were assessed by comparing the accuracies of the ability estimates
in a stand-alone IRT and a conjoint IRT approach. This was done for different covariances
between the speed and ability parameter, different sample sizes, and different numbers of
items.

The model is described in Section 2. The implementation of the Gibbs sampler for estimat-
ing the model parameters is described in Section 3. In the next section, a brief overview of
procedures for testing the fit of the model is given. The package cirt is described in Section 5;
the description includes a full listing of the input and output variables. The simulation study
is reported in Section 6. Finally, a few possible generalizations are formulated.
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2. A conjoint IRT modeling approach

A hierarchical modeling procedure is followed. At the lowest level, separate models are defined
for the responses and response times. At a second level, a distributional structure is defined for
the model parameters. Subsequently, hyperprior distributions are specified for the parameters
of these distributions.

2.1. Models at level 1

Item responses to a set of items indexed k = 1, . . . ,K are taken to be stored in an N × K
data matrix y. The response patterns are exploited to characterize both the test takers and
the items. A two-parameter IRT model is used to define a mathematical relationship between
the probabilities of the responses and the person and item parameters (see, e.g., Lord and
Novick, 1968). Let θi denote the ability of test taker i. Then, the probability of a correct
response to item k is defined as:

P (yik = 1 | θi, ak, bk) = Φ(akθi − bk), (1)

where ak and bk are generally known as the discrimination parameter and difficulty parameter
of item k, respectively, and Φ(·) denotes the normal cumulative distribution function.

Response-time distributions have a natural lower-bound at zero and, for that reason, are
skewed to the right. A lognormal distribution is used to model the response times which are
taken to be stored in an N × K matrix t. It is assumed that each respondent chooses to
complete the items at a speed that can be represented by a parameter denoted as ζi. The
time needed to complete an item also depends on item characteristic parameters. They are
denoted as φk and λk, and can be seen as a discrimination and time-intensity parameter,
respectively. We introduce a random variable defined as

tik = exp
(
zik + φk

(
λ̃k − ζi

))
(2)

= exp
(
zik + λk − φkζi

)
, (3)

where zik ∼ N (0, σ2
t ). It follows that the response time is distributed lognormally with mean

−φkζi + λk and variance one. Its distribution function can be given as

P
(
tik ≤ t′ik

))
= P

(
log tik ≤ log t′ik

)
(4)

= P
(
zik + λk − φkζi ≤ log t′ik

)
(5)

= P
(
zik ≤ log t′ik −

(
λk − φkζi

))
(6)

= Φ
(
log t′ik −

(
λk − φkζi

))
, t′ik > 0. (7)

The mean of the random variable tik is the value t′ik such that

Φ
(
log t′ik −

(
λk − φkζi

))
= .5, (8)

and hence the mean response time for individual i to item k equals exp(λk − φkζi). Hence,
increasing the time intensity λk leads to a positive shift of the location of the time distribution
on the item. Likewise, an increase in the speed parameter ζi leads to a negative shift.

As already noted, modeling response times as a lognormal distribution is a classic choice.
A lognormal model with a simpler decomposition of the mean parameter was proposed by
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Schnipke and Scrams (1997). However, their model was not used to describe the distribution of
the response time for a fixed person and item but as a convenient summary of the empirical
distributions of the times on the items in a bank across its history of test takers. The
parameterization in (2)–(3) corresponds closely to that of the two-parameter IRT model for
continuous responses developed by Samejima (1973).

An implicit assumption of the model in (2)-(3) is that the speed parameter remains constant
during the test. This means that, whatever the conditions under which the test is taken, the
test takers are assumed to settle on a level of speed at the beginning of the test and then
stick to it. Because of this feature, the model is able to deal with response times collected
both when the test takers know that their response times are observed and when they do
not know. However, the model is unable to deal with changes in speed, for example, due to
fatigue or the adoption of a new strategy during the test.

2.2. Hierarchical structure at levels 2 and 3

A bivariate normal distribution is defined for the ability and speed parameters of the test
takers, (

θ, ζ
)
∼ N2

(
µP ,ΣP

)
where

µP =
(
µθ, µζ

)
ΣP =

(
σ2

θ ρ
ρ σ2

ζ

)
.

Parameter ρ denotes the covariance between the person parameters. The distribution is
postulated to be empirical but the postulate can be interpreted in two different ways. First,
it can be considered to represent a population of persons that take the test. The distribution
can then be used as the sampling distribution of a random test taker from the population.
Second, it can be considered as a direct approximation of the distribution of the person
parameters in the data set. From a Bayesian perspective, if the test takers can be treated as
exchangeable, the distribution can then be used as a common prior for the person parameters.
Although both interpretations lead to formally identical procedures, throughout this paper
we will use the terminology associated with the second interpretation.

As a hyperprior for the covariance matrix ΣP , an inverse-Wishart distribution with degrees
of freedom νP and scale parameter VP is chosen. The question of how to specify the vector
of means µP is addressed in the next section.

In the same way, a multivariate normal distribution is specified for the item parameters of
the response and response-time models,(

log ak, bk, log φk, λk

)
∼ N

(
µI ,ΣI

)
(9)

This assumption allows for the fact that the item parameters within each measurement model
usually correlate. In addition, it allows the item parameters to correlation between the mea-
surement models. This feature helps us to deal with the fact that more difficult items typically
require more time to complete than relatively easy items. Thus, we use the full covariance
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matrix

ΣI =
(

Σa,b Σ(a,b),(φ,λ)

Σ(φ,λ),(a,b) Σφ,λ

)
(10)

=


σa σa,b σa,φ σa,λ

σb,a σb σb,φ σb,λ

σφ,a σφ,b σφ σφ,λ

σλ,a σλ,b σλ,φ σλ

 . (11)

As a hyperprior for (µI ,ΣI), a normal-inverse-Wishart distribution is chosen. That is,

ΣI ∼ Inv −WishartνI

(
V −1

I

)
(12)

µI | ΣI ∼ N
(
µ0,ΣI/κ

)
, (13)

where νI and VI are the degrees of freedom and scale matrix of the inverse Wishart distribu-
tion, µ0 is the prior mean and κ the number of prior measurements.

Observe that the discrimination parameters in both measurement models are defined on a
logarithmic scale; therefore, they are restricted to be positive.

The hierarchical structure induces a shrinkage estimation method for all measurement-model
parameters. In fact, the two covariance structures introduce a relationship between the ob-
served response and response-time data. A simultaneous estimation procedure will be used
that allows us to use collateral information about each of the parameters: The response times
serve as collateral information that is used to estimate the parameters of the response model.
Conversely, the responses are used as collateral information when estimating the parameters
of the response-time model. As a result, an increase in bias will be obtained but estimation
error will be reduced (van der Linden, Klein Entink, and Fox 2007).

2.3. Incorporating identifying restrictions in the priors

Two-parameter IRT models are usually identified by fixing the zero and unit of its scale.
Typically, this is done by setting the mean and variance of θ equal to a fixed value, or by
putting similar restrictions on the item parameters.

The conjoint IRT model can be identified in the same way; the restrictions are now imposed
on the mean vector and a covariance matrix. For example, it is sufficient to set µP = 0 and
σ2

θ = 1, and
∏

k φk = 1. The first restriction sets the mean of the speed and ability parameters
equal to zero, which implies that the mean of the time-intensity parameters of the items is
equated to the mean log response times and the mean ability is absorbed in the mean of the
item difficulties, respectively.

When using a Markov chain Monte Carlo (MCMC) algorithm for parameter estimation, we
now have to sample from a restricted covariance matrix for the person parameters. The
restrictions are therefore incorporated directly into the prior distributions. Observe that the
prior has to assign probability one to µP = 0 and σθ = 1 and hence, θi ∼ N (0, 1). As the
bivariate distribution of θ and ζ is normal, the same holds for the conditional distribution of
ζi | θi,

ζi | θi ∼ N
(
ρθi, σ

2
ζ − ρ2

)
. (14)
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Let σ̃2
ζ = σ2

ζ − ρ2. Then, the following prior distributions are specified for ρ and σ̃2
ζ ,

ρ ∼ N
(
ρ̄, σ2

ρ

)
(15)

σ̃−2
ζ ∼ G

(
g1, g2

)
, (16)

where G denotes the gamma distribution. For the multivariate case, McCullogh, Polson, and
Rossi (2000) showed that there is a one-to-one correspondence between ΣP and

(
σ2

θ , ρ, σ̃
−2
ζ

)
.

This way a prior distribution has been specified that assigns probability one to a diagonal
element of the covariance matrix being equal to one.

3. An MCMC algorithm

An implementation of the Gibbs sampling algorithm, introduced by (Geman and Geman,
1984; Tanner and Wong, 1987), for the conjoint model is described. If all conditional posterior
distributions are specified, a Gibbs sampler can be used to simulate draws from them, which
results in a sequence of random variables that converges in distribution to the joint posterior
distribution of all free parameters.
For the response model in (1), a data augmentation step is introduced to make Gibbs sampling
feasible (see Albert, 1992). The model defines a nonlinear relationship between the probability
of a correct response and the ability parameter. Let f(akθi − bk) be the equivalent normal
deviate of akθi − bk. Thus,

f
(
akθi − bk

)
= Φ−1

(
Φ

(
akθi − bk

))
, (17)

and, therefore,
P

(
zik ≤ f(akθi − bk)

)
= Φ

(
akθi − bk

)
(18)

where zik is a normal random variable with distribution function Φ. As a result, a linear
relationship is established between the new variable zik and the ability parameter. The
normal ogive model can therefore be stated as a linear regression structure,

zik = akθi − bk + εik, (19)

with εik ∼ N (0, 1). In addition, response yik is an indicator of zik being positive.
The vector of augmented data zi = (zi1, . . . , ziK) minus the vector of difficulty parameters,
bt, and the similar vector of response times log ti = (log ti1, . . . , log tiK) minus the vector of
time intensity parameters, λt, are stacked in a vector z∗i . Then, both measurement models
can be presented as a linear regression structure,

z∗i =
(
a⊕−φ)(θi, ζi)t + ei (20)

= xIΩi + ei (21)

where ei ∼ N
(
0,ΣeK

)
where ΣeK = IK ⊕ σ2

t IK .
Similarly, let zk = (z1k, . . . , znk)t and the vector of log response times, log ti = (log t1k, . . .,
log tnk)t, to item k be stacked in a vector z∗k. Define covariate matrices Hθ and Hζ as

(
θ,−1n

)
and as

(
−ζ,1n

)
, respectively. A regression structure for the item parameters can be presented

as

z∗k =
(
Hθ ⊕Hζ)(ak, bk, φk, λk)t + ek (22)

= xPΛk + ek, (23)
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where ek ∼ N
(
0,Σen

)
where Σen = In ⊕ σ2

t In.

MCMC algorithm

Initial values for the parameters can be obtained by fitting both measurement models sepa-
rately using, for example, BILOG-MG (Zimowski, Muraki, Mislevy, and Bock, 1996) for the
response model and maximum-likelihood estimation for the response-time model.

Step 1. According to (19), sample augmented data given the values for the item and ability
parameters.

Step 2. Sample values for the item parameter from p(Λk | z∗k,Ω,µI ,ΣI) for (k = 1, . . . ,K).
From Lindley and Smith (1972), it follows that a product of a normal likelihood and a
normal prior leads to a normal posterior distribution. So, from (23) and (9), it follows
that

p
(
Λk | z∗k,Ω,µI ,ΣI , σ

2
t

)
= p

(
z∗k | Λk,Ω, σ2

t

)
p
(
Λk | µI ,ΣI

)
/p

(
z∗k | Ω,µI ,ΣI

)
(24)

= ψ
(
Λk | µΛk

,ΣΛ

)
, (25)

where Σ−1
Λ = xt

PΣ−1
en

xP + Σ−1
I and µΛk

= ΣΛ

(
xt

PΣ−1
en

z∗k + Σ−1
I µI

)
and ψ(·) is the

normal density function.

Step 3. Sample values for the ability speed parameters from a multivariate normal distri-
bution. Analogous to Step 2, the full conditional posterior distribution is constructed
from a multivariate normal likelihood, (21) and a multivariate normal prior distribution
as

p
(
Ωi | z∗i ,Λ,µP ,ΣP , σ

2
t

)
= p

(
z∗i | Ωi,Λ

)
p
(
Ωi | µP ,ΣP

)
/p

(
z∗i | Λ,µP ,ΣP

)
(26)

= ψ
(
Ωi | µΩi

,ΣΩi

)
, (27)

where Σ−1
Ωi

= xt
IΣ

−1
eK

xI + Σ−1
P and µΩi

= ΣΩi

(
xt

IΣ
−1
eK

z∗i + Σ−1
P µP

)
. The prior with the

identifying restrictions is used for ΣP , that is,

ΣP =
(

1 ρ
ρ σ2

ζ

)
. (28)

Step 4. The hyperprior parameters are related to a multivariate normal model for the person
parameters,

(
ρ, σ̃2

ζ = σ2
ζ−ρ2

)
, or a multivariate model for the item parameters,

(
µI ,ΣI

)
.

• From (14), it follows that the hyperprior parameters ρ and σ̃2
ζ are the parameters

of a linear regression of ζ on θ with a conjugate prior. Therefore, the conditional
distribution of ρ is given by

p
(
ρ | θ, ζ, σ̃2

ζ , ρ̄, σ
2
ρ

)
= ψ

(
µρ,Σρ

)
(29)

where µρ = Σ−1
ρ

(
θtζ + σ−2

ρ ρ̄
)

and Σ−1
ρ = σ̃−2

ζ

(
θtθ

)
+ σ−2

ρ . The full conditional
distribution of σ̃2

ζ is thus inverse gamma with shape and scale parameters g1 +n/2

and g2 +
(
ζ − ρθ

)t(
ζ − ρθ

)
/2, respectively.
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• The full conditional posterior distribution of (µI ,ΣI) has a normal-inverse-Wishart
distribution (e.g., Gelman, Carlin, Stern, and Rubin, 2004). It follows that

p
(
µI | ΣI ,µ0,Λ, VI

)
= ψ

((
κµ0 +KΛ̄

)
/(κ+K),ΣI/(K + κ)

)
, (30)

where Λ̄ =
∑

k Λk/K. Subsequently, the full conditional of ΣI is an inverse
Wishart with parameter K+νI and scale parameter VI +

∑
k

(
Λk− Λ̄

)(
Λk− Λ̄

)t +
κK

κ+K

(
Λ̄− µ0

)(
Λ̄− µ0

)t.

• The full conditional distribution of diagonal element σ2
t of Σe is the inverse gamma

with parameter g1+nK/2 and scale parameter g2+1/2
∑

i,k (log tik − (λk − φkζi))
2

using a conjugated inverse gamma prior with parameters g1 and g2.

4. Goodness of fit

The fit of the measurement models to response and response-time data can be assessed through
residual analysis. The actual observation log tik is then evaluated under the posterior predic-
tive density. That is, the probability of observing a value smaller than log tik can be estimated
by

P
(
log t∗ik < log tik | y, t

)
≈

∑
m

Φ
(
log tik | ζ

(m)
i , φ

(m)
k , λ

(m)
k

)
/M, (31)

given M iterations of the MCMC algorithm. Probabilities close to zero or one correspond to
observations that are unlikely under the model.

Aggregated observed values over persons or items can be used to check the fit of the model to
specific items or persons. The probability of observing a response yik under the model equals

pik = Φ
(
yik | y, t

)
≈

∑
m

Φ
(
yik | θ

(m)
i , a

(m)
k , b

(m)
k

)
/M. (32)

If the model holds, the random variables pik follow a uniform distribution according to theorem
on probability integral transformations. (That is, the probability of occurrence is the same for
all values of pik). This can be tested. for instance, by comparing the estimated moments with
the true moments of the uniform distribution, checking if equally spaced intervals contain
equal numbers of values pik, or by using the implicit smoothing in their empirical cumulative
distributions and plotting these against the identity line.

Specific model restrictions can be tested via the Deviance Information Criterion (DIC) (Spiegel-
halter, Best, Carlin, and van der Linde, 2002). The DIC is an integrated measure of model
fit and complexity. It was developed for comparing complex hierarchical models where the
number of parameters is not clearly defined. Let ω denote the set of model parameters, then
a deviance is defined as

D(ω) = −2 log p
(
y, t | ω

)
+ 2 log p

(
y, t

)
. (33)

When comparing models, it can be assumed without loss of generality that p
(
y, t

)
= 1 for all

models. The effective number of parameters in the models is defined by

pD = D(ω)−D(ω̂), (34)
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where D(ω) is the posterior mean deviance and ω̂ is the posterior mean of the parameters.
The DIC can now be formulated as

DIC = D(ω̂) + 2pD (35)

=
∑
i,k

[
yik log Φ

(
âkθ̂i − b̂k) + (1− yik) log

(
1− Φ

(
âkθ̂i − b̂k

))
(36)

+ log Φ
(
log tik −

(
λ̂k − φ̂kζ̂i

))]
+ 2pD.

Due to the fact that D(ω) is available in closed form, the MCMC algorithm can be used
to compute D(ω) by taking the sample mean of the simulated values of D(ω). The term
D(ω̂) is computed by plugging the mean of the simulated values of ω into D(·). In general,
models with larger numbers of effective parameters, pD, are penalized by the DIC. Hence, the
criterion prefers models of less complexity.

5. Package cirt

This package for R (R Development Core Team 2006) contains three user-callable functions:
one for simulating data according to a conjoint IRT model (generate), one for estimating
the model via the MCMC estimation procedure (estimate), and one for summarizing the
results (summarize). The functions are stored in the package called cirt. Descriptions of the
functions as well as an example can be found in the help files by typing ?cirt.

For larger samples and required number of iterations, the use of an MCMC algorithm can
be time consuming. Its current implementation was therefore programmed in Visual Pro
FORTRAN (version 8) (Intel 2004), whereas the IMSL FORTRAN statistics library (version
5) (Visual Numerics 2004) was used for random number generation and sampling from the
probability distributions. In this way, a dynamic link library application was created, irtrt.dll,
for use as a subprogram in R for Microsoft Windows.

Function generate has arguments N and K for the number of persons and items, respectively.
Two optional arguments are rho and corbl; the former specifies the correlation between θ
and ζ, the latter the correlation between item difficulty b and item-time intensity λ. Output
of the function are the generated model parameters and response patterns, stored in a list in
the following order: a, b, φ, λ, θ, ζ, y, and t.

Function estimate has arguments Y, Time, N, K and iter where Y denotes the N×K matrix of
the responses and Time the N ×K matrix of the log response times. Matrix y should contain
1 for a correct response, 0 for an incorrect response, and 9 for a missing observation. Missing
data are always assumed to be missing by design; the estimates are based on the observed data
only, no imputation method is used. Object iter specifies the desired number of iterations.
Starting values are generated automatically. The output consists of a list containing the
sampled values from the marginal posterior distributions of all model parameters and some
of the model-fit criteria discussed in the previous section. The header of the function shows
which parameter is stored where in the list. The optional argument PL=1 restricts the item
response model to the one-parameter normal-ogive model (i.e., with ak = 1 for all k). The
default is PL=2, which leads to estimation of the two-parameter item response model. The
optional argument index=1 restricts the variance of the speed parameter to one. This option
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can be used when, in spite of the identifying restrictions above, the model is still poorly
identified.

Function summary has arguments out and burnin, where object out contains the list of sam-
pled values from the marginal posterior distributions of structural model parameters (pro-
duced by estimate) and burnin determines the number of burn-in iterations for the MCMC
chain. summary generates a report which gives the EAP estimates and posterior standard
deviations of the model parameters. Further, a DIC estimate is given that can be used for
model comparison. These estimates are based on the drawn samples where the first number
of samples, as specified by burnin, are discarded as the burn-in period.

MCMC chains are always available as output of the function estimate. Their convergence
can be checked using the boa software, which is available in library format from The Compre-
hensive R Archive Network (CRAN), at http://cran.r-project.org/. boa is an R/S-PLUS
program that enables the computation of convergence diagnostics and statistical and graphi-
cal analysis of Monte Carlo sampling output. The boa software produces posterior estimates,
trace plots, density plots, and several convergence diagnostics.

6. Response-time based IRT parameter estimation

Results from a simulation study to examine the performances of the conjoint IRT model under
different configurations are presented. The primary interest was in the influence of response
times on the parameter estimates for the response model. Specifically, the gain of efficiency
of using response times as collateral information when estimating the ability parameters was
assessed.

The following quantities were varied: number of items: 5, 10 and 20; number of persons: 500
and 1000); and the correlation between the ability and speed parameters: 0.00, 0.20, 0.30,
0.40 and 0.50. So, in total there were 30 different conditions. The item parameters were
sampled from a multivariate normal distribution with mean µ0 = (1, 0, 1, 0) and covariance
matrix with diagonal elements equal to .5 and off-diagonal elements equal to zero. The item
parameters were chosen not to correlate in the present study (although their estimates were
allowed to do so). Every condition was replicated ten times and the estimates in Table 1 to
3 are based on averages over these replications.

For each condition, the same (proper) prior distributions were specified. Covariance matrix
VI was chosen to be a diagonal matrix with elements .01 to specify vague information about
the item parameters. In addition, µ0 = (0, 0, 0, 0), κ = 10, and νI = 4. Finally, a vague
normal prior for the correlation coefficient was specified with parameters ρ̄ = 0 and σ2

ρ = 10.
For each condition a total of 10 data sets were simulated. For each of the 10 data sets the
MCMC procedure was iterated 12, 000 times and the first 2, 000 iterations were discarded
when the means, variances, and Bayesian confidence intervals of the model parameters were
estimated. The final parameter estimates are averaged values over the 10 data-specific esti-
mates. The accuracy of the parameter estimates was investigated by comparing them to the
true generating values. Mean squared errors were computed to summarizes the differences.

In Table 1, the estimates of correlation parameter ρ and their standard deviations for the
different conditions are given. It can be seen that the correlations were estimated very accu-
rately. Also, the accuracy increases with the number of items and persons.

In Table 2, the MSEs of the estimated ability and speed parameters are presented. As

http://cran.r-project.org/
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Correlation Coefficient
Persons Items .00 .20 .30 .40 .50

n = 500 5 0.02(0.06) 0.23(0.06) 0.33(0.06) 0.41(0.06) 0.49(0.05)
10 0.00(0.05) 0.19(0.05) 0.30(0.05) 0.41(0.05) 0.51(0.04)
20 0.00(0.05) 0.21(0.05) 0.31(0.05) 0.40(0.05) 0.50(0.04)

n = 1000 5 0.00(0.04) 0.19(0.04) 0.31(0.04) 0.41(0.04) 0.50(0.04)
10 0.00(0.04) 0.20(0.04) 0.30(0.04) 0.40(0.04) 0.50(0.03)
20 0.01(0.03) 0.20(0.03) 0.30(0.03) 0.40(0.03) 0.50(0.03)

Table 1: Posterior estimate of correlation between ability and speed.

Correlation Coefficient
Variable Persons Items .00 .20 .30 .40 .50

Ability 500 5 0.67 0.65 0.70 0.66 0.61
10 0.46 0.42 0.38 0.37 0.38
20 0.23 0.24 0.24 0.22 0.23

1000 5 0.67 0.64 0.62 0.61 0.64
10 0.44 0.41 0.43 0.39 0.38
20 0.24 0.23 0.24 0.23 0.22

Speed 500 5 0.31 0.33 0.28 0.33 0.31
10 0.16 0.20 0.16 0.18 0.16
20 0.10 0.09 0.09 0.09 0.09

1000 5 0.30 0.32 0.30 0.34 0.32
10 0.17 0.19 0.18 0.16 0.16
20 0.09 0.08 0.09 0.09 0.08

Table 2: Mean squared error of ability estimate and speed estimate.

Correlation Coefficient
Persons Items .00 .20 .30 .40 .50

500 5 0.67(1.01) 0.65(1.02) 0.70(1.06) 0.66(1.06) 0.61(1.09)
10 0.46(1.01) 0.42(1.00) 0.38(1.03) 0.37(1.05) 0.38(1.07)
20 0.23(1.00) 0.24(1.01) 0.24(1.02) 0.22(1.02) 0.23(1.04)

1000 5 0.67(1.00) 0.64(1.01) 0.62(1.02) 0.61(1.05) 0.64(1.10)
10 0.44(1.00) 0.41(1.01) 0.43(1.01) 0.39(1.04) 0.38(1.06)
20 0.24(1.00) 0.23(0.99) 0.24(1.01) 0.23(1.03) 0.22(1.04)

Table 3: MSE of ability estimate and relative efficiency as a ratio of MSE of the null model
ability estimate over the conjoined IRT model ability estimate.
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expected, the accuracy of the estimates of the ability and speed parameters increased with
the number of items and persons, respectively. But the improvement was independent of the
correlation between the parameters. Apparently, in our setup, the likelihood dominated the
chosen priors too much to yield an effect for the correlation.

Our next results suggest that the test length moderates the impact of the correlation on the
estimates of the person parameters. A comparison made was between the usual two-parameter
normal ogive model without any additional information from the response times (null model)
and the conjoint model in this paper (alternative model). Following de la Torre and Patz
(2005), the relative efficiency was computed as the ratio of the MSE of the ability estimates
under the two models. A ratio greater than one indicated higher efficiency of the conjoint
ability estimates due to information in the response times. Table 3 shows both the MSEs
of ability estimates under the null model and the relative efficiencies of the conjoint model.
It can be seen that the MSEs under the null model do not change when the correlation or
the number of persons increased but that better ability estimates were obtained for longer
tests lengths. However, a higher correlation led to higher efficiency but the gain of efficiency
decreased with the length of the test.

7. Concluding remarks

In computerized testing, response times can be easily obtained. A conjoint IRT model was
proposed to deal with these data in addition to the regular responses. The model was in-
corporated in a hierarchical framework that integrates these two sources of information and
an MCMC estimation procedure was presented to enable the simultaneous estimation of all
model parameters. Although the framework is more complex as to its structure and esti-
mation, its use can be beneficial when response times are observed, for example, for ability
estimation.

The conjoint IRT model can be generalized to account for guessing (through the choice of a
three-parameter IRT model for the responses) or for items with a polytomous response format.
Other generalizations that might be interesting are a multidimensional ability structure and
mixtures as distributions of the ability and speed parameters to capture possible differences
in item solving strategies between test takers.
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