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Abstract

Truncated distributions arise naturally in many practical situations. In this note, we
provide programs for computing six quantities of interest (probability density function,
mean, variance, cumulative distribution function, quantile function and random numbers)
for any truncated distribution: whether it is left truncated, right truncated or doubly
truncated. The programs are written in R: a freely downloadable statistical software.
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1. Introduction

Truncated distributions arise in many practical situations, particularly in numerous industrial
settings (Cho and Govindaluri 2002; Jeang 1997; Kapur and Cho 1994, 1996; Phillips and Cho
1998, 2000; Khasawneh, Bowling, Kaewkuekool, and Cho 2004, 2005). Final products are
often subject to screening inspection before being sent to the customer. The usual practice is
that if a product’s performance falls within certain tolerance limits, it is judged conforming
and sent to thee customer. If it fails, a product is rejected and thus scrapped or reworked.
In this case, the actual distribution to the customer is truncated. Another example can be
found in a multistage production process, in which inspection is performed at each production
stage. If only conforming items are passed on to the next stage, the actual distribution is a
truncated distribution. Accelerated life testing with samples censored is also a good example.
In fact, the concept of a truncated distribution plays a significant role in analyzing a variety
of production processes, process optimization and quality improvement.

Truncated distributions can also be used to model intensity statistics in the study of atomic
heterogeneity (Bhowmick, Mukhopadhyay, and Mitra 2000). The justification being that:
1) atomic heterogeneity led to the intensity statistics being modified from Gaussian to near
Gaussian forms (Shmueli 1979; Shmueli and Wilson 1981); and 2) in reality, the structure
factors or normalized structure factors do not range from −∞ to ∞ but over a finite range.

Another situation arises with respect to high-performance Ethernet, where measurements
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can match well a truncated distribution, with a much better fit over smaller file/request sizes
then the commonly used Pareto distribution. Field, Harder, and Harrison (2004) showed
that measured traffic from three locations on a state-of-the-art switched Ethernet fit closely
various truncated distributions.

The aim of this note is to study the truncated version of any given distribution: left truncated,
right truncated or the doubly truncated version. We provide programs in R for computing
six quantities of interest for the truncated distribution. The programs are written in R (R
Development Core Team 2006, http://www.R-project.org/) because, unlike other statisti-
cal software, it is freely downloadable from the Internet at http://CRAN.R-project.org/,
see also Ihaka and Gentleman (1996). The programs are written in such a way to accept any
value for the truncation points or any distribution.

2. Programs

Suppose we have a continuous distribution with probability density function (pdf) and cumu-
lative distribution function (cdf) specified by g(·) and G(·), respectively. Let X be a random
variable representing the truncated version of this distribution over the interval [a, b], where
−∞ < a < b < ∞. The pdf, mean, variance, cdf, quantile function and the n random numbers
of X are given by

fX(x) =


g(x)

G(b)−G(a)
, if a ≤ x ≤ b,

0, otherwise,
(1)

E(X) =
∫ b

a
xfX(x)dx, (2)

Var(X) =
∫ b

a
{x− E(X)}2 fX(x)dx, (3)

FX(x) =
G(max(min(x, b), a))−G(a)

G(b)−G(a)
, (4)

F−1
X (p) = G−1 (G(a) + p (G(b)−G(a))) (5)

and

xi = F−1
X (ui) , (6)

respectively, where ui, i = 1, 2, . . . , n are n uniform (0, 1) random numbers.

The functions in R for computing (1)–(6) are given below and in the file ‘truncated.R’,
published with this paper. The calling sequence of the functions and their return values are
noted in Table 1. The character string spec specifies the forms for g(·) and G(·). For instance,
if spec = "norm" then g(·) and G(·) will correspond to the standard normal distribution. If
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spec = "beta" then g(·) and G(·) will correspond to the beta distribution and its two shape
parameters will have to be supplied as additional arguments.

The default values of the arguments a and b are set to -Inf and Inf, respectively. This means
that the functions correspond to the untruncated case by default.

The functions extrunc() and vartrunc() use the integrate() function to perform the
integration in equations (2) and (3). The standard arguments used for the integrate()
function are passed as arguments for extrunc() and vartrunc(). This way, the user has
complete control over the accuracy and the stability of the results. If these arguments are
not passed as arguments then the default values will be used, see the R documentation on
integrate() for the default values.

Calling sequence Value
dtrunc(x, spec, a, b, ...) fX(x) in (1)
extrunc(spec, a, b, ...) E(X) in (2)
vartrunc(spec, a, b, ...) Var(X) in (3)
ptrunc(x, spec, a, b, ...) FX(x) in (4)
qtrunc(p, spec, a, b, ...) F−1

X (p) in (5)
rtrunc(n, spec, a, b, ...) xi = F−1

X (ui) in (6)

Table 1: Calling sequence and value for the truncated distribution.

The function dtrunc() presented below implements (1) for given x and a distribution speci-
fication spec on the interval (a, b) defaulting to (−∞,∞).

dtrunc <- function(x, spec, a = -Inf, b = Inf, ...)
{

tt <- rep(0, length(x))
g <- get(paste("d", spec, sep = ""), mode = "function")
G <- get(paste("p", spec, sep = ""), mode = "function")
tt[x>=a & x<=b] <- g(x[x>=a&x<=b], ...)/(G(b, ...) - G(a, ...))
return(tt)

}

The function extrunc() presented below implements (2) for given distribution specification
spec on the interval (a, b) defaulting to (−∞,∞).

extrunc <- function(spec, a = -Inf, b = Inf,...)
{

f <- function(x) x * dtrunc(x, spec, a = a, b = b, ...)
return(integrate(f, lower = a, upper = b)$value)

}

The function vartrunc() presented below implements (3) for given distribution specification
spec on the interval (a, b) defaulting to (−∞,∞).

vartrunc <- function(spec, a = -Inf, b = Inf, ...)
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{
ex <- extrunc(spec, a = a, b = b, ...)
f <- function(x) (x - ex)^2 * dtrunc(x, spec, a = a, b = b, ...)
tt <- integrate(f, lower = a, upper = b)$value
return(tt)

}

The function ptrunc() presented below implements (4) for given x and a distribution speci-
fication spec on the interval (a, b) defaulting to (−∞,∞).

ptrunc <- function(x, spec, a = -Inf, b = Inf, ...)
{

tt <- x
aa <- rep(a, length(x))
bb <- rep(b, length(x))
G <- get(paste("p", spec, sep = ""), mode = "function")
tt <- G(apply(cbind(apply(cbind(x, bb), 1, min), aa), 1, max), ...)
tt <- tt - G(aa, ...)
tt <- tt/(G(bb, ...) - G(aa, ...))
return(tt)

}

The function qtrunc() presented below implements (5) for given p and a distribution speci-
fication spec on the interval (a, b) defaulting to (−∞,∞).

qtrunc <- function(p, spec, a = -Inf, b = Inf, ...)
{

tt <- p
G <- get(paste("p", spec, sep = ""), mode = "function")
Gin <- get(paste("q", spec, sep = ""), mode = "function")
tt <- Gin(G(a, ...) + p*(G(b, ...) - G(a, ...)), ...)
return(tt)

}

The function rtrunc() presented below implements (6) for given n and a distribution speci-
fication spec on the interval (a, b) defaulting to (−∞,∞).

rtrunc <- function(n, spec, a = -Inf, b = Inf, ...)
{

x <- u <- runif(n, min = 0, max = 1)
x <- qtrunc(u, spec, a = a, b = b,...)
return(x)

}

Note that the functions dtrunc(), ptrunc() and qtrunc() accept vector values for their first
arguments.
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3. Example 1

This example computes truncated versions of the standard normal density function for −a =
b = 0.5, −a = b = 1, −a = b = 2, and −a = b = 2.5. The function dtrunc() from Table 1
is used. The argument spec is taken to be "norm". The plot of the computed densities is
shown in Figure 1.

R> x <- seq(-3, 3, by = 0.1)

R> y1 <- dnorm(x)

R> y2 <- dtrunc(x, "norm", a = -0.5, b = 0.5, mean = 0, sd = 2)

R> y3 <- dtrunc(x, "norm", a = -1, b = 1, mean = 0, sd = 2)

R> y4 <- dtrunc(x, "norm", a = -2, b = 2, mean = 0, sd = 2)

R> yrange <- range(y1, y2, y3, y4)

R> plot(x, y1, type = "l", xlab = "x", ylab = "PDF", xlim = c(-3,

+ 3), ylim = yrange)

R> lines(x, y2, lty = 2)

R> lines(x, y3, lty = 3)

R> lines(x, y4, lty = 4)

In Figure 1, the solid curve corresponds to the standard normal pdf, the curve of lines cor-
responds to the truncated version with −a = b = 0.5, the curve of dots corresponds to the
truncated version with −a = b = 1, and the curve of lines and dots corresponds to the
truncated version with −a = b = 2.
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Figure 1: Truncated pdfs of the standard normal distribution.
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4. Example 2

This example draws the quantile–quantile plot for simulated data from a truncated Weibull
distribution. We considered the distribution given by the cdf

F (x) = 1− exp
(
−x2

)
(7)

(for x > 0) truncated at a = 1 and b = 2. The functions rtrunc() and qtrunc() from
Table 1 are used. The argument spec is taken to be "weibull".

For a simulated data set of size 100, the plot of the expected order statistics versus the
observed order statistics is shown in Figure 2.

R> set.seed(1)

R> x <- rtrunc(100, "weibull", a = 1, b = 2, shape = 2)

R> x <- sort(x)

R> y <- qtrunc((seq(1, 100) - 0.375)/(100 + 0.25), "weibull", a = 1,

+ b = 2, shape = 2)

R> m1 <- min(x, y)

R> m2 <- max(x, y)

R> plot(x, y, xlim = c(m1, m2), ylim = c(m1, m2), xlab = "Observed",

+ ylab = "Expected")

R> abline(0, 1)
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Figure 2: Quantile–quantile plot for the simulated sample from (7).
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5. Conclusions

We have provided programs in R (a freely available statistical software) for computing quan-
tities of interest—six of them—for truncated distributions. The computed quantities include:
the probability density function, mean, variance, cumulative distribution function, quantile
function and n random numbers. These programs could have wide applicability because: 1)
no restrictions are imposed on the input parameters n, a, b, g and G; 2) six quantities of
interest are given; 3) the programs simple and easy to implement on any platform; and 4) full
control is given to the user as far as accuracy and stability of the results.
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