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Abstract

In this paper we describe MIDAS: a SAS macro for multiple imputation using distance-
aided selection of donors which implements an iterative predictive mean matching hot-
deck for imputing missing data. This is a flexible multiple imputation approach that
can handle data in a variety of formats: continuous, ordinal, and scaled. Because the
imputation models are implicit, it is not necessary to specify a parametric distribution
for each variable to be imputed. MIDAS also allows the user to address the sensitivity
of their inferences to different assumptions concerning the missing data mechanism. An
example using MIDAS to impute missing data is presented and MIDAS is compared to
existing missing data software.

Keywords: hot-deck, missing data, predictive mean matching, approximate bayesian boot-
strap, abb, not missing at random, nmar, nonignorable.

1. Introduction

Missing values are a problem in many data sets and are ubiquitous in the social and health
sciences. A common and practical method for dealing with missing data is multiple imputation
where missing values are replaced with two or more plausible values. Multiple imputation
techniques that specify an explicit Bayesian model have desirable theoretical properties that
lead to inferences that are valid when the model does a good job of representing available
information (Rubin 1987). However, many such techniques can be difficult to implement
in that they are often tailored to specific data types and require the imputer to model the
joint distribution of the data, which is hard to do in high-dimensional problems with many
variables. Moreover, most multiple imputation procedures assume that the missing data are
ignorable as defined by Rubin (1976) where the probability of missingness depends only on
observed values. This assumption is questionable in many applications, and even when it is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/


2 MIDAS: Multiple Imputation Using Distance-Aided Selection of Donors

a reasonable assumption, it is important for the analyst to check how sensitive inferences are
to different assumptions concerning the missing data mechanism.

We describe a SAS (SAS Institute Inc. 2003) macro MIDAS: multiple imputation using
distance-aided selection of donors, that implements the methods described in Siddique and
Belin (2008a,b). These methods, iterative hot-deck multiple imputation with distance-based
donor selection, can handle a variety of data types yet still incorporate desirable features
of Bayesian approaches such as the ability to reflect parameter uncertainty, handle missing
covariate values, and incorporate all available information into the imputation model. In
addition, the methods allow the user to impute nonignorable missing data.

1.1. Background

The properties of missing data methods may depend strongly on the mechanism that led to
the missing data. A particularly important question is whether the fact that variables are
missing is related to the underlying values of the variables in the data set (Little and Rubin
2002).

Specifically, Rubin (1976) classifies the reasons for missing data as either ignorable or non-
ignorable. In a data set where variables X are fully observed and variables Y have missing
values, the missingness in Y is deemed ignorable if the missing Y values are only randomly dif-
ferent from observed Y values when conditioning on the X values. Nonignorable missingness
asserts that even though two observations on Y (one observed, one missing) have the same X
values, their Y values are systematically different. Rubin and Schenker (1991) give an exam-
ple where the missing Y are typically 20 percent larger than observed Y for the same values
of X. The role of nonignorability assumptions has been discussed in the context of a variety
of applied settings; see e.g., Little and Rubin (2002, Chapter 15), Belin et al. (1993), Wachter
(1993), Rubin et al. (1995), Schafer and Graham (2002), Demirtas and Schafer (2003).

Imputation is a common and practical method for dealing with missing data where missing
values are replaced with plausible values. Simply imputing missing values once, and then
proceeding to analyze a data set as if there never were any missing values (or as if the
imputed values were the observed values) fails to account for the uncertainty due to the fact
that the analyst does not know the values that might have been observed. No matter how
successful an imputation procedure has been in eliminating nonresponse bias, it is important
to account for this additional uncertainty.

Rubin (1987) proposed handling the uncertainty due to missingness through the use of mul-
tiple imputation. Multiple imputation refers to the procedure of replacing each missing value
with D ≥ 2 imputed values. Then D imputed data sets are created, each of which can be
analyzed using complete data methods. Using rules that combine within-imputation and
between-imputation variability (Rubin 1987), inferences are combined across the D imputed
data sets to form one inference that properly reflects uncertainty due to nonresponse under
that model. However, creating multiple imputations and combining complete-data estimates
does not insure that the resulting inferences will be valid. Rubin (1987) defines the conditions
that a multiple imputation procedure must meet in order to produce valid inferences and be
deemed a proper multiple imputation procedure. To satisfy these conditions, a multiple impu-
tation procedure must provide randomization-valid inferences in the complete data and must
represent both the sampling uncertainty in the imputed values and the estimation uncertainty
associated with either explicit or implicit unknown parameters.
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A hot-deck is an imputation method where missing values (donees) are replaced with observed
values from donors deemed exchangeable with the donees. There are many benefits to hot-
deck imputation including: 1) imputations tend to be realistic since they are based on values
observed elsewhere; 2) imputations will not be outside the range of possible values; and 3) it is
not necessary to define an explicit model for the distribution of the missing values. Because of
the simplicity of the hot-deck approach and these desirable properties, it is a popular method
of imputation, especially in large sample survey settings where there is a large pool of donors.

1.2. Research overview

The outline for the rest of this paper is as follows. In Section 2, we briefly describe the hot-
deck imputation methods of Siddique and Belin (2008a,b) that are implemented in MIDAS.
Section 3 provides documentation on using MIDAS and the macro inputs. Section 4 gives
an example of using MIDAS to impute and analyze a data set with missing values, first
assuming that the missing data mechanism is ignorable, then assuming that it is not. Section 5
compares MIDAS to eight other well-known missing data software programs that were recently
evaluated in Horton and Kleinman (2007). Section 6 offers practical guidelines for multiply
imputing missing data using MIDAS. Section 7 gives concluding remarks and further thoughts
on implementing MIDAS.

2. Methods

In this section we briefly describe the predictive mean matching hot-deck imputation method
of Siddique and Belin (2008a) and the nonignorable approximate Bayesian bootstrap method
of Siddique and Belin (2008b) that are implemented in MIDAS.

2.1. Hot-deck multiple imputation using distance-based donor selection

Since hot-deck procedures are most tractable when imputing one variable at a time, for the
remainder of this paper, define Y to be a single variable with missing values. Yobs consists
of the values of Y that are observed and Ymis consists of the values of Y that are missing.
Let nobs and nmis be the number of cases associated with Yobs and Ymis respectively. In
predictive mean matching (Little 1988; Schenker and Taylor 1996), values Yobs are regressed
on a set of observed variables, say X. Then, using the regression parameters calculated on the
observed data, predicted values Ŷ are calculated for all Y . Finally, Ymis values are imputed
using Yobs values whose predicted Ŷ values are similar. An approximate Bayesian bootstrap
(ABB) (Rubin and Schenker 1986; Demirtas et al. 2007) is a method for incorporating param-
eter uncertainty into hot-deck imputation models. An ignorable ABB first draws nobs cases
randomly with replacement from Yobs to create Y ∗obs. Donors for imputing missing values are
then selected from this new set of “observed” cases. For multiple imputation, D bootstrap
samples are drawn so that the imputed values are drawn from D different sets of donors.

Siddique and Belin (2008a) describe a distance-based donor selection approach with an ABB
where donors are selected with probability inversely proportional to their distance from the
donee. Using only those rows (cases) where Y is observed, the ABB is performed by drawing
nobs rows with replacement. Let wj , j = 1, . . . , nobs designate the number of times the row
belonging to yj ∈ Yobs was chosen with replacement in the ABB. Let W represent a diagonal
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matrix of wj values. The formula for calculating the predicted values is Ŷ = XB̂ where
B̂ = (X>WX)−1X>WYobs. For a given donee, let Dk

0i be the distance between donee 0 and
donor i, where the distance is the absolute difference in predicted values raised to a power k
with a non-zero offset to avoid complexities posed by zero distances. That is,

Dk
0i = (|ŷ0 − ŷi|+ δ)k , (1)

where
δ = min |ŷ0 − ŷi| for all i = 1, . . . , nobs where ŷ0 6= ŷi.

In settings where no two cases i and j have ŷi = ŷj (i.e., when no two individuals have the
same pattern of observed covariates or identical predicted values), then the δ offset term is
dropped (although retaining it in the procedure is apt to have little practical consequence).

Using the distance defined in Equation 1, the donor i selection probability lki (ŷ0) for donee 0
is

lki (ŷ0) =
1
Dk

0i

wi∑nobs
j=1

1
Dk

0j

wj
. (2)

Equation 2 ensures that
nobs∑
i=1

lki (ŷ0) = 1

and that given observed donor values Ydonor = (Y1, . . . , Ynobs
) and selection probabilities

lkdonor(ŷ0) = (lk1(ŷ0), . . . , lknobs
(ŷ0)), the expected value of the imputation for donee 0 is

E(y0|Ydonor, l
k
donor(ŷ0)) =

nobs∑
i=1

lki (ŷ0)Yi.

With this approach, donors closest to the donee have greatest probability of selection, but
all donors are eligible and have some non-zero selection probability. The exponent k in
Equation 1 is a closeness parameter, which adjusts the probability of selection assigned to
the closest donors. As k →∞ this procedure amounts to a nearest-neighbor hot-deck where
the donor whose predicted mean is closest to the donee is always chosen. Conversely, when k
equals 0, each donor has equal probability of selection, which is equivalent to a simple random
hot-deck. In practice, a value of k somewhere between these two extremes is chosen by the
imputer. Siddique and Belin (2008a) considered an example where a closeness parameter value
around 3 appeared to be reasonable to favor nearby donors while allowing donor probabilities
to decline smoothly as a function of distance.

In addition to adjusting the probability of selection assigned to the closest donors, the closeness
parameter also has an impact on the bias and variance of the imputed values. Small values of
the closeness parameter imply lower variance (averaging over more donors) but presumably
higher bias (since it may not be plausible to assume that all donors are equally good matches).

When covariates in the predictive mean matching models have missing values, starting val-
ues are introduced. Then, once all variables have been imputed once, they are re-imputed,
this time replacing starting values with imputed values. This procedure is iterated until con-
vergence diagnostics are achieved (Siddique and Belin 2008a). Siddique and Belin (2008a)
showed in one setting that 10 iterations of the hot-deck procedure produced estimates that
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were not significantly different from estimates resulting from iterating the procedure until
more formal convergence diagnostics were satisfied.
Multiple imputation is incorporated into the method to reflect the uncertainty of the imputa-
tions by performing the procedure D times to create D complete data sets. Each data set is
analyzed separately, and inferences are combined using the rules described by Rubin (1987).

2.2. Implementing a nonignorable approximate Bayesian bootstrap

Rubin and Schenker (1991) discuss how an ABB can be modified to handle nonignorable
missing data. Instead of drawing nobs cases of Yobs randomly with replacement (i.e., with
equal probability), they suggest drawing nobs cases of Yobs with probability proportional to
Y c

obs so that the probability of selection for for yi ∈ Yobs is

yci∑nobs
j=1 y

c
j

. (3)

This skews the nonrespondents to have typically larger (when c > 0 and yj > 0) values of
Y than respondents. Siddique and Belin (2008b) refer to the ABBs where values of Yobs are
drawn with probability proportional to Y c

obs where c = −1, 1, 2, and 3, as an “inverse-to-size
ABB”,“proportional-to-size ABB”,“proportional-to-size-squared ABB”, and“proportional-to-
size-cubed ABB” respectively.
In addition to these nonignorable ABBs proposed by Rubin and Schenker (1991) where nobs

cases of Yobs are drawn with probability proportional to Y c
obs, Siddique and Belin (2008b) con-

sider a number of variations on this idea. Siddique and Belin (2008b) describe a nonignorable
ABB where nobs cases of Yobs are drawn with probability proportional to [|Yobs −Qp(Yobs)|]c
where the notation Qp(Yobs) represents the p-th quantile of Yobs. For example, when p = 2 so
that Qp(Yobs) is the median of the observed Y values, the implication of drawing with proba-
bility proportional to the distance from the median is to favor values for the non-respondents
with either larger or smaller values than respondents with the same set of covariates (when
c > 0). They refer to this approach as a “U-shaped ABB” because observations in the ex-
tremes of the distribution of Yobs have greater weight than observations in between that are
close to the median.
In a variation of this idea with p = 1, Siddique and Belin (2008b) refer to the ABB that centers
the donor sizes around the 1st quantile as a “fishhook ABB”, because this ABB mostly favors
large values but retains a U-shaped pattern featuring a slight upturn in the weight given to
the smallest observed values.
For all nonignorable ABBs described above, when values of Yobs are less than or equal to
0, the values of Yobs need to be transformed to ensure that the selection probabilities in
the nonignorable ABB are positive and (in the case where Yobs are drawn with probability
proportional to Y c

obs, c > 0) that the selection probability for yi ∈ Yobs is greater than the
selection probability for yj ∈ Yobs when yi > yj . Define α and β to be the smallest and second
smallest values of Yobs respectively where α 6= β. Transform yi ∈ Yobs using yi + |α|+ |α−β|.
Then Equation 3 is rewritten as

(yi + |α|+ |α− β|)c∑nobs
j=1 (yj + |α|+ |α− β|)c

.

This transformation is used only for calculating the selection probabilities. The original values
of Yobs are used for imputation.
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3. Using MIDAS

MIDAS is written as a SAS macro using the Base SAS, SAS/STAT, and SAS/IML modules.
The macro is called as:

%MIDAS(y, dataset, key, covar, itnum = 1, close = 3, step = NONE,
seed = 0, start = MEAN, abbtype = NONE, pps = 0);

The arguments are defined below.

y Target variable to be imputed.

dataset Data set name.

key A variable that uniquely identifies each observation (row) in the dataset (e.g.,
subject ID). Must be numeric.

covar List of covariates to be used in the imputation model. Can have missing
values for the first iteration but not for subsequent iterations. If there are
missing covariates and the iteration is greater than 1 then MIDAS will fail
to produce imputations.

itnum Iteration number. Intended to be part of a loop. Default is 1.

close Closeness parameter as described in Siddique and Belin (2008a). A close-
ness parameter equal to 0 is equivalent to a simple random hot-deck where
each donor has equal probability of selection. As the closeness parameter
approaches infinity, the hot-deck becomes a nearest neighbor hot-deck where
the closest donor is always chosen. Default is 3.

step Variable selection procedure for choosing variables in the predictive mean
matching model. Choices are NONE, BACKWARD, and FORWARD. Default is NONE.

seed Random number seed. Default is 0.

start Type of imputation procedure (mean imputation or simple random imputa-
tion) to get starting values for missing covariates. Inputs are MEAN or SRS.
Mean imputation imputes missing covariate values with the mean of the ob-
served values. Simple random imputation imputes each missing covariate
value by randomly drawing from the observed values. The default is MEAN.
Missing covariates are only filled in for the first iteration.

abbtype Center observations for ABB or not (NONE, MEAN, MEDIAN, Q1, Q3). Default
is NONE.

pps For ABB. Choose sample with probability proportional to ypps. When pps
= 0, choose among observed with equal probability. Default is 0.

For each variable that has been imputed, MIDAS creates a new variable with the prefix i_,
where i_varname is equal to 1 if the corresponding value of varname has been imputed, and 0
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otherwise. The ABB is implemented during the first iteration and a bootstrap weight variable
is created with the suffix bwt, where varnamebwt indicates the number of times the observed
value of varname was selected with replacement in the ABB. Starting values are only created
during the first iteration. Variables that appear as covariates in imputation models should be
imputed so that there are no covariates with missing values after the first iteration. After the
first iteration, previously imputed values of the target variable are deleted then re-imputed.

4. Data example: The St. Louis Risk Research Project

The St. Louis Risk Research Project (SLRRP) was an observational study to assess the effects
of parental psychological disorders on various aspects of child development. In a preliminary
cross-sectional study, data were collected on 69 families having two children each. The families
were classified into three risk groups for parental psychological disorders. The children were
classified into two groups according to the number of adverse psychological symptoms they
exhibited. Standardized reading and verbal comprehension scores were also collected for the
children. Each family is thus described by four continuous and three categorical variables.
Rates of missingness range from 0% to 43% (see Table 1).
Because of its mixture of continuous and categorical variables with missing values, the SLRRP
data set has become a classic data set for evaluating imputation methods for mixed data types.
See Little and Schluchter (1985), Schafer (1997), Liu and Rubin (1998), Raghunathan et al.
(2001).
Using the SLRRP data, Raghunathan et al. (2001) investigated the impact of parental psy-
chological disorders on childhood reading and verbal scores after adjusting for the number of
symptoms. Raghunathan et al. (2001) used scores on the log scale, resulting in the following
mixed-effects regression model:

logRic = α0 + α1G1i + α2G2i + α3Dic + δi + εic

where Ric is the reading score for child c in family i; G1i = 1 if family i is classified as a
moderate risk group and 0 otherwise; G2i = 1 if family i is classified as a high risk group and
0 otherwise; Dic is the symptom level for child c in family i; and δi are random effects to
account for interclass correlation between two children within the same family. The terms δi
and εic are assumed to be mutually independent normal random variables with mean 0 and
variances σ2

δ and σ2
ε respectively.

Variable Levels Code Percent missing
Parental risk group 1 = low, 2 = moderate, 3 = high G 0
Symptoms, child 1 0 = low, 1 = high D1 41
Symptoms, child 2 0 = low, 1 = high D2 41
Reading score, child 1 continuous R1 30
Verbal score, child 1 continuous V1 43
Reading score, child 2 continuous R2 23
Verbal score, child 2 continuous V2 25

Table 1: Variables from the SLRRP.
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Below, we provide MIDAS code for imputing the SLRRP data and SAS code for analyzing
the data. The imputation is nested within a macro to facilitate the use of iteration and the
creation of 5 multiply imputed data sets. For each of the 5 imputed data sets, 10 iterations are
performed to reduce dependence on starting values and imputation order. The seed is changed
before imputing each variable to incorporate additional uncertainty into the imputations.
Variables are imputed one at a time. Each variable to be imputed uses all other variables
in the data set in its imputation model. After the first iteration, missing covariate values
are replaced with imputed values instead of starting values and previously imputed values
for target variables are deleted and re-imputed. The default closeness parameter value of 3
is used, as are default starting values based on mean imputation. No stepwise procedures
are incorporated into the predicted mean matching regression models. In the next section we
demonstrate the use of a nonignorable ABB. The results are presented in Table 2.

%include '<full path>\MIDAS.sas';

%macro slrrp_macro(mult,itnum);

%do k=1 %to &mult; *do across multiple data sets;

data slrrp_&k;
set slrrp;
_Imputation_=&k;
run;

%do its=1 %to &itnum; *do across multiple iterations;
*The seed must be different for each variable and data set;
%let seed1=%eval(9999+&k+&its);

*Impute Child 1 Symptoms;
%let seed1=%eval(&seed1+1);
%MIDAS(D1, slrrp_&k, mid, D2 R1 R2 V1 V2 G2 G3, itnum=&its, seed=&seed1);

*Impute Child 2 Symptoms;
%let seed1=%eval(&seed1+1);
%MIDAS(D2, slrrp_&k, mid, D1 R1 R2 V1 V2 G2 G3, itnum=&its, seed=&seed1);

*Impute Child 1 Reading Score;
%let seed1=%eval(&seed1+1);
%MIDAS(R1, slrrp_&k, mid, R2 V1 V2 D1 D2 G2 G3, itnum=&its, seed=&seed1);

*Impute Child 2 Reading Score;
%let seed1=%eval(&seed1+1);
%MIDAS(R2, slrrp_&k, mid, R1 V1 V2 D1 D2 G2 G3, itnum=&its, seed=&seed1);

*Impute Child 1 Verbal Score;
%let seed1=%eval(&seed1+1);
%MIDAS(V1, slrrp_&k, mid, V2 R1 R2 D1 D2 G2 G3, itnum=&its, seed=&seed1);
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*Impute Child 2 Verbal Score;
%let seed1=%eval(&seed1+1);
%MIDAS(V2, slrrp_&k, mid, V1 R1 R2 D1 D2 G2 G3, itnum=&its, seed=&seed1);

%end; *end iteration loop;

*append multiply imputed data sets;
proc datasets library=work nolist;
append base=work.slrrp_impute data=work.slrrp_&k;
run;
quit;

%end; *end multiple data sets loop;

%mend slrrp_macro;

%slrrp_macro(5,10);

Then, to perform the analysis using PROC MIXED in SAS, we must convert the data set from
a horizontal format to a vertical format.

data slrrp_vert;
set slrrp_impute;
family=mid;
logR1=log(R1);
logR2=log(R2);
child=1; symptoms=D1; logread=logR1; output;
child=2; symptoms=D2; logread=logR2; output;
run;

The random intercept model for log reading score is fit using the SAS procedure PROC MIXED
separately by imputed data set. Parameter estimates are exported to a new data set.

proc mixed data=slrrp_vert;
model logread = G2 G3 symptoms/solution;
random intercept/sub=family type=un g gcorr;
by _Imputation_;
ods output SolutionF=mixparms1;
title 'Dependent Variable Log Reading Score';
run;
quit;

The SAS procedure PROC MIANALYZE is used to combine parameter estimates from imputed
data sets using the rules described by Rubin (1987).

proc mianalyze parms=mixparms1;
modeleffects Intercept G2 G3 symptoms;
run;
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4.1. Nonignorable missing data

The above imputation method assumed that the missing data were ignorable as defined by
Rubin (1976) where the probability of missingness depends only on observed values. However,
this assumption is unlikely in most applications and even when it is a reasonable assumption,
it is important for the analyst to check how sensitive inferences are to different assumptions
concerning the missing data mechanism. In this section, we impute the SLRRP data again,
this time using a different nonignorable ABB for each imputed data set which Siddique and
Belin (2008b) refer to as a mixture ABB. Here, we assume that missing reading and verbal
scores tend to be lower than observed values with the same covariates. The mixture ABB
approach used here is an inverse-to-size-cubed ABB, inverse-to-size-squared ABB, inverse-
to-size ABB, ignorable ABB, and proportional-to-size ABB. The code is the same as above
except that we add the input pps in the macro statements for reading score and verbal score.
As recommended by Siddique and Belin (2008b), we use a closeness parameter value of 1 since
larger closeness parameter values can reduce the effectiveness of the nonignorable ABB.

%include '<full path>\MIDAS.sas';

%macro slrrp_macro(mult,itnum);

%do k=1 %to &mult; *do across multiple datasets;

*Use a different ABB for each imputed data set;
%let abbvalue=%eval(&k-4);

data slrrp_&k;
set slrrp;
_Imputation_=&k;
run;

%do its=1 %to &itnum; *do across multiple iterations;

*The seed must be different for multiple datasets;
%let seed1=%eval(9999+&k+&its);

*Impute Child 1 Symptoms;
%let seed1=%eval(&seed1+1);
%MIDAS(D1, slrrp_&k, mid, D2 R1 R2 V1 V2 G2 G3, itnum=&its, seed=&seed1);

*Impute Child 2 Symptoms;
%let seed1=%eval(&seed1+1);
%MIDAS(D2, slrrp_&k, mid, D1 R1 R2 V1 V2 G2 G3, itnum=&its, seed=&seed1);

*Impute Child 1 Reading Score using a nonignorable ABB and
a closeness parameter value equal to 1;
%let seed1=%eval(&seed1+1);
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%MIDAS(R1, slrrp_&k, mid, R2 V1 V2 D1 D2 G2 G3, itnum=&its,
close=1, seed=&seed1, pps=&abbvalue);

*Impute Child 2 Reading Score using a nonignorable ABB and
a closeness parameter value equal to 1;
%let seed1=%eval(&seed1+1);
%MIDAS(R2, slrrp_&k, mid, R1 V1 V2 D1 D2 G2 G3, itnum=&its,
close=1, seed=&seed1, pps=&abbvalue);

*Impute Child 1 Verbal Score using a nonignorable ABB and
a closeness parameter value equal to 1;
%let seed1=%eval(&seed1+1);
%MIDAS(V1, slrrp_&k, mid, V2 R1 R2 D1 D2 G2 G3, itnum=&its,
close=1, seed=&seed1, pps=&abbvalue);

*Impute Child 2 Verbal Score using a nonignorable ABB and
a closeness parameter value equal to 1;
%let seed1=%eval(&seed1+1);
%MIDAS(V2, slrrp_&k, mid, V1 R1 R2 D1 D2 G2 G3, itnum=&its,
close=1, seed=&seed1, pps=&abbvalue);

%end; *end iteration loop;

*append multiply imputed data sets;
proc datasets library=work nolist;
append base=work.slrrp_impute data=work.slrrp_&k;
run;
quit;

%end; *end multiple datasets loop;

%mend slrrp_macro;

%slrrp_macro(5,10);

Table 2 displays the mixed-effects model regression coefficients with standard errors and intra-
class correlations from the regressions for log reading score from a complete-case analysis,
MIDAS imputation assuming ignorability, and MIDAS imputation assuming nonignorabil-
ity. In all three analyses, reading scores in the moderate and high parental risk groups are
lower than in the low parental risk group. These differences are less pronounced for reading
scores under the nonignorable imputation model where we assumed that the missing reading
and verbal scores were lower than observed reading and verbal scores conditional on other
covariates. The intra-class correlation coefficient is largest for the complete-case analysis and
smallest when nonignorability is assumed. These results may reflect the additional uncertainty
multiple imputation procedures can incorporate into parameter estimates.
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Assume Assume
Parameter Complete case ignorable nonignorable
Intercept 4.744 (0.038)∗∗∗ 4.686 (0.027)∗∗∗ 4.694 (0.034)∗∗∗

Moderate risk −0.139 (0.053)∗ −0.110 (0.040)∗∗ −0.099 (0.042)∗

High risk −0.182 (0.056)∗∗ −0.117 (0.045)∗ −0.106 (0.042)∗

Symptoms 0.025 (0.043) 0.060 (0.038) 0.030 (0.029)
Intra-class correlation 0.337 0.316 0.263

Table 2: Mixed-effects model estimates of regression coefficients with standard errors and
intra-class correlations for SLRRP reading scores using complete cases, MIDAS imputation
assuming ignorablity, and MIDAS imputation assuming nonignorability. p values are given
for regression coefficients only: * p < 0.05, ** p < 0.01, *** p < 0.001.

5. Comparing MIDAS with other missing data software

Horton and Kleinman (2007) compared eight commonly used missing data software packages
using the Kids’ Inpatient Database (KID) for the year 2000 provided by the Healthcare Cost
and Utilization Project – HCUP (2003). The eight software packages were Amelia II (Honaker
et al. 2008), Hmisc (Harrell Jr 2008), ice (Royston 2005), IVEware (Raghunathan et al. 2002),
LogXact (Cytel Inc. 2006), mice (van Buuren and Oudshoorn 2007), SAS PROC MI (SAS
Institute Inc. 2003), and the S-PLUS Missing library (Insightful Corp. 2003). The KID data
set, which is publicly available for a fee from the Agency for Healthcare Research and Quality,
collects data from states on child hospitalization to improve the quality of health care. Horton
and Kleinman (2007) investigated what factors predicted whether a pediatric subject with a
psychiatric or substance abuse diagnosis had a routine discharge from the hospital.

The outcome in their model was routine discharge versus non-routine discharge. Predictors
in the logistic regression included an indicator for gender, age, length of stay, admission type,
admission season, admission on weekend, number of diagnoses on original record, race (white,
black, hispanic, other), and total charges.

The data set consisted of 134,774 observations. There was a substantial amount of missingness
in their data set. Admission type was missing for 11.2% of cases. Race was missing for 16.2%,
total charges for 3.7%, and season was missing for 11.6%. A total of 79,574 (59%) observations
had complete data. See Horton and Kleinman (2007) for more details regarding the data, the
analysis model, and the patterns of missingness.

We imputed the KID data using MIDAS and then analyzed the data using the same logistic
regression model as Horton and Kleinman. Each category of race, season, and admission type
were converted into binary variables and imputed one at a time. Race and admission type
were imputed in order from the least common to the most common category. Five imputations
were made for each missing value with ten iterations, a closeness parameter value equal to 3,
and mean imputation for starting values. The covariates in each imputation model were the
same independent and dependent variables that appeared in the analysis model.

Table 3 has been reproduced from Horton and Kleinman (2007) and displays the logistic
regression coefficients for weekend admission (WEEKEND), gender (FEMALE), and total
charges (TOTCHG) from the KID analysis using eight different missing data software pack-
ages as well as the complete-case analysis. In the last line of the table, the results from using
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Package WEEKEND FEMALE TOTCHG
Complete case −0.058 (0.026) 0.089 (0.021) −0.004 (0.0010)
Amelia II −0.027 (0.020) 0.103 (0.016) −0.005 (0.0005)
Hmisc −0.020 (0.020) 0.099 (0.016) −0.005 (0.0005)
ice −0.020 (0.020) 0.099 (0.016) −0.004 (0.0005)
IVEware −0.021 (0.020) 0.100 (0.016) −0.004 (0.0005)
mice −0.021 (0.020) 0.100 (0.016) −0.004 (0.0005)
LogXact −0.026 (0.020) 0.105 (0.016) −0.005 (0.0005)
SAS PROC MI −0.036 (0.021) 0.119 (0.017) −0.003 (0.0006)
S-PLUS Missing −0.018 (0.020) 0.098 (0.016) −0.004 (0.0005)
MIDAS −0.021 (0.020) 0.101 (0.016) −0.004 (0.0005)

Table 3: Results (in terms of log OR and SE) for selected regression parameters for a variety
of incomplete logistic regression models including MIDAS. The non-MIDAS results have been
taken from Horton and Kleinman (2007, Table 4).

MIDAS have been added. MIDAS produces results very similar to the other packages. As
Horton and Kleinman (2007) note, the parameter estimates for FEMALE and TOTCHG are
similar for all missing data models relative to the complete-case estimator. The differing re-
sults for the WEEKEND parameter may indicate selection bias due to discarding those cases
that are partially observed.

In addition to providing inferences similar to other imputation software packages, MIDAS has
a number of features that are not available in any one of the packages in Table 3. MIDAS does
not require the joint distribution of the data to be specified, no special accommodations are
necessary to avoid imputing out of range or unrealistic values, and further analyses assuming
that the missing data are nonignorable are possible using MIDAS.

6. Implementation guidelines

In this section we offer some practical guidelines for performing multiple imputation using
MIDAS.

6.1. Selecting variables for the imputation model

In general, imputation models should use all available information to increase predictive power
and to accommodate a large number of different data analyses (Meng 1994). Variables to be
included in an imputation model should be associated either with the variable to be imputed
or the probability that the variable is missing (Rubin 1976). When deciding which covariates
should be included in an imputation model, we recommend the ‘inclusive’ imputation strategy
of Collins et al. (2001) where in addition to the variables used in the analysis, the imputation
model also incorporates ‘auxiliary’ variables that are used in the imputation procedure but
are not incorporated in the analysis model. The simulation findings of Collins et al. (2001)
show that there are noticeable gains in terms of increased efficiency and reduced bias from
including auxiliary variables in addition to analysis variables.
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Special care needs to be taken when imputing clustered data so that associations within
clusters are preserved. When imputing longitudinal data, imputation models should condition
on measurements made at prior and subsequent time points. When imputing hierarchical data
like the SLRRP, conditioning on variables within the same cluster will not only preserve the
correlation structure within the hierarchy, but may also provide additional predictive power.
This was the approach taken when imputing the SLRRP data; when imputing a Child 1
variable, not only did we include all other Child 1 variables in our imputation model, we also
included all Child 2 variables.

As Siddique and Belin (2008a) note, identifying uncongeniality (Meng, 1994) between imputa-
tion and analysis models is a challenge for hot-deck procedures because the imputation model
is implicit. They also note that the implicit nature of the imputation model gives tremen-
dous flexibility in incorporating a range of possible values so that the analysis procedure
corresponds to the imputation procedure.

6.2. Implementing the nonignorable approximate Bayesian bootstrap

A unique feature of MIDAS is its ability to impute nonignorably missing data. When imple-
menting the nonignorable ABB, we recommend using the mixture ABB approach of Siddique
and Belin (2008b) where each imputed data set uses a different nonignorable (or ignorable)
ABB. Siddique and Belin (2008b) showed that the mixture ABB appears to account for ap-
propriate uncertainty and provide nominal coverage even when the missing data mechanism
is nonignorable. Since large closeness parameter values reduce the effectiveness of the nonig-
norable ABB, Siddique and Belin (2008b) recommend using a closeness parameter value in
the range of 1 to 2.

The mixture ABB procedure can be altered depending on what is perceived as the reason for
missingness. For example, if the imputer believes that smaller values are more likely to be
missing, but still wishes to incorporate uncertainty regarding nonignorability, then a mixture
ABB can be chosen that is centered around an ABB that favors smaller donors. This was
the strategy used to impute the reading and verbal scores in the SLRRP example, where
inverse-to-size-cubed, inverse-to-size-squared, inverse-to-size, ignorable, and proportional-to-
size ABBs were used.

A mixture ABB that is centered around an ignorable ABB (e.g., inverse-to-size-squared,
inverse-to-size, ignorable, proportional-to-size, proportional-to-size-squared) is apt to provide
inferences similar to an ignorable ABB, but with larger standard errors that presumably ac-
count for the uncertainly regarding the missing data mechanism. The U-shaped and fishhook
ABBs can also be incorporated into a mixture ABB along with other ABBs if the imputer
believes that these ABBs represent plausible missing data mechanisms.

Depending on the goals of the imputer, a nonignorable ABB can be used to provide a single
inference that does not assume ignorability and/or to check the sensitivity of inferences to
different ignorability assumptions. A desirable approach has been outlined by Daniels and
Hogan (2008), namely 1) explore the sensitivity of inferences to unverifiable missing data
assumptions, 2) characterize the uncertainty about these assumptions, and 3) incorporate
subjective beliefs about the distribution of missing responses. We see connections between
these goals and the use of nonignorable ABBs. Specifically, by analyzing data using several
different ABBs, one can explore the sensitivity of inferences to different missing data assump-
tions. Use of the mixture ABB approach allows the analyst to characterize uncertainty about
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ABB assumptions. And the choice of the ABB itself, whether it favors small or large donors
incorporates subjective beliefs about why values are missing.

6.3. Multiple imputation diagnostics

Before running MIDAS we recommend that users confirm that the linear regression that
will be used in each imputation model is estimable and that there are no problems with
multicollinearity which can sometimes occur when one uses an inclusive imputation strategy.

We also suggest two diagnostics recommended by Abayomi et al. (2008) that compare ob-
served and imputed values: density comparisons and bivariate scatterplots. These types of
diagnostics can easily be done post-imputation using the i_varname indicator variable that
MIDAS creates to identify observed and imputed values.

7. Concluding remarks

A major limitation to the software described here is computational time. Because each vari-
able is imputed individually (rather than a model that specifies a joint distribution), MIDAS
may require significant computational resources to impute a data set. The exact time required
will depend on the number of imputed data sets, the number of iterations, the number of vari-
ables to be imputed, the number of observations in the data set, the amount of missingness
in the data set, and the speed of the computer performing the imputations. However, in any
data set with more than 10, 000 observations, MIDAS would probably exceed the amount of
time most users would be willing to tolerate in a missing data procedure and a faster software
package should be chosen.

Future versions of SAS will no doubt take advantage of multi-core processors to improve
computing speed. It is possible that these advances will improve the performance of MI-
DAS. Otherwise, future releases of MIDAS will incorporate embedded C++ code to reduce
computing time.

An additional limitation to MIDAS is that each variable to be imputed requires a separate
macro statement. While this feature allows the user to specify a separate imputation model for
each variable, a tradeoff is that in those situations where a user simply wants to specify a list
of variables where each variable with missing values uses all other variables in its imputation
model, the MIDAS notation can quickly become cumbersome.

One advantage of the distance-based hot-deck approach is that since we are using our impu-
tation model only to estimate the distance between donors and donees, imputations are less
sensitive to misspecification of the regression model. As Li and Duan (1989) have shown,
under appropriate conditions, when the link function is misspecified in a linear regression, es-
timates of regression coefficients are consistent up to a multiplicative scalar. Therefore, even
under link misspecification (e.g., assuming an identity link when the variable to be imputed is
binary) we can still consistently estimate distances between donors and donees. This property
has lead Schenker and Taylor (1996) to note that predictive mean matching methods have a
built in robustness to misspecfication of the link function.

We have described a SAS macro MIDAS for imputing missing data using a predictive mean
matching hot-deck. MIDAS is a very flexible imputation procedure that can handle data
in a variety of formats. Because the imputation models are implicit, it is not necessary to
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specify a parametric model for each variable to be imputed. Variables are imputed one-at-a-
time which allows for each imputation model to condition on a different set of variables. In
addition, MIDAS allows the user to investigate the impact of different assumptions regarding
the missing data mechanism on post-imputation inferences.
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