
Some difficult-to-pass tests of randomness

George Marsaglia∗

The Florida State University
and

Wai Wan Tsang∗

The University of Hong Kong

Abstract

We describe three tests of randomness—tests that many random number generators fail. In particular,
all congruential generators—even those based on a prime modulus—fail at least one of the tests, as do many
simple generators, such as shift register and lagged Fibonacci. On the other hand, generators that pass the
three tests seem to pass all the tests in the Diehard Battery of Tests.

Note that these tests concern the randomness of a generator’s output as a sequence of independent,
uniform 32-bit integers. For uses where the output is converted to uniform variates in [0,1), potential
flaws of the output as integers will seldom cause problems after the conversion. Most generators seem
to be adequate for producing a set of uniform reals in [0,1), but several important applications, notably
in cryptography and number theory—for example, establishing probable primes, complexity of factoring
algorithms, random partitions of large integers—may require satisfactory performance on the kinds of tests
we describe here.

1 Introduction

Judging from journal articles and the far more topical content of newsgroup exchanges, there is increasing
interest in the use of random number generators (RNG’s) and their suitability for various kinds of computer
simulations and for use in cryptography and computational number theory. Much of the interest in RNG’s
may be classified under two headings:
(1) Which are good RNG’s and (2) How do you decide?

For question (1), we have suggested a number of answers, see [3,5,7], and this note is directed toward
question (2), for which we suggest three tests of randomness that serve to help distinguish the good from the
not-so-good.

In an effort to provide tests that were more stringent than the usual easy-to-pass tests first described in
[2] and extended in Knuth’s widely read book [1], Marsaglia described several more tests in [3], then added
others to make up the Diehard Battery of Tests of Randomness [6]. These tests were included in a CDROM
produced under a grant from the National Science Foundation. The CDROM provided a reliable source of
random bits (600 megabytes) as well as the Diehard Battery of Tests of Randomness. Some 1000 free copies
were distributed to interested researchers worldwide.

The stock of free copies was soon exhausted, but the CDROM is readily available on the internet, from sites
at Florida State University and the University of Hong Kong, and it has been accessed hundreds of thousands
of times.

The three tests we describe here may be viewed as a distillation of the Diehard battery of tests: reduce the
volume and concentrate the essence. Based on our experience, if a random number generator passes the three
tests described here, it is likely to pass the tests in Diehard. In addition, this ‘distilled version’ of Diehard is
much easier to apply, because unlike Diehard, which requires a binary file of some 12 megabytes of random
bits (and the concern of many queries on creating such files), the three tests here merely require the name of
the C function that provides the 32-bit random integers to be tested.

∗Research supported by Innovation and Technology Support Programme, Government of Hong Kong, Grant ITS/277/0

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In order to save journal space, specific versions of the three tests are not included, but C versions are
readily available, and will be included in new versions of the Diehard CDROM available via the internet.

2 The gcd Test

We begin with an example: Consider integersu = 297 andv = 366. Use Euclid’s algorithm to determine the
gcd ofu andv:

366 = 1*297 + 69
297 = 4*69 + 21

69 = 3*21 + 6
21 = 3*6 + 3

6 = 2*3 + 0

If u andv are random 32-bit positive integers, then three objects result from applying Euclid’s algorithm
to the pairu, v: (1) the number the iterations,k, needed to find the gcd (k=5 in the above example), (2) a
variable-length sequence of partial quotients (1,4,3,3,2 in the example) and (3) the gcd—the final value ofu
(3 in the example).

Repeating this procedure for many random choices of pairsu, v will produce three lists: (1) a list ofk’s
that are independent and identically distributed (iid), (2) a list of variable-length sequences of partial quotients
with elements not iid, and (3) a list of resulting gcd’s that are iid.

Successive steps of Euclid’s algorithm provide the partial quotientsq of the continued fraction expansion
of a ratiou/v. Suchq’s also arise as the partial quotients of the continued fraction expansion of a random
real in (0,1]. In the latter case, theq’s are nearly iid with a distribution conjectured by Gauss: Pr[q < x] =

ln(1 + x)/ ln(2). A thorough treatment of Euclid’s algorithm, its history and relation to continued fractions,
are in Knuth [1], with old and new results (pages 333-379, with extensive “Answers to Exercises" in pages
640-657).

Theq’s that arise from a randomu ∈ {1, 2, . . . , 232
−1} and fixedv = n = 232 seem adequately close to

iid with Gauss’s conjectured distribution. But theq’s that arise from bothu andv randomly chosen from 1 to
n = 232

−1, although they also seem to be close to iid, have a different distribution, the mixture with weights
1/n of the distributions with fixedv from 1 to n andu random from 1 tov. We have found that apparent
distribution empirically. But we have not included a test on the distribution for such q’s, as it did not turn out
to be as discriminating as do tests onk and the gcd.

Thus we restrict ourselves to the true iid situations: thek values and the gcd values that result from many
random choices ofu andv in {1, 2, . . . , 232

−1}. It turns out that if we chooseu andv as 32-bit integers from a
random number generator, the distribution ofk and the gcd will, for some generators, be significantly different
from what we would expect from two truly independent random 32-bit integers. Note that in determiningk,
the number of steps in Euclid’s algorithm, the first step may be ‘wasted’ ifu > v—that is, the first partial
quotient may be 0 and one proceeds as in versions of the algorithm whereu andv are interchanged if necessary.
The latter providesk’s after one fewer steps. We have chosen to use thek count for unswitchedu andv.

Unfortunately, we do not know the true distribution ofk, the number of iterations needed, although
extensive empirical study shows thatk is quite close to normally distributed with meanµ = 18.5785 and
σ = 3.405. Since the discrete variatek is nearly normal, its distribution might be adequately represented by
a member of one of the standard discrete families. Poisson will not do, since the mean is not close to the
variance, but binomial might serve. The mean of the binomial distribution isNp, and the variance isNpq.
Setting the ratio toq = Npq/(Np) = σ 2/µ = 3.4052/18.5785= .624, say, we should consider a binomial
distribution with p = .376, q = .624. But what value forN?.

2

5 10 15 20 25 30 35
x

Figure 1: Points(i, Pr[k = i]), binomial probabilities and the normal density,µ = 18.7585, σ = 3.405

It has been known since 1733 thatk, the number of steps in Euclid’s algorithm, takes maximum valuesN
whenv andu are successive Fibonacci numbers—see Knuth [1], p360. This serves as a guide for possible
values ofN for our binomial approximation. The Fibonacci number closest ton = 232 is F48. Experimenting
with a few values forN near 48 yields the following: the distribution ofk seems best fit to the binomial
distribution whenN = 50 andp = .376. The fit is quite good, as indicated in Figure 1, which contains the
points(i, Pr[k = i]), (circles), the binomial probabilities forn = 50, p = .376 (crosses), and the normal
density with meanµ and standard deviationσ .

The binomial probabilities, Pr[k = i] =
(50

i

)
.376i .52450−i serve quite satisfactorily for a test on thek

values, (truncating, say, fork ≤ 3 andk ≥ 35), but we use a little more accurate table based on extensive
simulation in our version of the gcd test.

(For the general case, we have found that for two random choices ofu, v in 1, 2, . . . , n, the expected
number of steps in Euclid’s algorithm is.842766 ln(n) + .06535, and the variance is.5151 ln(n) + .1666.)

As for the gcd’s, whenu andv are chosen randomly from a range as large as 1 to 232, the distribution of
their gcd is adequately close to the theoretical limit, Pr[gcd= j] = c/j 2, with c = 6/π2. (The probability that
u andv are both multiples ofd is proportional to 1/d2, and the required probability is Pr[gcd(u/d, v/d) = 1],
given that fact. The constant comes from 1+ 1/22

+ 1/32
+ 1/42

+ · · · = π2/6.)
Note that we do not need the true distributions to develop a test of randomness. All we need do is compare

the sample distribution from a particular RNG with the standard provided by a number of presumably good
RNG’s, ‘presumably good’ meaning that they produce results so close to a single one that the single one may

3

be used as a standard. Such a standard is based on a large number of sample distributions, each based on
many repetitions (typically 1010 or 1011) of the test procedure for RNG’s that appear to give similar results.
Then, if a particular RNG produces results significantly far from the standard, we say that the generator fails
the test. This will usually result from a goodness-of-fit test comparison with the standard, returning ap-value
very close to 0 or 1.

Use of the empirical distribution fork and the assumed iid gcd’s, based on extensive simulations, leads to
a test of randomness that shows some RNG’s are significantly different from others when applying Euclid’s
algorithm to pairs of values from the generator. The most frequent disparity is in the distribution ofk, the
number of steps needed to terminate Euclid’s algorithm, but some RNG’s also differ significantly in the
distribution of the gcd’s.

We call this thegcd test. A C version is available separately, but here is an outline of its features:
Tables that provide probabilities for the expected values for thek’s are included. Anyk values< 3 are lumped
at 3;k values>35 are lumped at 35. Probabilities for the gcd’s have the formc/j 2 and need not be stored in
advance, while probabilities for a gcd>100 are lumped at 100.
Tables for the cell counts for thek’s and for the gcd’s ,ktbl[36] andgcd[101] are initialized to 0.
The following C segment generates n (usually 107) 32-bit pairsu andv, then increments the gcd andk tables
for each pair; (IUNI is a #define that provides the random 32-bit integer):

for(i=1;i<=n;i++){k=0;
do{u=IUNI; v=IUNI;} while (u==0 || v==0); //get non-zero u and v
do{w=u%v;u=v;v=w;k++;} while(v>0);
if(u>100) u=100; gcd[u]++;
if(k<3) k=3; if(k>35) k=35; ktbl[k]++;

}

A standard goodness-of-fit test,
∑

(obs-exp)2/exp, compares the 33 lumped ktbl counts with the expected
counts and converts to ap-value via a chi-square distribution with 32 degrees of freedom.
A standard goodness-of-fit test compares the 100 lumped gcd counts with the expected counts and converts
to a p-value via a chi-square distribution with 99 degrees of freedom.

Congruential generatorsxn = axn−1 mod p, with p a prime anda a primitive root, consistently fail the
gcd test, returning ap-value of 1.0000 to indicate a terrible fit to the requiredk distribution. So do the most
commonly used of all RNG’s: congruentialxn = axn−1 +oddc mod 232. (For prime moduli> 232, the 32-bit
portion is returned via a mask, while forp = 232

− 5 the result is taken to be a random 32-bit integer.)
However,extended congruential generators,xn = a1xn−1 + · · · + ar xn−r mod p for r > 1 and

p a prime near 232 (using a 32-bit mask ifp > 232) seem to pass both the tests: distribution ofk’s and
distribution of the gcd’s.

To look more closely at the number of steps in Euclid’s algorithm for various RNG’s, here is a table of the
frequencies fork ≤ 3, k = 4, . . . , 11 after 107 calls to several full-period congruential generators, (moduli
232 and primes 232

− 5, 232
+ 15, 232

+ 91, 235
+ 951) as well as for two good generators, KISS and SHR3:

k ≤ 3 4 5 6 7 8 9 10 11
Expected Counts 5.5 29.5 144.6 590.7 2065. 6277. 16797. 39965. 85157.

KISS 7 30 142 583 2148 6294 16826 39848 84943
SHR3 3 38 143 578 2098 6427 16739 40003 85388

xn = 69069xn−1+12345 mod 232 3 20 101 491 1629 4965 14076 33834 73883
xn = 69070xn−1 mod (232

−5) 17 36 157 633 2308 6645 17942 42515 89341
xn = 69071xn−1 mod (232

+15) 154 21 123 701 1896 6121 16464 39755 84924
xn = 69069xn−1 mod (232

+91) 142 22 140 513 1962 6314 16803 40045 84972
xn = 69067xn−1 mod (235

+951) 22 29 146 606 2005 6360 16707 40158 85522

4

For details of KISS (Keep It Simple Stupid) and SHR3, a three-shift shift register generator, see [6,7] or search
‘discussions’ on www.deja.com for KISS+Marsaglia, or SHR3+Marsaglia using the ‘all’ and ’complete‘
archives.

It is clear that the distribution ofk, the number of steps in Euclid’s algorithm for two random 32-bit
integers, departs significantly from the true one, whenu andv are chosen with a congruential RNG, whether
with prime modulus or modulus 232. They all seem to produce ap-value very close to 1 from the standard∑

(obs-exp)2/exp goodness-of-fit test.
It turns out that the average values fork are satisfactorily close to the value 18.7585 found from extensive

simulation. (In our investigations, we found Knuth’s expression for the expected value ofk, 12 ln(2) ln(n)/π2
+

.06 can be more accurately represented by 12 ln(2) ln(n))/π2
+ 0.06535. See Knuth[1], pages 337 and 372.)

For the distribution of the gcd of two random 32-bit integers, the results are not as striking. It is obvious
that two successive values from a congruential generatorxn = axn−1 + oddc mod 232 will never have an
even gcd, because the trailing bit alternates. As for the congruential generators modulo a prime, most of them
seem to pass the gcd distribution test, but not all of them—for example, 69070 is a primitive root for the prime
232

−5, but the congruential generatorxn = 69070xn−1 mod 232
−5 provides an unsatisfactory distribution for

the gcd of two successive outputs. Here are a few examples of expected and observed values for the gcd test.

gcd 1 2 3 4 5 6 7 8
Expected Counts 6079271 1519817 675474 379954 243171 168869 124067 94989

KISS 6078818 1521176 675496 379749 242677 168462 124215 94960
xn = 69067xn−1 mod 235

+ 951 6077628 1520790 675940 379369 243256 168537 124310 94877
xn = 69070xn−1 mod 232

− 5 5707365 1428317 973541 357324 228086 243726 117013 89016
xn = 69069xn−1+12345 mod 232 8106215 0 900376 0 324000 0 165701 0

3 The Gorilla Test

Merits of this test are suggested by a quote from reference [4]:

Few images invoke the mysteries and ultimate certainties of a sequence of
random events as well as that of the proverbial monkey at a typewriter.

The idea is to use the random number generator to produce a sequence of ‘letters’ from an alphabet, then study
the frequency ofk-letter words in that sequence. These were calledmonkey testsin [4], and they account
for many of the most-difficult-to-pass tests in the Diehard battery. Making the sequences very long serves to
show the shortcomings of many RNGs, particularly those whose relatively short periods make them unable to
produce a reasonable proportion of the possiblek-tuples.

Probably the best way to assess the distribution ofk-letter words produced by the ‘monkey’ is to create a
cell for each possible word, then count the number of appearances of each word in a long sequence of letters
produced by the monkey. Then the quadratic form in a weak inverse of the covariance matrix of the zero-
adjusted cell counts provides a chi square test. That turns out to beQk − Qk−1, whereQk is the naive Pearson
quadratic form,

∑
(observed-expected)2/expected, for words of lengthk, see Marsaglia [3]. Unfortunately,

there are usually too many possiblek-letter words to keep cell counts for each one. An alternative, as advocated
in [3], is to count the number of missingk-letter words in a long string produced by the monkey. The resulting
count should be approximately normally distributed with mean determined by theory and variance determined
by extensive simulation.

5

That is the basis of the test included here. As a strong version of a monkey test, we call it thegorilla test.
It is applied as follows:
For 32-bit integers produced by the generator, specify one of the 32 possible bit positions, with the bits
numbered 0 to 31 from most- to least- significant. Form a sequence of 226

+ 25 such bits, made up of the
designated bit of each of 226

+ 25 integers from the generator. Ifx is the number of 26-bit ‘words‘ that do
not appear in that sequence, thenx should be approximately normally distributed with mean 24687971 and
standard deviation 4170, so that8((x − 24687971)/4170) should be uniformly distributed in[0, 1), that is,
provide ap-value for the test, where8() is the standard normal distribution function.

Below are examples of the output of the Gorilla Test for various RNG’s. The output contains thep-value
for each of the 32 bit positions of the generator’s output. Recall that we first specify the bit position to be
studied, from 0 to 31, say bit 3. Then we generate 67,108,889 (226

+25) numbers from the generator and form
a string of 67,108,889 bits by taking bit 3 from each of the generator’s numbers. In that string of 67,108,889
bits we count the number of 26-bit strings that do not appear. That count should be approximately normal with
mean 24687971 and standard deviation 4170. Converting this by means of the appropriate normal probability
transformation, we get a number between 0 and 1, ap-value. The output of the Gorilla Test gives thep-
values for each of the 32 bit positions, then does an Anderson-Darling-Kolmogorov-Smirnov test on those 32
presumed uniform (0,1) values.

Gorilla Test for KISS
Bits 0 to 7 || 0.6330 0.2903 0.6350 0.7377 0.1342 0.6095 0.1959 0.3699
Bits 8 to 15 || 0.4194 0.9699 0.3807 0.4496 0.9106 0.9100 0.4753 0.8187
Bits 16 to 23 || 0.3225 0.2455 0.7300 0.9907 0.0483 0.8786 0.3932 0.9093
Bits 24 to 31 || 0.0975 0.2096 0.5962 0.3991 0.2822 0.4591 0.6845 0.1816

0.115=ADKS
Gorilla Test for SHR3: jsrˆ=(jsr<<13); jsrˆ=(jsr>>17); jsrˆ=(jsr<<5);
Bits 0 to 7 || 0.1301 0.9562 1.0000 0.5639 0.3534 0.5053 0.5459 0.7153
Bits 8 to 15 || 0.6989 0.5975 0.5579 0.2299 0.4949 0.4399 0.3033 0.2713
Bits 16 to 23 || 0.4054 0.0514 0.9929 0.5981 0.6724 0.3801 0.2743 0.0367
Bits 24 to 31 || 0.5239 0.5100 0.1128 0.8865 0.8057 0.8623 0.9569 0.0000

0.937=ADKS
Gorilla Test for LFIB4: x(n)=x(n-256)+x(n-179)+x(n-119)+x(n-55) mod 2ˆ32.
Bits 0 to 7 || 0.7726 0.6625 0.8484 0.6311 0.5161 0.4235 0.3163 0.0502
Bits 8 to 15 || 0.0928 0.6614 0.0078 0.2021 0.6616 0.0149 0.5762 0.5736
Bits 16 to 23 || 0.4923 0.6725 0.5489 0.1335 0.8364 0.2657 0.0169 0.7038
Bits 24 to 31 || 0.5774 0.7989 0.6508 0.4192 0.2158 0.6698 0.8185 0.2468

0.724=ADKS
Gorilla Test for x(n)=69069*x(n-1) mod 2ˆ32+91
Bits 0 to 7 || 0.0309 0.0211 0.0260 0.0150 0.0181 0.0002 0.0202 0.0162
Bits 8 to 15 || 0.3523 0.0018 0.0013 0.4848 0.0345 0.0044 0.0008 0.0076
Bits 16 to 23 || 0.0227 0.0012 0.0018 0.0743 0.0821 0.0001 0.0118 0.4472
Bits 24 to 31 || 0.3204 0.5452 0.3325 0.4709 0.7966 0.5493 0.0068 0.3143

1.000=ADKS
Gorilla Tests for x(n)= 214013*x+2531011 mod 2ˆ32 (gcc’s rand function)
Bits 0 to 7 || 0.6429 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Bits 8 to 15 || 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Bits 16 to 23 || 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Bits 24 to 31 || 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.000=ADKS

6

Some generators will fail the Gorilla Test at some particular bit position, as does SHR3 at bits 2 and 31, or
may fail because collectively theirp-values do not seem uniform in (0,1), as does the congruential generator
with prime modulus 232

+ 91, with far too many smallp-values.
The Gorilla Test takes quite a bit longer than the other tests described here.

4 The Birthday Spacings Test

The birthday spacings test is an extension of the iterated spacings test described by Marsaglia in [3]. Ifmbirth-
days are randomly chosen from a year ofn days, then sorted, the number of duplicated values among the spac-
ings between those ordered birthdays will be asymptotically Poisson distributed with parameterλ = m3/(4n).
Theory provides little guidance on speed of the approach to limiting form, but extensive simulation with a
variety of RNG’s provides values ofm andn for which the limiting Poisson distribution seems satisfactory.
Among these ism = 1024 birthdays for a year of lengthn = 224 with λ = 16, the version used in Diehard
[6], and the more stringent versions,n = 220, 223, 226, 229, 232

; m = 256, 512, 1024, 2048, 4096.
Experience suggests that a RNG that passes the birthday spacing test forn = 232, m = 212, λ = 4 will

pass the test for those other values ofn, m, λ, so we have chosenn = 232 andm = 212, λ = 4, as the
most-difficult-to-pass version of the birthday spacings test. That is the one used here. We shorten the name
to the bday test. It goes as follows: The RNG in question produces 4096 birthdays. Each birthday is a
32-bit integer, a ‘day’ in a ‘year’ of 232 days. The 4096 birthdays are sorted, then differences taken to get the
spacings. Then the spacings are sorted, from which a count of the number of duplicate spacings is evident.
That provides a purported Poisson value with meanλ = 4. This process is repeated to get a sample of 5000
from that Poisson distribution. Then a goodness-of-fit test,

∑
(observed- expected)2/expected, is applied to

the Poisson sample, the result inserted into the appropriate chi-square distribution function to get a value in
[0, 1)—a p-value.

Here is an example of output from the bday test for a good RNG:

Table of Expected vs. Observed counts:
Generator: KISS (Combines congruential, shift-register and multiply-with-carry)

0 1 2 3 4 5 6 7 8 9 >=10
91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7

87 385 748 962 975 813 472 308 159 61 30
Chi-square p for that table: 0.705

And here are outputs for several generators that fail the bday test:

Generator: x(n)=214013*x(n-1)+2531011 mod 2ˆ32 (The gnu rand() function)
0 1 2 3 4 5 6 7 8 9 >=10

91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7
2112 1797 815 221 46 8 0 1 0 0 0

Chi-square p for that table: 1.000

Generator: x(n)=x(n-856)-x(n-920)-borrow mod 2ˆ32 (subtract-with-borrow, period>10ˆ8859)
91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7

42 197 482 815 902 824 724 462 275 159 118
Chi-square p for that sample: 1.000

7

Generator: x(n)=x(n-55)+x(n-24) mod 2ˆ32 (A Knuth favorite)
0 1 2 3 4 5 6 7 8 9 >=10

91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7
15 60 255 470 691 837 814 666 489 319 384

Chi-square p for that sample: 1.000

Notice the different patterns of the observed versus expected values for generators that fail the birthday
spacings tests. For some generators, there are far too many values less than the mean, 4, while for others there
are far too many values greater than 4.

5 Summary and Remarks

We have presented three tests:gcd, Gorilla andbday.
The first test, gcd, tests whetherk, the number of steps to completion of Euclid’s algorithm, and the resulting
gcd, both have the distributions called for by the underlying probability theory for two independent uniform
32-bit random integers. Many RNG’s fail this test; in particular congruential RNG’s—even those with a
prime modulus—seem to fail the test on the distribution ofk, and often on the distribution of the gcd. An
analogous test could be used for RNG’s producing more than 32 bits; the gcd’s should take valuej with
frequency proportional to 1/j 2, but the distribution ofk, steps to completion, may require a different table of
probabilities.

Failure of a RNG to satisfy randomness aspects of Euclid’s algorithm, the oldest and one of the most
fundamental of those in number theory, may be of concern to those using procedures in computational number
theory where conclusions are based on the assumption that random selections of integers from 1 ton are indeed
independent and uniform. Examples are in probable prime tests or the complexity of factoring algorithms that
depend on random selections.

The second test, the Gorilla Test, is based on what we have called Monkey Tests, in the sense of the RNG as
a monkey at a typewriter, randomly producing a very long string of keystrokes. The number of missingk-letter
words should be approximately normal with certain mean and variance depending on word size, alphabet size
and probabilities for letters of the alphabet. A particularly strong monkey test, hence the Gorilla Test, chooses
a particular bit from each 32-bit random integer, forms a string of 226 such bits, counts the number of missing
26-bit ‘words’ in that long string. The test is applied to each of the 32 bit positions; surprisingly, some RNG’s
consistently fail for certain bit positions.

An analogous version could be used for generators producing fewer or more than 32 bits.
The third test, bday, is a strong version of Marsaglia’s Birthday Spacings Test, in which each random integer

is used to determine a birthday in a year ofn days. Withm birthdays chosen and put in increasing order, the
number of duplicate values among the spacings between the birthdays should have a Poisson distribution with
parameterλ = m3/(4n). The version here is strong in the sense that many RNG’s might do well for smaller
m’s andn’s, but fail as one or the other is increased. A year ofn = 232 days is the implicit limit for 32-bit
RNG’s, while choosingm = 4096 birthdays seems to provide a test that some otherwise promising RNG’s
fail.

Analogous versions could be applied to RNG’s on 48, 64 bits, etc, withn increased. Applications where
tests such as bday may have implications are in computational number theory, where many procedures use a
selection of random integers from 1 ton and conclusions are based on the assumption that they are independent
and uniform. Of course, such applications often involve random integers with hundreds of bits, but experience
with 32 bits suggests that analogous tests for larger integers may be worth considering.

8

6 References

[1] Knuth, Donald E. (1998)The Art of Computer Programming, Volume II, 3rd Ed., Addison Wesley, Reading,
Mass.

[2] MacLaren, D. and Marsaglia, G., (1965), Uniform random number generators,",Journ. Assoc. for Com-
puting Machinery, 12, 83–89.

[3] Marsaglia. G.,(1985), A current view of random number generators, Keynote Address, Statistics and
Computer Science: XVI Symposium on the Interface, Atlanta,Proceedings, Elsevier.

[4] Marsaglia, G. and Zaman, A., (1995), Monkey tests for random number generators,Computers & Mathe-
matics with Applications, 9, No. 9, 1–10.

[5] Marsaglia, G. and Zaman, A., (1995), Some very-long-period portable random number generators,Com-
puters in Physics, 8 117–121.

[6] The Marsaglia Random Number CDROM, with The Diehard Battery of Tests of Randomness, produced
at Florida State University under a grant from The National Science Foundation, 1985. Access available at
www.stat.fsu.edu/pub/diehard.

[7] Marsaglia, G. Random Number Generators for C: Some suggestions. Postings in newsgroups sci.math,
sci.math.numer-analysis, sci.stat.math, Jan 1999. Full thread with responses available via deja.com.

9

	Introduction
	The gcd Test
	The Gorilla Test
	The Birthday Spacings Test
	Summary and Remarks
	References

